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Abstract 

This article serves as an introduction to the theory of geometric functions. Foundational 

methodologies and certain advancements within the domain are elucidated with the perspective 

that the primary audience comprises budding scholars eager to grasp fundamental principles. It 

commences with rudimentary terminologies and principles, followed by an exploration of 

selected topics within the realm of univalent functions theory. Various fundamental subsets 

within the umbrella of univalent functions are outlined. Particular emphasis is placed on the 

significant category of Caratheodory functions and their interrelations with diverse function 

classes, particularly the methodologies for deriving conclusions in those alternate classes vis-

à-vis the underlying Caratheodory functions. Given the intended audience's novice status, 

intricate proofs are omitted. Instead, elementary demonstrations are articulated using the most 

straightforward language possible. Footnotes are incorporated to expound upon points that may 

not be immediately apparent. References primarily consist of canonical texts. Interested parties 

are encouraged to consult experts for the latest references, supplementing those cited within the 

mentioned texts. It is hoped that this exposition will prove beneficial to even seasoned 

researchers venturing into this field. We commence with the fundamental definition and present 

a few straightforward examples from the realm of univalent functions. Following cursory 
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examination of the existing literature, we overview the advancements achieved in addressing 

specific challenges within this domain.  

Keywords: geometric theory, Analytic function, Univalent function. 

Introduction 

We are interested in power series of the form 

                             𝑤 = 𝑓(𝜍) = ∑ dj𝜍
𝑗∞

𝑗=0                                                        (𝟣) 

in the complex variable 𝜍 =x+iy, which converge within the unit disk. 

If ∣ 𝜍 ∣<1, such a sequence series yields a mapping of Ę over a portion of domain D. Twο 

questions arise: (Ą) considering the string of coefficients do, d1, d2,. . What geometric 

characteristics could we infer concerning D? And (B) granted a geometric property of D, what 

conclusions can we draw about the sequence do, d1, d2 …? 

Definition 1.  A function f(𝜍) that is orderly in  Ę is considered univalent in  Ę if it does not take 

any duplicate value within  Ę. Additionally, this function referred to as sįmplė or schlicht? in 

Ę. When   f(𝜍) is univalent in  Ę, we describe the domain Df(Ę) as univalent domain. 

Expressed algebraically f(𝜍) is univalent in Ę if the equation  𝑤𝑂=f(𝜍) has no more than one 

solution in E for individually complex 𝑤𝑂.If f(𝜍) is univalent in E, then 𝑓′( 𝜍)≠0in Ę. However, 

one ought to training session caution due to the reverse is j obvious examples, we cite that 

f(𝜍) = −𝜍 is univalent in Ę, whilst 𝑓2(𝜍) = 𝜍2  not univạlent in Ę. The function 𝜍 + 𝜍𝑗/𝑗  is 

univalent in Ę for every favorable integer j.The function sin𝜍 is univalent in sizeable disk∣ 𝜍 

∣<π/2.not necessarily true. 

Problem: The task is to identify a set of conditions on the sequence {𝑑𝑗} that are both necessary 

and adequate for f(𝜍) be univalent in Ę. This open issue is exceedingly challenging, yet partial 

result have been achieved: some of which will be outlined here. 

We note that if f(𝜍) is univalent, then f(𝜍)- 𝑑𝑜, is also univalent, thus we can suppose  𝑑𝑜 =0. In 

(𝟣) without loss of geometrically. That implies translating the domain D such that 𝜍 =0 maps 
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to 𝑤𝑂 = 0 under the mapping w=f(𝜍). Additionally, we observe that f′(0) =0, divide by𝑑1, and 

then write 𝑓(𝜍) in the form 

                   .𝑓(𝜍) = 𝜍 + ∑ d𝑗𝜍𝑗∞
𝑗=2  , a𝑗 =

dj

d
                                                    (2)  

Geometrically, that entails either reducing or enlarging the domain D, and potentially twirling 

D. However, this adjustment don't affect the univalence of function. 

During f(𝜍 ) takes the pattern as in Equation (2), we refer to the function as normalized. 

Normalization are feasible, but the series of condition's F(0)=0 and F′(0)=i is the most and the 

one we will adopt here. 

Currently, we provide highly significant an instance of normalized univalent function. We 

initiate our examination accompanied by function 

                                       𝑔(𝜍) =
1+𝜍

1−𝜍
                                                                (3) 

By utilizing the properties of general linear fractional transformations, it becomes evident that 

𝑔(𝜍) 𝔦s univalent in E. 𝑔(Ę) maps onto the half-plane where Re 𝑔>0. Upon squaring 𝑔(𝜍), the 

resulting function 𝒽(𝜍) = 𝑔2(𝜍) remains in univalent Ę also fully maps E to The complex 

cartesian plane. To standardize Ę, we subtract 𝒽(0)=1 and divide by 4times 𝒽′(0)except for the 

slit along the negative real axis from 0to−∞. 

                              K(𝜍)=
1

4
[(

1+𝜍

1−𝜍
)

2

− 1] =
𝜍

(1−𝜍)2                                           (4) 

An important concept in complex analysis is the Koebe function, which fully covers the 

complex plane excluding a segment along the negative real axis from 𝟣/4 to negative infinity. 

Intuitively, this function serves as the most expansive univalent function since appending any 

open set to its image compromises its univalence. A brief computation 

Starting with 
1

1−𝜍
= ∑ 𝜍𝑗∞

𝑗=0 and setting in the expression we obtain the power series for K(𝜍). 

                             K(𝜍)= ∑ 𝑗𝜍𝑗∞
𝑗=1                                                                   (5) 

This series expansion for the "utmost" univalent function indicates promptly 

Conjecture 2:  If 𝑓(𝜍) is univalent in Ę and exhibits the strength series (2), then 
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                              |a𝑗| ≤ 𝑗,         for j=2,3…                                                  (6) 

This hypothesis has been under investigation for over six decades and remains an unresolved 

question, notwithstanding its resolution in numerous particular instances. A comprehensive 

overview of these findings extends well beyond the confines of this manuscript. However, those 

keen on delving deeper into this subject can explore the literature offered by Spencer and 

Scheffre [1], Goluzlne [2], Jenkiens [3], Hayman [4], Pommrenke [5], and Schobir [6]. 

The most significant outcome currently acknowledged is credited to D. Horowitz [7], who 

demonstrated that 

                           |a𝑗| ≤ 1.065 𝑗                                                                       (7) 

Employing an exceedingly profound approach attributed to Carl FitzGerald [8]. 

The inquiry posed by conjecture1 gives rise to a plethora of associated inquiries, with some 

remaining unresolved while others have been thoroughly addressed. The Koebe function stands 

as the "epicenter of the domain" due to its recurrent appearance; hence, a theorem in this realm 

garners considerable intrigue if it eschews the utilization of the Koebe function or we shall 

delve into a selection of these theorems and conjectures, exploring their intricacies and potential 

implications. 

The unit disk: We consider the domain of 𝑔 to be the unit circle Ę = {𝜍: ⌈𝜍⌉ < 1}. Why this 

choice? Absolutely. The Riemann Mapping Theorem ensures of that kind region in the complex 

plane might be conformably represented to any other analogous characteristics. In simpler 

terms, Riemann proved the existence of an analytic function capable of transforming one simply 

connected area to another with analogous properties. Initially, Riemann's groundbreaking 

assertion seemed somewhat lacking in significance or robustness till the emergence the theory 

of univalent functions saw a significant change in 1907 when Koebe discovered that analytic 

and univalent mapping possess the desirable attribute described in Riemann's assertion [9]. If 

𝜍𝑂∈D,  

Then, a distinct analytic and univalent 𝑔 exists, which maps the open unit disk D onto the 

regionĘ, ensuring that  𝑔(ςO)=0 and  𝑔′(𝜍𝑂)>0 
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Hence, due to the univalence and consequent conformity of  𝑔 , complexities regarding the 

geometry within any simply connected domain in the complex plane need not be a concern. 

Various issues concerning such domains can ultimately be simplified to the particular case of 

the open unit disk. 

Normalization 3 The function 𝑔 is adjusted in normalized manner to satisfy the condition that 

(I) It maps the origin to zero, meaning 𝑔(0) equals zero,  

(II) Its derivative evaluates to 1 at the origin, denoted as 𝑔′(0) = 1. This is evident based 

on Riemann's assertion which suggests that, devoid of any compromise in generality, 

we can set 𝜍𝑜 = 0. Thus, the assertion simplifies to: 

In this cases where D encompasses, then a singular function 𝑔 exists, both analyticity and 

univalence, mapping D upon the open unit disk Ę. This function is unique, and it holds the 

properties 𝑔(0) = 0 and 𝑔′(0) > 0. 

Achieving the requirement 𝑔(0)  =  0 𝑎𝑛𝑑 𝑔′(0)  >  0 is precisely the purpose of 

normalization. To accomplish this, let's define the function g as follows: 

𝑓(𝜍) =
𝑔(𝜍) − d𝑜

d1
 

The condition d1 ≠ 0is not true for all analytic functions 𝑔. For instance, the analytic function 

𝑔(𝑥) = 𝜍2serves as a counterexample. However, there are numerous other functions that can 

be normalized. It is evident that class of normalizable analytic functions is not empty.  

Thankfully, there is a subset of these functions that possess a desirable property. These are the 

functions that are injective or univalent. In the language of geometric functions, such functions 

are referred to by different names, including univalent, simple schliecht, or odnolistne. They 

are functions that don't assign the equal value two times. In other words, 𝔦f 𝜍1 and 𝜍2are points 

in the domain D of 𝑔, 𝑔(𝜍2) and 𝑔(𝜍1) are distinct whenever 𝜍1 ≠ 𝜍2 

ndeed, it's not overly complex to visually ascertain that f is injective if and only if𝑓́(𝜍) ≠ 0, 

meaning it lacks a zero d1This implies that f never makes a turn within its domain. 
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An elementary analytic proof of this assertion follows from the assumption that if there were 

such turns, then for sufficiently small 𝜍, 𝑔 could be approximated (neglecting terms of(𝜍3) as 

negligible) by: 

𝑔(𝜍) ≈ d𝑜 + d2𝜍2 

in which case g loses univalence 

Now, with the assurance of 𝑔′s univalence, the desired normalization can be achieved. Let's 

denote the normalized functions as S. Furthermore, we represent them as: 

                               𝑓(𝜍) = 𝜍 + a2𝜍2+, …                                                       (8) 

Where aj =
dj

d1
,  j=2,3…and d1 = 0 

The range of f 4 

 Do we differ on whether "geometric function theory" accurately describes this field of study? 

No, we don't .As Macgregor elucidates, the term accurately captures the essence of this 

discipline. The importance of geometric concepts and quandaries "geometric function theory" 

accurately characterizes the essence of the field within complex analysis. While similar 

thoughts exist in real analysis, geometry exerts a profound influence on complex analysis, 

rendering it an indispensable and fundamental aspect according to Duren [10]. 

The synergy between geometric concepts and analytical methods is a captivating feature of 

complex function theory. The examination of univalent functions further elucidates these 

intricate connections between mathematical structures and spatial properties. 

The domains of these functions illustrate a variety of graceful geometries and traditional 

classifications. For instance, if f is a normalized analytic and univalent function in E, then its 

domain encompasses a disk ∣w∣<δ. additionally, some of these functions represent shapes that 

are star-shaped, close-to-star-shaped, convex, close-to-convex, or linearly accessible. Certain 

functions manifest these shapes in particular directions, while others uniformly, and some 

concerning conjugate symmetric points, among other variations. These functions, whose 

domains delineate specific geometries, are thus termed geometric functions. Moreover, the 

examination of these functions falls under the purview of geometric unction theory.             
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In particular, a region of the complex plane demonstrates star geometry concerning a specified 

point within it if every other point in the region is visible from that fixed point. Put simply, any 

ray or line segment originating from the fixed point and extending to any other point within the 

region stays entirely within the region. If a region exhibits star geometry concerning every point 

within it, it is termed convex. Essentially, this implies that the line segment connecting any two 

points within the region remains wholly contained within the region itself.. 

Assignments whose ranges exhibit luminary geometry are termed star functions, while those 

whose ranges display convex geometry are referred to as convex functions. This concept holds 

true across various classes of functions. 

Some subjects of inquiry 

The theory of geometric functions serves as a powerful tool for solving a broad spectrum of 

problems in mathematical analysis. Its results find application across numerous in the realms of 

mathematics, the physical sciences, and engineering, it's crucial to consider the seminal 

compilation by S. Berenardi: 

Bibliography of Schliecht functions: 

Courant Institute of Mathematical Sciences, New York University, 1966.Part II, Courant 

Institute of Mathematical Sciences, New York University, 1977.Reprinted with Part III added 

by Marinir Publishing, Tampa, Florieda, 1983. 

These references serve as valuable sources for studying and exploring a wide range of schliecht 

functions and their applications in the fields of mathematics, physics, and engineering, 

enumerating the diverse subject areas of geometric function theory, accompanied by a 

compilation of numerous research outputs in those domains. 

We now commence our discussion of these univalent functions by acknowledging the 

abundance of their existence in nature. To such an extent that the straightforward 

definition, 𝑓(𝜍1) = 𝑓(𝜍2) ⟹ 𝜍1 = 𝜍2 or its equivalent 𝜍1 ≠ 𝜍2 ⟹ 𝑓(𝜍1) ≠ 𝑓(𝜍2) , cannot 

generally be employed to recognize, identify, isolate, many of them. Consequently, this 

challenge has spurred the development of several new methods in mathematical analysis aimed 

at achieving this objective. In a special, methods fall under what commonly referred to as. 
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Sufficient conditions for univalence 1 

Result in this direction are as researchers in this field. They persist to be published incessantly, 

with no 𝑓finale in vision. Among these results, one notable and straightforward theorem is the 

Noshero-Warschewski Theorem: If f is analytic in a domain D and Re𝑓́(𝜍)>0then f is univalent 

in that domain. 

He evidence supporting the aforementioned univalence conditain hinges on the premise that the 

function 𝑓 is established over a line fragment connecting either of the two separate points within 

domain, designated as 𝛺:ℒ𝜍2+(1 − ℒ)𝜍1Therefore, through the transformation 

𝜍 = ℒ𝜍2+(1 − ℒ)𝜍1 

(𝑑𝜍 = (𝜍2 − 𝜍1)𝑑ℒ) we have  

𝑓(𝜍2) − 𝑓(𝜍1) = ∫ 𝑓́(𝜍)𝑑𝜍
𝜍2

𝜍1
= (𝜍2 − 𝜍1) ∫ 𝑓́(ℒ𝜍2 + (1 − ℒ)𝜍1𝑑ℒ

1

0
≠ 0  

Since Re 𝑓́(𝜍) > 0 

Indeed, the claim of the Noshero-Warschewski theorem is encapsulated within an equivalent 

yet broader assertion, as follows: 

[Close--convexity [11]] If f is analytic within a domain D, if there exists a convex function g 

such that Re 𝑓́ (𝜍)/𝑔′( 𝜍) > 0 for all 𝜍 in D, then f is univalent within D. 

Arguably more than any other, this particular subject has been instrumental in the identification 

of numerous subfamilies the class of univalent in the unit dick. Several of these subclasses are 

deliberated upon. 

Closely related to this is the inquiry into wherein do metamorphoses maintain univalence within 

the unit disk. Among the majority fundamental ones are: conjugation, 

𝑓(𝜍)̅̅̅ ̅̅ ̅̅ rotation,𝑒−𝑖𝜃𝑓(𝑒𝑖𝜃𝜍); dilation, f(r  𝜍 )/r for 0<r<1; disk automorphism, [𝑓(
(𝜍+𝜎)

(1+𝜎̅)−𝑓(𝜍)
] /

[(1 − |𝜎|2𝑓(𝜎)́ ] , σ∈E; omitted-value
𝜉𝑓(𝜍)

[𝜉−𝑓(𝜍)]
;  𝑓(𝜍) ≠ 𝜉, 𝜉 ∈ Ę  square root, and the 

configuration transformations, ϕ(f(𝜍)), ϕ is still analytically normalized and univalent, while 

being constrained within the range of f. These transformations can all be readily verified using 
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the given definition f(𝜍1)=f(𝜍2)⇒ 𝜍2 = 𝜍2 , except for the square root transformation, which 

necessitates. 

Advancements in the field have prompted the exploration of more complex transformations, 

especially those arising as solutions to certain linear or nonlinear differential equations. Among 

these, The Lebira integral transform is recognized as the most basic form denoted. 

                      𝐽(𝑓) = 2𝜍 ∫ 𝑓(ℒ)
𝜍

0
𝑑ℒ,( [9]).                                                     (9) 

This integral transform, described in equation (2.1), encapsulates a fundamental technique in 

the evolution of the subject, allowing for deeper insights into the behavior of univalent 

functions. The Lebira integral emerges as the outcome of the initial linear differential equation 

of the first order 

                                                         𝜍𝑓́ (𝜍)+ 𝑓(𝜍) = 2𝑔(𝜍). 

Numerous other integrals have been explored, often serving as extensions of the Lebira integral. 

These transformations encompass nature delve into the characteristics and properties 

concerning solutions to specific differėntial equạtion′s , particularly concerning scenarios 

where f possesses certain known properties. These investigations also explore the extent to 

which such properties can be transferred to the solutions of these equations. 

Radius problems 2  

 If we consider that certain transformations or geometric conditions that fail to maintain 

univalence, such as those within the unit disk.It naturally leads to the question of whether such 

transformations or conditions may uphold univalence in a smaller subdisk Ę𝑜 ={  𝜍 :∣  𝜍 

∣<ρ<1}⊂  Ę . Problems of this nature are commonly referred to as "radius problems." 

Specifically, these problems revolve around determining. The radius, ρ, represents the largest 

subdisk, Ę𝑜within which specific transformations of a univalent function f or certain geometric 

conditions ensure univalence. This radius, ρ, is commonly referred to as the "radius of 

univalence"among other designations. The notion of the radius of univalence extends beyond 

the realm of univalence alone, giving rise to numerous related questions such as the radius of 

star likeness, and close--convexity. 
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A fundamental result in this line of inquiry is: 

[Noshiro,Yameguchi [𝟣2]] If f satisfies 𝑅𝑒𝑓(𝜍)/𝜍 > 0 in E, then its univalent in the  subdisk 

|𝜍| < √2 − 1 

Convolution or hadamard product [13, 14] 3 

  Let's define two analytic functions within the unit circle, denoted as 𝑓(𝜍) = ao + a1ς +

a2𝜍2… and 𝑔(𝜍) = do + d1𝜍 + d2𝜍2…The operation of convolution (or Hadamard product) 

between 𝑓(𝜍) and 𝑔(𝜍), denoted as (𝑓 ∗ 𝑔)(𝜍), is given by: 

(𝑓 ∗ 𝑔)(𝜍) = 𝜍 + ∑ a𝑗𝑑𝑗𝜍𝑗
∞

𝑗=2
 

(This concept originates from the integral representation: 

ℎ(𝑟2𝑒𝑖𝜃) = (𝑓 ∗ 𝑔)(𝑟2𝑒𝑖𝜃) =
𝟣

2𝜋
∫ 𝑓(𝑟𝑒𝑖(𝜃−ℒ))𝑔(𝑟𝑒𝑖ℒ)𝑑ℒ

2𝜋

0
,  r<1 

The convolution operation has demonstrated its utility in addressing various challenges within 

the realms of analytic and univalent function theory. It has particularly facilitated the closure of 

function families under specific transformations. This is because numerous transformations of 

f can be represented as convolutions of f with other analytic functions, often with predefined 

behavior. Thus, it is natural to aspire to explore the convolutional properties across different 

function classes. For instance, the Libera transform (2) can be expressed as the convolution 𝐽 =

𝑔 ∗ 𝑓, where 𝑔an analytic function is. 

𝑔(𝜍) = 𝜍 + ∑
2

𝑗 + 1
𝜍𝑗

∞

𝑗=2
 

The function 𝑔  possesses certain appealing geometric properties, which could potentially 

transfer to the Libera transform through convolution, as extensively documented in the 

literature. This suggests promising avenues for further exploration and study. 

Coefficient inequalities 4  

Upon closer examination of the series expansion of f, it becomes evident that various properties 

such as growth, distortion, and even univalence could be influenced, or indicated, by the 

magnitudes of its coefficients. Duren articulates: 
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In its most general from, the coefficient problem encompasses entails determining the region in 

𝐶𝑗−1occupied by the points a2, a3…ajfor all 𝑓 ∈ 𝑆 Deriving such precise analytic information 

from the geometric hypothesis of univalence proves to be exceedingly challenging.The majority 

of the content in this section of the article is drawn from the comprehensive survey by Duren 

[10]. This source provides extensive coverage of the intricate issues surrounding coefficient 

problems within the field, making it a valuable resource for in-depth exploration. 

The coefficient problem has undergone a reformulation, focusing on the specific task of 

estimating ∣aj∣, perhaps no problem within the field has presented as formidable a challenge to 

its practitioners as the coefficient problem. As early as 1916, Biebrebach conjectured [15] that 

the modulus of the jth coefficient of a univalent function is less than or equal to that of the 

Koebe function: 

For every function 𝑓 ∈ 𝑆,∣aj∣≤ 𝑗 for j=2,3… 

Except for the Koebe function or its rotations, strict inequality applies for all j Biebrebach 

himself established that ∣ a2 ∣≤ 2 as straightforward consequence of the area theorem [10], 

credited to Greomwall, was resolved in 1923 by Loewner for the third coefficient. Garabedian 

and Schiffier resolved the fourth coefficient in 1955, with Chirzynski and Schiffier offering an 

elementary proof in 1960. Although proofs for the fifth and sixth coefficients surfaced later, the 

conjecture lingered until 1985 when De Branges provided the definitive solution. 

Astonishingly, the conjecture endured for sixty-nine years prior to resolution. Nevertheless, this 

extended period saw considerable advancements as it spurred the development of innovative 

methods and techniques in both the specialized theory and broader complex analysis.  

The endeavor for the utmost precision in determining the coefficients of odd univalent 

functions, often represented through the square root transformation of a function, is deeply 

interwoven with the Bieberbach conjecture𝑓 ∈ 𝑆. 

𝑙(𝜍) = √𝑓(𝜍2) = 𝜍 + 𝑐3𝜍3 + 𝑐5𝜍5 … 

For odd univalent functions, Littlwood and Paley demonstrated in 1932 that for each j, the 

modulus ∣𝑐𝑗∣ is bounded above by an absolute constant A. Their method demonstrated that this 
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constant A and they appended a footnote suggesting, undoubtedly, the true bound is provided 

by A=1, which later became apparent as the Littlwood-Paley conjecture. The validity of this 

conjecture for definite subclasses of S masked its falsehood broadly until as promptly as 1933, 

approximately a year after its proposition, when it was refuted by what became known as the 

Feket-Szegö problem. 

Coefficient related problems 5 

These tasks encompass identifying the sequential coefficient relationships and delineating the 

range of coefficient variability. 

Growth, distortion and covering [16] 6  

The notion of growth in an analytic function f pertains to the magnitude of its image domain, 

denoted as ∣ 𝑓(𝜍) ∣. The term "distortion" emerges from the geometric interpretation of ∣ 𝑓′(𝜍) ∣

 as the infinitesimal scaling factor of arclength under the mapping 𝑓, or from the Jacobian 

∣ 𝑓′(𝜍) ∣ 2 as the infinitesimal scaling factor of the area of the image domain. The notion of 

encompassing by a function 𝑓 denotes the area of the image domain that it covers. For the 

comprehensive array of univalent functions, it is established that the domain of every member 

function encompasses the disk ∣𝜉∣<1/4. This proposition, initially introduced by Koebe in 1907, 

is widely known as the Koebe one-Quarter Theorem. It stems from the Bieberbach Theorem 

concerning the second coefficient of functions in S and their neglected-value transformation. 

Partial sums 7 

 The inquiry into the partial sums 𝑆𝑗(𝜍) = 𝜍 + a2𝜍2 + ⋯ + aj𝜍
𝑗 of the series expansion off 

concerns the degree to which established geometric characteristics of f are preserved in its 

partial sum. Another relevant finding from Yamaguchie is as follows: 

[Yamaguchie [13]]: If f satisfies 𝑅𝑒 𝑓(𝜍)/𝜍 > 0 in E, then the jth partial sum 𝑆𝑗(𝜍) = 𝜍 +

a2𝜍2 + ⋯ + aj𝜍
𝑗is (1-1)in subdisk ∣ 𝜍∣<𝟣/4 
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Linear sums or combinations 8 

 It is also intriguing to explore under what conditions does the linear combination maintain its 

linearity(1 − 𝑡)Φ + ℒΨ preserves certain established geometric properties based on Φ and Ψ 

when Φ and Ψare geometric quantities associated with f. 

Some subclasses of S 

Continuing from the preceding discussion regarding some subclasses within the class of 

univalent functions, it's worth mentioning that the primary rationale for exploring new 

subclasses stems from the potential to associate certain classes of functions with unique 

properties not typically associated with other classes. Consequently, numerous areas of 

investigation are being revisited across various classes of functions to refine, enhance, or extend 

many established results, particularly with a focus on developing new subclasses. Handful of 

the notable subclasses of include: 

Functions of bounded (𝒇 ′(𝝇)) 1 

 These functions are characterized by having derivatives having positive real part, 

i.e,𝑅𝑒 𝑓′(𝜍) > 0. As previously mentioned, they are entirely univalent functions. A multitude 

of results regarding this category can be discovered in the existing literature.  

Starlike functions (𝝇𝒇′/𝒇)[16] 2 

 These functions are characterized by having a positive real part of the quantity 𝜍𝑓′/𝑓positive 

they constitute are entirely univalent functions and also demonstrate convexity. Moreover they 

are categorized close-to-convex. Results regarding this class of functions can found distributed 

across various sources. 

Convex functions (𝟏 + 𝝇𝒇′′/𝒇′ )[21] 3 

 These functions are characterized by the positivity of the real part of 1 + 𝜍𝑓′′/𝑓′. Positive they 

are entirely univalent functions and also classified as close-to-convex. Literature concerning 

this class of functions can be found dispersed across various sources. 
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Close-to-convex (𝒇 ′/𝒈′ , 𝒈 is convex)[16] 4 

 These functions are characterized by having the real part of the quantity 𝑓 ′/𝑔′, where 𝑔 is 

convex, as real. They are completely univalent functions. Literature on this subject is 

additionally dispersed across various sources. A notable subclass within this category is the 

bounded turning function, which is a special type of close-to-convex function with 𝑔(𝜍) = 𝜍. 

Numerous other subclasses stemming from the aforementioned classes of functions have been 

documented in literature. Additionally, several generalizations have emerged through both 

derivative and integral operators. These operators encompass well-known ones such as the 

Salegean derivative, Ruschaweyh derivative, and beyond variations thereof. 

Caretheodory, related functions and generalizations  

A cursory examination of the series expansions for f and various associated geometric quantities 

like
𝜍𝑓′

𝑓
, 𝟣 + 𝜍𝑓˶/𝑓, 𝑓/𝑔 𝑓 ′/𝑔′, and many others, which exhibit the property of having positive 

real parts, suggests the existence of a series form: 

                               𝒽(𝜍) =𝟣+𝑐1𝜍 + 𝑐2𝜍2+…                                                 (10) 

The from (4.1) satisfies 𝒽 (0)=1 and 𝑅𝑒𝒽(𝜍) > 0(positive real parts), f (normalized f(0)=0 and 

𝑓′(0) = 1) and 𝒽 (normalized by 𝒽 (0)=1). It is plausible to propose that the discovery of f 

preceded that of 𝒽. If not, the discovery of f would likely have prompted exploration into 𝒽. 

Investigating 𝒽 provides valuable insights into the characteristics of  f displaying the described 

geometries. 

The function 𝒽 is termed the Caretheodory function, named after Caretheodory who not only 

observed the evident though also devoted considerable effort to characterizing it. 𝒽  can 

alternatively another perspective is to consider 𝒽 as a function that is subordinate to the Möbius 

function. 

Ω𝑜(𝜍) =
1 + 𝜍

1 − 𝜍
 

The Möbius function plays a central role in the family of functions akin to 𝒽, assuming the 

extremum in the most extremal problem for such functions. By subordination, it is implied that 
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there exists a function of unit bound,(  𝜛(𝜍) ∣ 𝜛(𝜍) ∣< 𝟣 , normalized by normalized by 𝜛 

(0)=0) such that 𝒽(𝜍) =  Ω𝑜( 𝜛 (𝜍)). Consequently, this offers an alternative depiction for 𝒽, 

among various others. Specifically, in the context of 𝜛, 𝒽 assumes the following structure: 

𝒽 (𝜍)=𝟣+h(𝜍)=1+
𝜛(𝜍)

𝟣−𝜛(𝜍)
  𝜍 ∈ 𝐸 

[Schwarz's Lemma ([4])]: If ð(𝜍) is a function bounded in the complex plane E, then for every 

0 <  𝑟 <  1, |ð(0)|  <  1 and | ð(r𝑒i𝜛)| ≤ r, holds true unless ð(𝜍)  = 𝑒𝑖 𝜎𝜍 for a particular real 

number𝜎. 

The previously mentioned theorem is commonly referred to as Schwarz's lemma. It suggests 

that if ð (ς) is a function bounded in the complex plane E, then the function u(𝜍) = ð (𝜍)/ 𝜍 is 

also bounded, implying |u(𝜍)| < 1. However, it doesn't necessarily ensure normalization by |u(0)| 

= 0. 

[Cartheodory [17]]: If ð(𝜍) is a function bounded in the complex plane E, then| ð'(𝜍)| ≤ 1 -

|ð(𝜍)|2. 

Studies have shown that any function h can also possess what is commonly referred to as the 

Herglotze representation, expressed in integral form as follows: 𝒽(𝜍) =

∫
𝑒𝑖 ℒ+𝜍

𝑒𝑖 ℒ−𝜍
𝑑𝜇(ℒ)

2𝜋

0
where 𝑑𝜇(ℒ) ≥ 0 and ∫dμ(ℒ)=μ(2π)−μ(0)=1.The different portrayals of 𝒽 hold 

significant applications, which can be explored through additional study.Moreover, the 

Caretheodory functions are conserved under several transformations: suppose 𝑔  and h are 

Caretheodory, then p defined as follows also belongs to the Caretheodory class: 

1. 𝑝(𝜍) = 𝑔(𝑒𝑖 ℒ𝜍), where ℒ is real. 

2. 𝑝(𝜍) = 𝑔(ℒ𝜍), where ℒ ∈[−1,1]. 

3. 𝑝(𝜍) = 𝑔[1 + ℒ𝜍/𝜍̅ + 𝑡]/𝑔(ℒ), where ∣ℒ∣<1. 

4. 𝑝(𝜍) =  𝑔(𝜍) + 𝑖ℒ/1 + 𝑖ℒ𝑔(𝜍), where ℒ is real. 

5. 𝑝(𝜍) = [𝑔(𝜍)] ℒ, where ℒ ∈[−1,1]. 
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6. 𝑝(𝜍) =  [𝑔(𝜍)] ℒ [𝒽(𝜍)] 𝜏, where ℒ, τ, and ℒ +τ are all in the range [0,1]. 

We will now discuss two fundamental coefficient inequalities for 𝒽. The initial one is grounded 

in its Herglotze depiction, whereas the latter hinges on its representation through functions 

bounded by unity. ð(𝜍). 

[Caretheodory([11])]: If ℎ(𝜍) = 1 + 𝑐1𝜍 + 𝑐2𝜍2 + ⋯is Caratheodory function, then ∣𝑐𝑗∣≤2 for 

j=1,2,… The Mo¨ebius function achieves evenness in this inequality. 

Further advancements the variations have resulted in diverse generalizations of 𝒽. Janowseki 

[18] introduced a redefinition of 𝒽 in terminology of ð, stating that for Invariant real numbers 

a and d where a∈(−1,1] and d∈[−1,a) (meaning −1≤d<a≤1), h is defined as: 

𝒽(𝜍)=
𝟣+að(𝜍)

1+𝑑ð(𝜍)
 In this context, the Carathéodory function is defined such that it corresponds to 

the extreme cases where d=−1 and a=1. Additionally, for different selections of parameters "a" 

and "d", the function " 𝒽 " still projects the unit disk onto specific regions within the right half-

plane. 

Arguably, one of noteworthy contributions the advancement of this crucial area of research 

hinges on the refinement of iterative processes. For two crucial families of functions, the 

Caratheodory and Janowseki functions [19] .These iterations are defined as follows: 

For the Caratheodory family: 𝑝𝑗 =
𝜍𝑗

𝛼
∫ ℒ𝛼−1𝑝𝑗−1(ℒ)

𝜍

𝑜
d ℒ,j≥1, with 𝑝𝑗(𝜍)=p(𝜍). 

For the Janowseki family:𝑝𝜎,𝑗(𝜍) =
𝜎−(𝑗−1)

𝜍𝜎−(𝑗−1) ∫ 𝑝𝜎−1𝑝𝜎,(𝑗−1)(ℒ)𝑑ℒ
𝜍

𝑜
, j≥1, with 𝑝𝜎,𝑜(  𝜍 )=p(𝜍 ). 

These transformations maintain numerous geometric properties within the set of functions 

possessing the transformations exhibit a positive real part and are normalized by 𝒽(0)=𝟣. 

Remarkably, they maintain positivity of real parts, compactness, convexity, and subordination. 

An intriguing aspect of these transformations is their ability to facilitate exploration of 

associated function classes, making them simple, concise, and elegant. They have demonstrated 

significant utility in effortlessly addressing specific problems within the domains of analytic 

and univalent function theory, highlighting their extraordinary simplicity. 



  

 

 

267 
 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 2, July 2025 

 
 
 
 

Numerous techniques have emerged in the field, yet the most fundamental and accessible for 

beginners is one rooted in the close connection between Carathéodory functions (along with 

their subsequent developments) and various classes of functions. Significant results have been 

attained concerning this category of functions. Consequently, exploring diverse problems of 

geometric functions through an underlying function h has gained widespread acceptance among 

researchers in this field as a primary technique. The following section presents several examples 

and provides insight into the methodology of constructing extremal functions.  

And there are many researchers currently working in this field, with numerous studies to their 

credit including H. M. Srivastava[20], Sabir [21], Wanas and Raadhi [22] , Amini and  Al-

Omari [23], A. R. Juma [24] and some other researchers [24-35]. 

We will mention some theories in this field. 

Theorem 1: If f ∈S satisfies Re 𝜍 f(𝜍)>0, then its coefficients satisfy the inequality: ∣a𝑗∣≤2. 

Equality is achieved by the function 𝑓(𝜍) = 2(𝜍 + 1)/(1 − 𝜍) 

Theorem 2: If f is starlike (Re𝜍𝑓′/𝑓 >0), then ∣𝑎𝑗∣≤j. Equality is attained by the Koebe function 

f(𝜍)=𝜍/(1 − 𝜍)2 . 

Theorem 3: If f is convex (𝑅𝑒[ [1 +  𝜍𝑓′′(𝜍)/ 𝑓′(𝜍)] > 0), then ∣𝑎𝑗∣≤1. Equality is achieved by 

means of Koebe function 𝑓(𝜍) =
1

1−𝜍
 

Theorem 4: If f is close-to-convex (𝑅𝑒𝑓′(𝜍)/ 𝑔′(𝜍) > 0), where 𝑔 is convex), then ∣a𝑗 ∣≤j. 

Equality is attained by Koebe f(𝜍)=𝜍/(1 − 𝜍)2. 

Conclusion 

Invitation to geometric function theory presents an accessible and comprehensive overview 

intricate interplay between geometry and functions. Through clear explanations and illustrative 

examples, readers are guided through fundamental concepts in complex analysis, differential 

geometry, and topology, demonstrating their practical application in geometric function theory. 

Suitable for both novice learners and seasoned experts, this text establishes a strong foundation 

for understanding complex mathematical ideas. Emphasizing practical applications ensures its 

relevance across diverse fields, from mathematical physics to computer graphics. Overall, it 
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serves as an invaluable resource for students, researchers, and enthusiasts, offering a gateway 

to a rich and rewarding area of mathematical inquiry while deepening appreciation for the 

profound connections between geometry and functions. 
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