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Abstract

In this paper, an inverse problem for the modified Helmholtz equation arising in heat
conduction in the fin is considered. The goal of this paper is the determination of the
temperature at the under-specified boundary (inner boundary of an annular domain) benefiting
from the accessible part of the boundary with Cauchy data (boundary temperature and heat
flux). This problem is solved numerically using the meshless method proposed in [2]. The

stability is confirmed by applying a noise for the Cauchy data.

Keywords: Inverse Cauchy problem, Modified Helmholtz equation, Polynomial expansion,
Conjugate Gradient method (CGM), Conjugate Gradient Least Square Method (CGLYS).
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Introduction

One of the important applications in inverse problem design and optimization is to identify an
unknown obstacle and its resistive characteristics. This motivates us to find the temperature on
the inner boundary of an annular domain for an inverse Cauchy problem governing by a

modified Helmholtz equation.

In this paper, we consider the inverse problem which consists of determining a temperature u
on the inner boundary of an annular domain from a given Cauchy data on the outer boundary
(boundary temperature and heat flux), assuming that the steady state temperature u satisfies the

modified Helmholtz equation governing the heat conduction in a fin
V2u—k*u=0,9/D

from the knowledge of Dirichlet temperature data u and Neumann heat flux data Z—Z on outer

part of the boundary 0 of Q, where n is outward unit normal at 9Q, and a boundary condition
(Dirichlet, Neumann or Robin) on the boundary oD of D [Lesnic & Bin-Mohsin, 2004]. This
kind of problems is an ill-posed problem. In fact, a problem is well-posed in the sense of
Hadamard, in case that the solution exists, unique and stable, [Hadamard, 1923], otherwise if
the solution does not satisfy one of these conditions, then the problem is ill-posed, and hence
an inverse problem must be formulated to solve this ill-posed problem. In general, the inverse

problem is known to be difficult to solve rather than the direct problems.

Moreover, the inverse problems are unstable, [Hadamard, 1923], i.e., in the sense that a small

error in measurement of the input data, this can produce a big error in the solution. Recently,
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inverse problems have been considered in several domains of science, (see [Kubo, 1988]). The
Cauchy problem is one of the examples of inverse problems [Chakib et. al., 2018], [Hernandez-
Montero et al., 2019], [Isakov, 2017], [Kabanikhin, 2012], [Lavrent’ev, 1986], [Liu & Wang,
2018], [Nachaoui et. al., 2021]. For this type of problems, the boundary conditions (Dirichlet,
Neumann) are known only on some part of the boundary (accessible part), and on the other part

of the boundary there is no given data so this part is said to be under-specified or un-accessible.

For these complications, a suitable algorithm must be chosen to be able to reduce the ill-
posedness of this type of problem. In the last two decades, several methods have been developed
for solving the Cauchy problem of the Helmholtz equation. Here we recall some of these
methods, the truncation method [Yang, 2019], the conjugate gradient method [Marin et al.,
2003b], the meshless generalized finite difference method [Hua et. Al., 2017], the Landweber
method [Yang et. al., 2017], the fractional Tikhonov regularization method [Qia & Feng, 2017].

In fact, the dependence of the numerical solutions of direct Helmholtz equation on the physical
parameters k has a remarkable effect on the quality of approximation. For more details about
this see [lhlenburg & Babuska, 1995 and 1997]. Some methods have been proposed to solve
Cauchy Helmholtz equation for some big parameter k, see [Berntsson et. Al, 2014, 2017, 2018],
[Karimi & Rezaee, 2017] and [Qian & Feng, 2017]. An alternating algorithm based on
relaxation of alternating algorithms has proposed by [Jourhmane & Nachaoui, 1996]. An
effective relaxed alternating procedure proved the convergence for all values of wave number
k in the case of Helmholtz equation and accelerate the convergence in the case of modified
Helmholtz equation in [Berdawood et. Al., 2021], the authors proved that for any value wave

number k we find an interval of relaxation parameter in which the convergence is assured.

The aim of this paper is to explore a method based on polynomial expansion for the
approximation of the solution of a Cauchy problem for a modified Helmholtz-type equation in
a bounded domain enclosed by a smooth boundary. In this work, the temperature of the un-
accessible inner boundary is approached using a meshless method proposed in Rasheed et al.
[Rasheed et al. 2021]. This method was proposed in [Rasheed et. al, 2021] to solve an inverse

Cauchy problem and by [Jameel et al., 2022] to solve a Cauchy problem Helmholtz equation.
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The next sections of this paper are organized as follows; in section 2 we recall the inverse
Cauchy problem for modified Helmholtz equation. Our proposed approximate method is given
in section 3. Some numerical methods is considered and illustrated by applying them, for some

examples in section 4.

2. Inverse Cauchy problem for the modified Helmholtz equation

Let us consider the domain 2\D c R? with
N={r0):0<r<1,0 < 6<2m}
D={(10):0<r<p,0<p <10 < 6 <2n}
Let us consider Qc R? with boundarydQ =T, UT,
Li={(r,0) : r = p,(0)0 <6< 2m} outer boundary
L ={(r0):r=p,(0) 0 < 6 < 2m}inner bounda

We consider the inverse Cauchy problem for the modified Helmholtz equation giving in the

following

AU, Y) — KU Y) = O QND oot (1)
U(P,0) = R(0) 0M D = T .ot (2
%(p, 0) = g(0) 0M OO = T oo 3)

Note Cauchy data u(x, y) and Z—Z(x, y) are given on the accessible part of the boundary of the

domain Q. Where h (8 ), g(68)are given function.

Note that the part T'1 is (over determined) two boundary conditions are specified, while T2 is
under determined (no boundary condition is specified). The inverse problem for the modified

Helmholtz equation is formulated to determine the temperature u on the interior under-
determined boundary T'2. Recalling that the normal derivative of u, denoting by Z—Z, can be

expressed in the following from (Liu&Kuo,2016), Rasheed et al. (2021):
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du(p,6 "du(p,0
8,u(p,6) =1(6) | “;’; L% e &)
_ p(6)
n@o) = T L (G (5)

The normal derivative d,u(x,y) we can also expressin terms of d,u and d,u by

(Liu&Kuo,2016), Rasheed et al. (2021):
d,u =n(0) [cos ) - ”;—;sin G ] d,u+n(0) [sin ) - Z—;cos (6) ] Ayu .............. (6)

3. Approximation of the solution by polynomial expansion

The solution u(x, y) can be expressed as a polynomial expansion

U, Y) = X1 Xiea Coix TP (7)

To find u(x,y), the coefficients c;; must be determined. The number of these coefficients is

n= @ , hote that the maximal order of the above polynomial ism — 1.

Using equation (7) we find d,u, d,u and Au
D u(x,y) = YRy Niogcij (i — ) XTI s (8)
By u(x,y) = XNl €ij = D) X TP 2 s 9)

Au(x,y) — KPu(x,y) = T jog e[ —HE—-j— 1) T2y + -1 (G -

Firstly, the coefficients c;; in (8) can be expressed as a n-dimensional vector ¢ with the

components ¢, k = 1,...,n. In fact, the coefficients c;; are reordered taking in consideration

thati = 1,..,mandj = 1, ..., i, each index ij corresponding one index k by taking k = i(iz_l) +
j . The term u(x, y) can be expressed as an inner product of the vector a” with c, that
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€1
u(x,y) = [1xyx®xyy?> 3x’y xy* y3 ..] C:Z =a
Cn
We replace (8) and (9) in to (6) gives us an expression of d,u(x,y). Similarly, for each point

on the accessible part of the boundary I'ythe normal derivative d,,u(x, y) can be expressed as

an inner product of a vector e with c, such that the [ — th component of e is given by:

e; =n(0) [(i — PHxti 1yl (cos 0 - I’;—;sin(())) + (- DxtTyi~2 (sin 0) —

:;_; cos(G))] .......................................................................................................................... (12)

For [ =1, ..., nand by keeping the same coefficients i, j for those used to calculated e; from cij.
Now for each point in the domain the term Au(x,y) — k?u(x, y) can be expressed from (10)

as an inner product of a vector d with ¢, where the [ — th component d; , [ =1, ..., n is given
by:

dy=G-P>E—-j—DxT 2y 14 (-1)(j—2)x" Ty 3 — K2y 1) ... (13)

Choosing ni1 points on boundary I'1, say (xi,yi) = (cos (6;),sin(6;)) , i=12,..,n;,t0
verify the boundary condition (2)-(3) and also we take nz points in the domain Q\D, say

(xj,¥j),J = 1, ...,n, to satisfy the equation (1). So, we obtain the linear system

So, the vector b is of longer (2n, + n,) x 1 and A is (2n; + n,) X @ ) matrix given

respectively by
A=[al..al e].. el dl..d,|b=[h(8;)...h(8,1) g(01)...9(0,1)00] ... (15)
4 Solving the linear system

To solve the linear system Ac = b, we use the well-known Conjugate Gradient method (CGM)
and the Conjugate Gradient least square method (CGLS) (see [8]).
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4.1 Algorithms of the Conjugate Gradient method (CGM) and the Conjugate Gradient

least square method (CGLYS)

The conjugate gradient method will at first be described as an iterative method to solve a linear

system of equations. Ax=b, A€ R™" symmetric and positive definite

Conjugate Gradient method (CGM)

Conjugate Gradient least square method (CGLS)

Algorithm 1: conjugate Gradient Method (CGM
Given a positive definite and symmetric system of
equation Ax = b, and an initial solution xo , let 8 —
1=0,p—1=0,19=b—Axgandk=0.

1. letpy =1 + Br-1Pr-1

2

r
2. It = Azt
Py APk

3. let Xk+1 = Xk + APk

4, |€t T41 = Tk + OckApk

5. let __“Tk+1”%
1t B = &1

6.letk=k+1

7. Repeat the previous steps until convergence.

Algorithm 2: Conjugate Gradient least Square Method
(CGLS)

Given a least squares problem min ||Gm — d||, ,let
k=0,x0=0p—-—1=0,8_,=0,5, =

—b,and ry = AT s,

Llet py = =1 + Br-1Pk-1.

lIrsll3
(rAT)(ApK)

3|et Xk+1 = Xg + APk

4, let Sk+1 = Sk + a’kApk

5. Iet Tk+1 = ATSk+1

2
6. let ﬁk — I7x+1ll2

lI7sll3
Tletk=k+1

8. Repeat the pervious steps until convergence.

4.2 Stopping criterion and Initial guess

For any numerical method, it is very important to choose the condition in which the algorithm

can stop, so we choose the following stopping criteria:

73] STOL oo
Tl

O e
iy S0
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Also, we need to define the initial data for the algorithms CGM and CGLS, for this we give as
a guess for u on the under —specified boundary T', , the zero vector as an initial guess in the first

iteration.
5 Numerical results and discussion

In this section we study some examples and solve them numerically to illustrate the ability of
our proposed method on the under-specified boundary T'2. Considering two cases of exact
solution (polynomial and non-polynomial), this exact solution is used to calculate the function
F, its trace h and its normal derivative g on T'l . By using these exact given data on the
accessible part of the boundary 'l and with zero initial data, and by using the CGM and CGLS

like-methods described in section 4.2 with a propitiate tolerance and stopping criteria.
5.1 Polynomial exact solution.

In the following we study a Cauchy problem of modified Helmholtz equation with a polynomial

exact solution.
Example 1:

We consider the Cauchy problem for a modified Helmholtz equation with exact solution
u(x,y) = x? + y2, defined in an annular domain with the constant radius p,-1 and p; =
0.5 and B = 2. This problem is over—specified on the outer boundary I; = {(x,y): x? + y? =
1} for which we have the following Cauchy data h = x? + y?2,g = 2x cos (8) + 2y sin(6).
We study different cases for a different physical parameter = v100,+/52,+/25.5,v/15 . For the
numerical computations, we take n; = 100 nr = 20 and so n, = 2000 and we take m =
2, ...,10. We compare the results obtained by using the both algorithms CGM and CGLS with
tol = 10715,

The obtained results are presented in tables 1,2,3,4.
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Table 1: k = V15

m | Error by CGM | Iteration | Error by CGLS | lteration
2 - - - -
3 | 1.0093e-13 3 1.0509¢e-15 3
4 |9.7151e-14 3 4.5193e-16 3
5 | 1.5007e-12 11 1.3264e-14 9
6 | 1.7418e-12 12 1.4619e-14 10
7 | 1.3013e-11 32 3.9838e-14 23
8 | 8.997%-12 35 1.8069¢e-13 26
9 | 9.1852e-12 77 2.6307e-13 56
10 | 1.5066e-11 83 4.4879e-13 70
Table 2: k =+25.5
m | Error by CGM | Iteration | Error by CGLS | Iteration
2 - - - -
3 | 1.0457e-13 4 4.0898e-16 3
4 | 1.0725e-13 3 4.0883e-16 3
5 | 1.3055e-12 10 4.0993e-15 9
6 | 1.3974e-12 13 1.7169e-15 9
7 | 1.2944e-11 29 1.4054e-13 22
8 | 1.1588e-11 33 3.5495e-14 29
9 | 2.4493e-11 81 5.2835e-13 67
10| 3.0617e-11 113 9.9042e-13 71
Table 3: kK = v/52
m | Error by CGM | Iteration | Error by CGLS | Iteration
2 |- - - -
3 | 3.2029-14 3 6.5033e-15 3
4 | 3.435%-14 3 6.4978e-15 3
5 | 3.1667e-13 9 5.4102e-15 9
6 | 3.1551e-13 9 7.6848e-15 9
7 | 2.8391e-12 30 1.3447e-13 25
8 | 1.5168e-12 32 9.1517e-14 23
9 | 1.0776e-10 159 7.7372e-13 66
10 | 1.3800e-10 128 7.3103e-13 79
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Table 4: kK =100

m | Error by CGM | lteration | Error by CGLS | Iteration
2 - - - -

3 | 7.5497e-14 3 9.9582e-15 3

4 | 7.3731e-14 3 8.5414e-15 3

5 | 5.6107e-13 9 4.5386e-15 9

6 | 5.4189%-13 10 1.7544e-15 9

7 | 1.7268e-12 30 9.6685e-14 21

8 | 1.8537e-12 29 7.0721e-14 27

9 | 5.695%-11 102 2.8958e-13 66

10 | 5.6061e-11 94 4.2904e-13 71

The influence on the accuracy of the number of external boundary and the internal domain
points n,,n, when increases is explored in table 5,6,7,8 where we take n, = 300 nr =
50, n, = 15000 ,and compare CG and CGLS for different m.

For the results presented in tables 5,6,7,8, we observe that from m=3, for every k

(+/100,/52,4/25.5,,/15), the CGLS is very accurate when n,, n, is increases

Table 5: k =15

m | Error by CGM | lteration | Error by CGLS | Iteration
2 - - - -
3 | 4.4495e-13 5 4.8797e-14 3
4 | 4.4194e-13 5 4.9656e-14 3
5 |9.8195e-12 10 2.0279%-14 9
6 | 1.0516e-11 11 4.4876e-14 9
7 | 3.6031e-10 41 1.1698e-13 24
8 | 3.7478e-10 47 1.6755e-13 29
9 | 7.4012e-10 79 1.7597e-12 61
10 | 7.3727e-10 88 2.1807e-14 80
Table 6: k =v25.5
m | Error by CG | Iteration | Error by CGLS | lteration
2 - - - -
3 | 1.3714e-14 | 4 3.7447e-14 3
4 |1.4021e-14 | 4 3.2229%-14 3
5 |4.956%-13 | 11 1.3548e-14 9
6 | 7.0131e-13 | 13 1.9299¢-14 9
7 | 1.7029%-11 | 32 1.2026e-13 23
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8 | 1.846%-11 | 35 6.7194e-14 29
9 ]9.0019%-11 | 105 1.9202e-13 70
10 | 1.1680e-10 | 115 4.4064e-13 81

Table 7: k = /52

m | Error by CG | Iteration | Error by CGLS | lteration
2 - - - -
3 | 4.7981e-13 | 5 1.3287e-14 3
4 | 4.7992e-13 |5 1.5014e-14 3
5 | 2.8706e-12 | 10 1.2184e-14 11
6 | 2.7447e-12 | 10 2.0203e-14 9
7 |6.1810e-12 | 30 1.4013e-13 23
8 | 6.8702e-12 | 31 8.2519e-15 28
9 | 8.0517e-10 | 157 9.9053e-13 69
10 | 7.9356e-10 | 176 6.2127e-13 80
Table 8: k =v100

m | Error by CG | Iteration | Error by CGLS | lteration
2 - - - -
3 |1.2683e-13 | 4 8.4558e-15 3
4 11.2539%-13 | 4 8.8627e-15 3
5 | 4.5125-13 | 10 8.1817e-15 9
6 | 4.2888e-13 | 9 8.3129%-15 9
7 | 1.158%-12 | 32 8.4087e-14 23
8 | 1.4781le-12 | 36 1.1685e-13 23
9 | 3.726e-11 128 2.7375e-15 66
10 | 4.3305e-11 | 159 4.0762e-13 74

5.2 non-Polynomial exact solution

In the following we study a Cauchy problem of modified Helmholtz equation with a non-

polynomial exact solution.
Example 2:

We consider the Cauchy problem for a modified Helmholtz equation with exact solution
u(x,y) = exp (x) cos(y), defined in an annular domain with the constant radius
pe=1 and p; = 0.5 and = 2. This problem is over—specified on the outer boundary I; =

{(x,y): x* + y? =1}for which we have the following Cauchy data h =exp (x)
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cos (y),g =exp (x) cos (y) cos () — exp (x) sin(y),sin(6). We study different cases
for a different physical parameter = +/100,+/52,/25.5,v/15 . For the numerical computations,

we take n; = 100 nr = 20 and so n, = 2000 and we take m=2, 3, ...,16 We compare the
results obtained by using the both algorithms CGM and CGLS with tol = 10712,

The obtained result is presented in tables 9,10,11,12.

Table 9: k = V15

m | Error by CG | Iteration | Error by CGLS | iteration
2 | 0.0842 2 0.0842 2
3 | 0.0140 4 0.0140 5
4 | 0.0018 7 0.0018 9
5 | 0.0147 13 0.0147 17
6 | 0.0148 18 0.0148 29
7 | 0.0124 29 0.0124 56
8 | 0.0124 46 0.0124 119
9 | 0.0122 77 0.0132 219
10 | 0.0122 149 0.0131 375
11 | 0.0067 325 0.0125 489
12 | 0.0066 600 | 0.0130 380
13 | 0.0248 1562 0.0128 502
14 | 0.0248 3042 0.0128 513
15 | 0.0644 9110 0.0130 517
16 | 0.064481 23930 0.01286 800
Table 10: k = v/25.5
M | Error by CG | iteration | Error by CGLS | iteration
2 | 0.0842 2 0.0842 2
3 | 0.0140 4 0.0140 5
4 1 0.0018 7 0.0018 9
5 | 0.0059 14 0.0059 17
6 | 0.0060 9 0.0060 33
7 | 0.0049 31 0.0049 63
8 | 0.0049 52 0.0049 126
9 | 0.0057 79 0.0058 210
10 | 0.0057 144 0.0058 248
11 | 0.0041 316 0.0059 348
12 | 0.0041 584 0.0061 288
13 | 0.0074 1483 0.0058 484
14 | 0.0074 3150 0.0062 448
15 | 0.0451 9154 0.0060 495
16 | 0.0451 25428 0.0059 554
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Table 11: k = V52

m | Error by CG | iteration | Error by CGLS | iteration
2 |0.0842 2 0.0842 2
3 ]0.0139 4 0.0139 5
4 | 0.0017 7 0.0017 9
5 |0.0011 14 0.0011 19
6 | 0.0011 21 0.0011 38
7 | 9.9650e-04 | 38 9.9650e-04 78
8 |9.9121e-04 | 57 9.9644e-04 132
9 |0.0018 93 7.9390e-04 166
10 | 0.0018 175 8.1003e-04 208
11 | 0.0012 330 0.0015 197
12 | 0.0012 595 0.0015 210
13 | 8.1622e-04 | 1421 0.0017 252
14 | 8.1145e-04 | 2990 0.0017 281
15 | 0.0138 9094 0.0018 234
16 | 0.01376 25655 0.00174 392
Table 12: k = v100
m | Error by CG | iteration | Error by CGLS | iteration
2 |0.0842 2 0.0842 2
3 ]0.0139 4 0.0139 5
4 |0.0017 8 0.0017 9
5 | 2.6773e-04 | 13 | 2.6773e-04 20
6 | 2.0941e-04 | 20 2.0941e-04 39
7 10.0015 40 0.0015 91
8 | 0.0015 74 0.0015 167
9 | 0.0012 122 4.3682e-04 170
10 | 0.0012 222 4.4016e-04 174
11 | 2.0555e-04 | 407 3.6273e-04 181
12 | 1.9088e-04 | 782 3.0316e-04 219
13 | 1.2515e-04 | 1578 1.9804e-04 198
14 | 1.2472e-04 | 2797 1.8389¢-04 211
15 | 0.0022 11000 3.2415e-04 228
16 | 0.0022 18477 3.1827e-04 222

The influence of the number n when increases On the accuracy is explored in table 2 where we
take n, = 400,nr = 20, n, = 8000 ,and compare CG and CGLS for different n, the results
are presented in tables (13,14,15,16), we observe that from m> 12, with the cases k
=(v/15,/52,/25.5) and for m > 10 with the case k= +/100, the CGLS is very accurate and

when nq, n, is increases.
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Table 13: k = V15

m | Error by CG | iteration | Error by CGLS | iteration
2 | 0.0842 2 0.0842 2
3 | 0.0140 4 0.0140 5
4 ] 0.008 7 0.0018 9
5 |0.0123 13 0.0123 17
6 | 0.0124 18 0.0124 30
7 | 0.0125 29 0.0125 55
8 |0.0124 45 0.0124 115
9 |0.0128 82 0.0132 237
10 | 0.0128 148 0.0132 299
11 | 0.0111 285 0.0132 345
12 | 0.0111 581 0.0130 589
13 | 0.0039 1446 0.0131 435
14 | 0.0039 3065 0.0130 512
15 | 0.0338 7906 0.0132 518
16 | 0.0338 17478 0.0132 768
Table 14: k = V25.5
m | Error by CG | iteration | Error by CGLS | iteration
2 | 0.0842 2 0.0842 2
3 |0.0139 4 0.0139 5
4 1 0.0018 7 0.0018 9
5 | 0.0034 13 0.0034 19
6 | 0.0035 19 0.0035 33
7 | 0.0048 31 0.0048 61
8 | 0.0049 50 0.0049 103
9 | 0.0059 84 0.0059 181
10 | 0.0059 143 0.0059 242
11 | 0.0054 281 0.0060 271
12 | 0.0054 542 0.0060 386
13 | 0.0032 1239 0.0059 406
14 | 0.0032 2728 0.0061 484
15 | 0.0121 8127 0.0060 429
16 | 0.0121 17978 0.0060 488
Table 15: k = /52
m | Error by CG | iteration | Error by CGLS | iteration
2 | 0.0842 2 0.0842 2
3 |0.0139 4 0.0139 5
4 1 0.0017 7 0.0017 9
5 | 45876e-04 | 14 4.,5876e-04 19
6 | 4.3632e-04 | 20 4.3632e-04 39
7 | 7.1199%-04 | 38 7.1199e-04 82
8 | 7.2205e-04 | 59 7.2059e-04 146
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9 |0.0018 101 7.8251e-04 195
10 | 0.0018 186 7.8931e-04 206
11 | 0.0031 317 0.0014 191
12 | 0.0013 556 0.0014 178
13 | 0.0011 1228 0.0016 229
14 | 0.0011 2566 0.0016 235
15 | 0.0014 7574 0.0017 372
16 | 0.0014 16950 0.0017 361

Table 16: k =100

m | Error by CG | iteration | Error by CGLS | iteration
2 |0.0842 2 0.0842 2

3 ]0.0140 4 0.0140 5

4 | 0.0017 7 0.0017 9

5 ]0.0123 13 0.0123 17
6 | 8.0231e-05 | 20 8.0230e-05 39
7 10.0125 29 0.0125 55
8 | 7.7900e-04 | 73 2.0672e-04 118
9 ]0.0128 82 0.0132 237
10 | 0.0011 217 | 2.8844e-04 167
11 | 0.0111 285 0.0132 345
12 | 1.8508e-04 | 731 1.2771e-04 241
13 | 0.0039 1446 0.0131 435
14 | 2.6763e-04 | 3274 2.1609e-04 197
15 | 0.0338 7906 0.0132 518
16 | 1.5753e-04 | 14078 2.3777e-004 345

5.3 Stability and effect of a noise

The inverse problem is a kind of problem that affected by the collected (measured) data, and
since this data can have error due to measurement error. Therefore, it is important to study the
effect of data noise on the approximate solution. For this, we set the noise on the Cauchy data

in the form:
h(0) = u,,.(p,0) + o *rand

For some deviation of measurement errors, o = 0.1,0.01,0.05,0.001 and for a random

Gaussian error rand. We study the perturbation of Cauchy data by a noise for example 2, for a

physical parameter v/52, n1 = 200 ,n2 = 4000 with Tol = 1012
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o No. of Iteration for CGM Error with CGM No. of Iteration for CGLS Error with CGLS
0.1 8913 0.051775290636955 516 0.013225283211797
0.01 9030 0.058300372536751 509 0.013099911906732
0.05 8980 0.059153986017208 511 0.013083553955267

0.001 9065 0.064337147820386 481 0.012984203670260

This table show that the number of iterations are augment a little for the CGLS and the error is

augment by 0.001 for o = 0.1 and for CGM the error is reduced by 0.01 and the number of

iteration is reduced for o = 0.1, in fact the error without noise for the CGM is equal to
0.064449922780489 with 8993 iterations and the error without noise for CGLS is equal to

0.012982105320468 with 480.

Noise parameter ¢ = 0.1

Noise parameter ¢ = 0.01

Apormarate Wi 4est MAare 1 SOOw o

Apormart Wi 4est MAae N SOOw o

Noise parameter o = 0.05

Noise parameter ¢ = 0.001

Crmnrete A 4uat MM 1 MOCDW o

i ete i 44at MM 1 BCDW o8
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The problem in example 2 is an ill-posed problem with a big condition number about
7.020387634918484e+005. The previous figures show that the exact and the approximate
solutions obtained with CGM and CGLS on the inaccessible boundary I'2. In fact, the
approximate solution are effected slightly for all value of noise. The error augment by 0.001
for the CGLS for the noise ¢ = 0.1. (with about the same number of iteration for ¢ = 0.001 and
with some more iteration for = 0.1 ) and is reduced by 0.01 for the CGM for the noise o = 0.1
(with less number of iteration for ¢ = 0.1 and with more iteration for ¢ = 0.001), the important
thing is that the solution still stable for both CGM and CGLS. The approximations keep the
same accuracy, even for a high value of noise until o = 0.1 relative random parameter, indeed

this problem has a big condition number for this it is highly ill-condition.
Conclusion

We solve the inverse Cauchy problem of the modified Helmholtz equation on an annular
domain for recovering unknown data on a part of the boundary from the given data on another
accessible part. The inverse Cauchy problem is transformed to solve a direct problem using a
polynomial expansion of the solution which implies producing a linear system and solving this
system by (CGM) and (CGLYS). This proposed method is verified by solving some examples
and comparing the accuracy of (CGM) and (CGLS) to show that the method can overcome ill-
posedness of the inverse Cauchy problem. The stability of the method is investigated by

applying noise on the Cauchy data.
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