

Co-Neutrosophic Multi-Domination in Co-Neutrosophic Graphs

Amir Sabir Majeed*¹ **and Nabeel Ezzulddin Arif** ²

¹Department of Mechanic – College of Technical Engineering – Sulaimani Polytechnic University-Iraq ^{1,2} Department of Mathematics – Computer Science and Mathematics College – Tikrit University-Iraq

amir.majeed@spu.edu.iq

Received: 9 December 2022 Accepted: 5 March 2023

DOI: [https://dx.doi.org/10.24237/ASJ.01.02.](https://dx.doi.org/10.24237/ASJ.01.02.719B)719B

Abstract

The goal of this article is to examine the ideas of co-neutrosophic multi-dominating (CNMD) set, number $\gamma_{C N M D}$ in a co-neutrosophic graph $(G_{C N})$ and their inverses CNMD⁻¹, γ_{CNMD}^{-1} respectively. For specific classes of co-neutrosophic graphs (G_{CN}), the γ_{CNMD} and γ_{CNM}^{-1} calculated and constraints on the corresponding γ_{CNM} drived. Also, some example for evaluation the inverse co-neutrosophic domination provided.

Keywords: Single value neutrosophic graph, co-neutrosophic graph, domination set, domination number.

الهيمنة المتعددة الضد نيوتروسوفيك في الرسوم البيانية الضد نيوتروسوفيك

امير صابر مجيد و نبيل عزالدين عارف ¹ 2

^{1 ر}قسم الرياضيات-كلية علوم الحاسوب والرياضيات – جامعة تكريت

الخالصة

الهدف من هذه المقالة هو ادخال وفحص فكرة مجموعات متعددة الهيمنة (CNMD (وحساب اعداد الهيمنة في رسم بياني ضد النيوتروسوفيك (CN (وتطبيق الفكرة على فئات محددة من الرسوم البيانية الضد نيوتروسوفيك، وحساب اعداد الهيمنة لـ (CNMD) ونشتق القيود على اعداد الهيمنة المقابلة لها أيضًا، قدمنا ايضا مفهوم الهيمنة العكسية للرسوم البيانية ضد النتر وسوفيك.

الكلمات المفتاحية: رسم بياني نيوتروسوفيك ذو قيمة واحدة، رسم بياني نيوتروسوفيك مشترك، مجموعة السيطرة، رقم السيطرة.

1.Introduction

The challenge of identifying the bare minimum of queens required to cover a nxn chessboard gave rise to the mathematical study of dominant sets in graphs in the 1850s.Different writers have explored more than 50 different kinds of domination factors [1]. In 1965[2], Zadeh developed the concept of a fuzzy set as a framework for mathematically capturing ambiguity and imprecise information. Fuzzy analogs of key graph theoretic notions, including path, cycle, and connectedness, were proposed by Rosenfeld[3].A. Somasundaram and S. Somasundaram researched the idea of domination in fuzzy graphs, and A. Somasundaram presents the ideas of independent domination, total domination, and linked domination of fuzzy graphs [4].K. T. Atanassov[5] introduced the concept of Intuitionistic Fuzzy (IF) relations and Intuitionistic Fuzzy Graphs(IFGs).Muhammad A. [6] introduced ideaslike linked anti-fuzzy graphs, constant anti-fuzzy graphs, and others after learning about anti-fuzzy structural graphs.Muthuraj R. and Sasireka A. construct the concepts of dominance on anti-fuzzy graph and linked dominance on anti-fuzz in their study on the topic. Dr.C. Rajan & A. Senthil Kumar define the dominating set and dominating number of the single valued neutrosophic graph $G = (A, B)$, as well as some limits on its dominating number [7]. Ghobadi, Soner, and Mahyoub introduced the inverse dominating set in fuzzy graphs [8]. In this paper we introduce the conception of co neutrosophic multi dominating set and number in co neutrosophic graphs.

2.Preliminaries

Definition 2.1.[9,11] A graph $G_{CN} = (A, B)$ on an underline simple graph $G_{CN}^* =$ (V, E) is called a single-valued co-neutrosophic graph (SVCNG),

where $A: V \rightarrow [0,1]$ be SVCN vertex set of G and $B: V \times V \rightarrow [0,1]$, SVCN edge set of G satisfy the following $T_B(xy) \ge \max\{T_A(x), T_A(y)\}$ $I_B(xy) \ge \max\{I_A(x), I_A(y)\}\$ $F_B(xy) \le \min\{F_A(x), F_A(y)\}$ for all $x, y \in V$. The graph .1 below is an example of SVCNG.

Definition 2.2.[12]. A path P_n^{CN} in G_{CN} is a string of various vertices $(x_1, x_2, x_3, ..., x_n)$ such that

 $T_B(x_i, x_{i+1}) > 0$ for $1 \le i \le n$

Definition2.3. A connected co-neutrosophic graph G_{CN} is one in which any two vertices in it have a neutrosophic path between them.

Definition 2.4. A complement of (SVCN) graph $G_{CN} = (A, B)$ on G^* is a (SVCN) graph denoted as $\overline{G_{CN}} = (\overline{A}, \overline{B})$ such that $\overline{A} = A$ i.e., $T_A(x) = \overline{T}_A(x)$, $I_A(x) = I_A(x)$, $F_A(x) = \overline{F}_A(x)$ and $\bar{T}_{\bar{B}}(x, y) = \max(T_A(x), T_A(y)) - T_B(x, y)$ $\bar{I}_{\bar{B}}(x, y) = \max(I_A(x), I_A(y)) - I_B(x, y)$ $\bar{F}_{\bar{B}}(x, y) = \min(F_A(x), F_A(y)) - F_B(x, y)$ for all $xy \in E$. **Definition 2.5. [10] Consider a neutrosophic graph** $G_N = (A, B)$ **on underline simple graph** $G_N^* = (V, E)$ 1) The relation between any pairs of elements (vertices) of V is called edge and denoted by $e \in E$. 2) an edge $e = xy$ in G_N is said to effective edge if $T_B(xy) = \max(T_A(x), T_A(y))$, $I_B(xy) = \max(I_A(x), I_A(y))$ and

$$
F_B(xy) = min(F_A(x), F_A(y))
$$

3) A (SVCN) graph $G = (A, B)$ is said to strong graph if for every edge $e = (xy) \in E$ is an effective edge.

Definition 2.6.[10] A (SVCN) graph $G = (A, B)$ is said to be complete graph if for every $x, y \in V \exists$ an effective edge $e = (xy) \in E$.

Definition 2.7. Let $G^* = (V, E)$ be underlining graph of a (SVCN) G. then $w \in V$ is said to be effectively isolated vertex if $xw \in E$ is not effective $\forall x \in N(w)$,

In private case if $T_B(x, w) = I_B(x, w) = F_B(x, w) = 0 \forall x \in V - \{w\}$ then w is called strongly isolated (isolated in the underling graph),

Definition 2.8.[8] independent Co-neutrosophic set S is a subset of $V(G_{CN})$ where $T_B(x, w) \neq \max(T_A(x), T_A(w))$, $I_B(x, w) \neq \max(I_A(x), I_A(w))$ and $F_B(x, w) \neq \min(F_A(x), F_A(W)) \,\forall x, w \in S$. In addition, it said to be maximal if there exist no independent Co-neutrosophic set $Z \subset V$ and $|S| < |Z|$. The independence number β_o (G_{CN}) = max {S_i: S_i maximal independent Coneutrosophic set}.

Definition 2.9. [8]A Co-neutrosophic graph $G_{CN} = (A, B)$ is called a **unimodal** if $(T_A(x), I_A(x), F_A(x)) = (k, k, k) = (T_B(x, y), I_B(x, y), F_B(x, y))$ while if $(T_A(x), I_A(x), F_A(x)) =$ (c, c, c) \forall $x \in V$ (G_{CN}) then G_{CN} is known as **x- nodal**, $k, c \in [0.1]$

Definition 2.10.[3] let G_{CN} a co-neutrosophic graph then:

- 1) A **co-neutrosophic vertex cover set** A of G_{CN} is a subset of V such the for each effective edge $e = uv \in E$, at least $u \in A$ or $v \in A$
- 2) A co-neutrosophic vertex cover (α_0) number =max { A_i : A_i is Co-neutrosophic vertex cover set of G_{CN} with minimum numbers of vertices}
- 3) $u \in V(G_{CN})$ is known as end point if there exist only one vertex $v \in V$ such that uv is effective edge.

Definition 2.11.[5] $D \subseteq V(G_{CN})$ is called **co-neutrosophic dominating** (CND) set of G_{CN} . If $\forall u_i \in V - \mathcal{D} \exists v_i \in \mathcal{D}$ such that

$$
T_B(u_i v_j) = \max\{T_A(u_i), T_A(v_j)\}
$$

$$
I_B(u_i v_j) = \max\{I_A(u_i), I_A(v_j)\}
$$

 $F_B(u_i v_j) = \min\{F_A(u_i), F_A(v_j)\}$ for all v_i , $v_j \in V$.

Definition 2.12.[5] The minimum co-neutrosophic dominant (MCND) set is the (CND) set D of G_{CN} with the fewest number of vertices. If there exist no $\mathcal{D}' \subseteq \mathcal{D}$ that is CND set, then D is known as the minimum CND set of G_{CN} and take the maximum cardinality for all MCND sets is known as a co-neutrosophic Domination (CND) number of G_{CN} and denoted by γ_{CND} (G_{CN}) or simply γ_{CND} .

3. Co-neutrosophic *multi-domination number* G_{CN} .

In this section, we introduce the co-neutrosophic multi- $domination$ CNMD set and number of G_{CN} , and Co-neutrosophic vertex covering with suitable illustrations, and we go over certain CNMD number of G_{CN} by the effective edge attributes.

Definition 3.1. Let $G_{CN} = (A, B)$ be a co-neutrosophic graph on the underline simple graph $G_{CN}^* = (V, E)$, then a non-empty set $\mathcal{D} \subseteq V$ is called *(CNMD)* set in G_{CN} if $\forall x \in V - \mathcal{D}$ There is more than one neighbors in \mathcal{D} *i.e.*, \exists at least two vertices $y, z \in D$ such that both of *xy* and *xz* are effective edges in *E i.e.* $T_B(x, y) = T_A(x) \Lambda T_A(y)$,

 $F_B(x, y) = F_A(x) \Lambda F_A(y)$, and $I_B(x, y) = I_A(x) \Lambda I_A(y)$ similarly for *xz*.

Definition 3.2. A minimal *CNMD-set D of* G_{CN} *is a CNMD* set that has the fewest number of vertices possible.

Definition 3.3. *A* CNMD *set* \mathcal{D} *of* G_{CN} is called minimum co-neutrosophic multi-domination $MCNMD$ *set* in G_{CN} if $\nexists D' \subset D$ *such that,* D' *as* $CNMD$ *set of* G_{CN} .

Definition 3.4.

1) The cardinality (Score) of any co-neutrosophic

$$
A(x) = \{ \langle x, T_A(x), I_A(x), F_A(x) \rangle \} is \ |A(x)| = \frac{1 + T_A(x) + I_A(x) - F_A(x)}{3}
$$

- 2) The cardinality of order of the co-neutrosophic graph $|O_{CN}| = \sum_{v_i \in V} |v_i|$
- 3) The maximal neutrosophic cardinality over all MCNMD sets is known as a CNMD number of G_{CN} and is represented by the symbol $\gamma_{\text{CNMD}}(G_{CN})$

Example3.1. Consider a co-neutrosophic graph $G_{CN} = (A, B)$, which given in figure (2), where we have $D_1 = \{A, C, E\}$, $D_2 = \{B, D, F\}$ are MCNMD sets also are minimal CNMD sets of G_{CN} .

Hence, *by* $\gamma_{\text{CNMD}}(G_{CN}) = max [| D_1 |, | D_2 |] = max [| (1,1.6,1.8) |, | (1,1.6,1.4) |] = max$ $(1.8,2.2) = 2.2$

Preposition 3.1. *Let* $G_{CN} \cong k_n^{CN}$, $n \geq 3$ be a complete co-neutrosophic graph. $then~\gamma~_{\text{CNMD}}(k_n^{CN}) = \max\left\{ |T_A(u_i), I_A\left(u_i\right), F_A\left(u_i\right)|, \left|T_A(u_j), I_A\left(u_j\right), F_A\left(u_j\right)\right|\right\} \forall u_i, u_j \in$ $V(k_n^{CN})$, **i**, **j**=**1**,..., *n* such that $u_i \neq u_j$ **Proof**: Given $G_{CN} \equiv k_n^{CN}$ be a complete co-neutrosophic graph, then $T_B(u_iu_j) = \max\{T_A(u_i), T_A(u_j)\}$ $I_B(u_iu_j) = \max\{I_A(u_i), I_A(u_j)\}\$ $F_B(u_iu_j) = \min\{F_A(u_i), F_A(u_j)\}$ for all u_i , $u_j \in V(k_n^{CN})$

As a result, every vertex in k_n^{CN} has dominance over every other vertex in k_n^{CN} . Any set in k_n^{CN} that has two vertices, such as $\{u_1u_2\}$, will therefore be of the form CNMD set of k_n^{CN} Hence $\gamma_{\text{{}CNMD}}(k_n^{CN}) = \max \{ |T_A(u_i), I_A(u_i), F_A(u_i)|, |T_A(u_j), I_A(u_j), F_A(u_j)| \}$

Preposition 3.2. *Let be a co-neutrosophic star graph then*

 $\gamma_{\text{CNMD}}(k_{n,M}^{CN}) = |O_{CN}| - |T_A(u), I_A(u), F_A(u)|$, u is root of the star.

Proof: Given S_n^{CN} be a strong co-neutrosophic star graph with ν as a root of S_n^{CN} then for every vertex in star S_n^{CN} except the vertex $\{v\}$ has a single neighbor. Then $V - \{v\}$ is only CNMD set of S_n^{CN} , *therefore* γ _{CNMD} (GCN) = $|V - \{v\}| = |O_{CN}| - |T_A(u), I_A(u), F_A(u)|$, v being a root vertex.

Proposition 3.3: If C_n^{CN} be strong co-neutrosophic cycle graph with n vertices $\{u_1, u_2, ..., u_n\}$ *then*

$$
\gamma_{\text{CNMD}}(C_n^{CN}) = \begin{cases} \max \left\{ \sum_{i=0}^{\frac{n}{2}-1} |T_A(v_{j+2i}), I_A(v_{j+2i}), F_A(v_{j+2i})|; j=1,2 \right\} & \text{if n is even} \\ \max \left\{ \sum_{i=0}^{\left[\frac{n}{2}\right]} |T_A(v_{j+2i}), I_A(v_{j+2i}), F_A(v_{j+2i})|; j=1,2,...n \right\} & \text{if n is odd} \end{cases}
$$

Proof: Let C_n^{CN} with $\{u_1, u_2, \ldots, u_n\}$ be a strong cycle, so there exist two cases: Case1: As a result, $\forall u \notin \mathcal{D}$, *u* have to have couple of neighbors in $\mathcal D$ and this satisfy if there are two edges between any pair of vertices in D.

Thus, \mathcal{D}_j = { u_j , where all j is taken ethier even or odd} which means that there are only two different CNMD which are $D1$ and $D2$ of odd vertices and even vertices respectively. Therefore,

$$
\gamma \text{ CNMD } (C_n^{CN}) = \max \left\{ \sum_{i=0}^{n-1} |A(v_{j+2i})| ; j+2i \mod n , j = 1,2 \right\}, \text{ where } A(v_{j+2i}) = \left\{ T_A(v_{j+2i}), I_A(v_{j+2i}), F_A(v_{j+2i}) \right\}
$$

Case 2: if *n* is odd.

Each vertex in V-D has pair of neighbors, similar to case 1, so for each j the minimum one of the last two vertices in the cycle also must be in \mathcal{D}_j , so there are *n* distinct CNMD sets rely on j ; $j = 1, 2, ..., n$. It is simple to conclude that all of Dj's sets are CNMD sets. Therefore,

$$
\gamma_{\text{CNMD}}(C_n^{CN}) = \max \left\{ \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \left| T_A(v_{j+2i}), I_A(v_{j+2i}), F_A(v_{j+2i}) \right|; j = 1, 2, \dots n \right\}
$$

The proof comes from the two cases mentioned above. \Box

Proposition3.4. *Let* $GCN \equiv P_n^{CN}$ be a strong co-neutrosophic path n vertex $(v_1, v_1, ..., v_n)$ then

$$
\gamma \text{ CNMD}(P_n^N) = \left\{ \begin{aligned} \sum_{i=0}^{\left[\frac{n}{2}\right]} |T_A(v_{2i+1}), I_A(v_{2i+1}), F_A(v_{2i+1})| & \text{if } n \text{ is odd} \\ max \left\{ |v_{2i-1}| + \sum_{j=0}^{\frac{n}{2}-1} \left| |T_A(v_{2i+2j}), I_A(v_{2i+2j}), F_A(v_{2i+2j})| \right|, \right\} & \text{if } n \text{ is even} \\ i = 1, 2, \dots, \frac{n}{2}; \text{and } 2i + 2j \equiv t \big(mod(n+1) \big), \end{aligned} \right\}
$$

. **Proof.** For any path the CNMD must contain both end vertices of it, then there are pair of distinct cases depend on n as follows.

Case 1. When n is odd, D contain a sequence of alternate vertices starting from the first vertex and ending with the last vertex of the path i.e., $\mathcal{D} = \{v_{2i+1}, i = 0, \ldots, \frac{n}{2}\}$ $\frac{\pi}{2}$, it is obvious that \mathcal{D} is CNMD set. Also, D is MCNMD set, since if there exist a set F with a smaller number of vertices than set D, then F is not CNMD set. Thus, $\gamma_{\text{CNMD}}(P_n^N) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} |v_{2i+1}|$ $\frac{n}{2}$ $i=0$

Case 2. If n is even, the alternating sequence technique is not enough because it ignores one of the two ends, so another vertex must be added to include both end vertices, thus the vertices v_1 and v_1 must belongs to every MCNMD set. In this case, every MCNMD set must contain two neighboring vertices, and each subsequent pair of two vertices in D must have a distance of two edges. Now, for each adjacent pair v_i and v_{i+1} of vertices belongs to D the other vertices of the path which belongs to D must be alternate in both sides before vi and after v_{i+1} , so let

$$
D_i = \{ \{v_{2i-1}, v_{2i+2j}, j=0, \ldots, \frac{n}{2}-1 \}, i=1, \ldots, \frac{n}{2} \text{ and } 2i+2j \equiv t \text{ (mod } (n+1)) \}.
$$

It is explicit that each of set D_i is MCNMD set. Thus,

$$
\gamma \text{ CNMD } (P_n^N) = \max \left\{ |v_{2i-1}| + \sum_{j=0}^{\frac{n}{2}-1} \left| |T_A(v_{2i+2j}), I_A(2j), F_A(v_{2i+2j})| \right|, i = 1, 2, \dots, \frac{n}{2}; and \ 2i + 2j \equiv t \big(\mod(n+1) \big), \right\}
$$

Example 3.2. Suppose that P_6^{CN} , P_7^{CN} are given in a figure (3) below as G_a and G_b respectively

The MCNMD sets of P_6^{CN} are $D_1 = \{A, B, D, F\}$, $D_2 = \{A, C, D, F\}$, $D_3 = \{A, C, E, F\}$

 $|A| = \frac{1+0.2+0.5-0.6}{2}$ $\left| \frac{3}{3} \right| = 0.36667$, $|B| = \left| \frac{1+0.3+0.7-0.6}{3} \right|$ $\left| \frac{1+0.5+0.6-0.4}{3} \right|$ = 0.46667, $|C|$ = $\left| \frac{1+0.5+0.6-0.4}{3} \right|$ $\left| \frac{1}{3} \right| =$ 0.56667 $|D| = \frac{1+0.6+0.4-0.8}{2}$ $\left| \frac{-0.4 - 0.8}{3} \right| = 0.4$, $|E| = \left| \frac{1 + 0.6 + 0.4 - 0.5}{3} \right|$ $\left| \frac{1+0.5+0.6-0.3}{3} \right|$ = 0.5 , $|F| = \left| \frac{1+0.5+0.6-0.3}{3} \right|$ $\left|\frac{10.6-0.5}{3}\right| = 0.6$ $|G| = \frac{1+0.4+0.3-0.2}{2}$ $\left| \frac{3-0.3-0.2}{3} \right| = 0.5$, $|H| = \left| \frac{1+0.9+0.3-0.5}{3} \right|$ $\left| \frac{1+0.3-0.5}{3} \right|$ = 0.56667, , |I| = $\left| \frac{1+0.7+0.3-0.1}{3} \right|$ $\left| \frac{1}{3} \right| =$ 0.6333 , $|J| = \frac{|1+0.2+0.6-0.7|}{2}$ $\left| \frac{^{+0.6-0.7}}{^{3}} \right|$ = 0.36667, , $|K|$ = $\left| \frac{^{1+0.5+0.2-0.7}}{^{3}} \right|$ $\left| \frac{1+0.2-0.7}{3} \right|$ = 0.3333, , $|L|$ = $\left| \frac{1+0.3+0.5-0.8}{3} \right|$ $\left| \frac{1}{3} \right| =$ 0.3333 ,, $|M| = \frac{1+0.7+0.5-0.8}{3}$ $\left| \frac{3-0.8}{3} \right| = 0.46667$ The MCNMD sets of P_6^{CN} (N=6 Even number) are $D_1 = \{A, B, D, F\}$, $D_2 = \{A, C, D, F\}$, D_3 $= {A, C, E, F}$

 $|D_1|=1.4333, |D_2|=1.9333, |D_3|=2.0333$ γ CNMD (GCN) = max [|D₁|, |D₂|, |D₃|= max [1.4333, *1.9333*, *2.0333*] = 2.0333 While MCNMD sets of P_7^{CN} (N=7 Odd number) is just $\mathcal{D}1 = \{G, I, K, M\},$ $|D1|=1.93327$

Proposition 3.5*.* Every CNMD *set of* $G_{CN} = (A, B)$ *is* CND *set of* G_{CN} *.* **Proof:** The proof is come directly from the definition of MCNMD set.

Proposition 3.6. For any strong co-neutrosophic tree graph T_n^{CN} if S be a set of all leaf vertices v_i then

 $\sum_{v_i \in S} |v_i| \leq \gamma_{C N M D} < O_N.$

Proof: 1) Since for any tree with $n>2$ vertices not all the vertices are leaves then it is obviously $S < V(G)$ and $\sum_{v_i \in S} |v_i| < O_N$.

2) According to neighbors of the non-leaf vertices there are two cases Case1: If for each non-leaf vertex has more than one leaf vertex as neighbors $\sum_{v_i\in S}|v_i| = \gamma_{C N M D}$ Case2: If there exist at least one non-leaf vertex has less than two leaf vertices then $\exists v \in \text{CNMD}$ and $v \notin S$ then $S \subset \text{CNMD}$ which means that $\sum_{v_i \in S} |v_i| < \gamma_{\text{CNMD}}$ From 1 and 2 we obtain $\sum_{v_i \in S} |v_i| \leq \gamma_{C N M D} < O_N$.

Example. In the graph 4a below $\sum_{v_i \in S} |v_i| = 0.6667$, CNMD = {A, C, F, G, D} $\Rightarrow \gamma_{C NMD} = 0.833$ and $O_N = 1.46667 \Rightarrow \sum_{v_i \in S} |v_i| < \gamma_{C N M D} < O_N.$

And in 4b, since all the non-leaf vertices adjacent to a leaf vertex then $S = C N M D \Rightarrow \sum_{v_i \in S} |v_i| = \gamma_{C N M D} < O_N$

Theorem 3.1. For any graph G_{CN} , $\sum_{v_i \in S} |v_i| < \gamma_{C NMD} < O_N$. Where S is a set of all the *vertices with one or no neighbors.*

Proof: Let G_{CN} be any co-neutrosophic graph,

D be a CNMD set of G_{CN} and $|\mathcal{D}| = \gamma_{C N M D}(\hat{G}_{CN})$ and $V(G_{CN}) = V(H) \cup V(S)$, S is a set including each of the vertices that has less than two neighbors and H containing vertices of $V(G_{CN})$ which have two or more neighbors. Now we must demonstrate that $S \in \mathcal{D}$ for lower bounded.

Assuming *u* ∈*S*, u is either has a single neighborhood or it is isolated vertex. We terminate that u belong to each MCNMD set of G_{CN} in both situations. Hence $S \in \mathcal{D} \rightarrow |S| \leq |D|$

Furthermore $\sum_{v_i \in S} |u_i| \leq \gamma_{C N M D}$. however, for upper bound $\gamma_{C N M D} < \mathcal{O}_N$ is obviously. Hence,

 $\sum_{v_i \in S} |v_i| < \gamma_{C N M D} < O_N.$ **Example3. 3**. Consider $G_{CN} = (A, B)$ in figure 5.

The MCNMD sets are $D_1 = \{A, D, E, C\}$, $D_2 = \{A, D, F, C\}$, $S = \{A, C\}$ $\mathcal{D}_3 = \{A, E, F, C\}$ $|A| = \frac{1+0.3+0.5-0.7}{2}$ $\left| \frac{3}{3} \right| = 0.36667$, $|B| = \left| \frac{1+0.8+0.3-0.6}{3} \right|$ $\left| \frac{3-0.6}{3} \right| = 0.5$, $|C| = \left| \frac{1+0.1+0.6-0.8}{3} \right|$ $\left| \frac{\frac{1}{3} + 0.8 - 0.8}{3} \right| = 0.3$ $|D| = \frac{1+0.6+0.7-0.2}{2}$ $\left| \frac{3^{10.7-0.2}}{3} \right| = 0.7$, $|E| = \left| \frac{1+0.5+0.4-0.6}{3} \right|$ $\left| \frac{3^{10.4-0.6}}{3} \right| = 0.43333, |F| = \left| \frac{1+0.8+0.5-0.6}{3} \right|$ $\left| \frac{1}{3} \right| =$ 0.56667

 $|\mathcal{D}_1| = 1.8$, $|\mathcal{D}_2| = 1.93334$, $|\mathcal{D}_3| = 2.0667$ $|S| = 0.66667$ We observe that every MCNMD set contains one neighbor for each vertex.

Hence γ 2AF (GAF) = max { $|\mathcal{D}_1|, |\mathcal{D}_2|, |\mathcal{D}_3|$ } = max {1.8, 1.93334, 2.0667} = $2.0667 > |S|$, where $S = \{A, C\}$.

Theorem. 3.2. If D is a CNMD set of G_{CN} , so $V - D$ is not always CNMD set of G_{CN} . **Proof:** Assume that $u \in (GCN)$ and D be the CNMD set of G_{CN}

Case 1 If *u* have less than two neighbors in GCN, *u* must belong to every MCNMD set in G_{CN} , Consequently, $V - D$ is not CNMD because it either has one neighbor who is u or none at all. group of G_{CN} .

Case 2: Assume that each $x \in D$ is dominated by not less than two vertices $y, z \in V - D$. In this situation, each $x \in D$ has at least couple of neighbors in $V - D$. If D is a CNMD set of G_{CN} , the outcome is attained by cases 1 and 2. Therefore, $V - D$ not necessary be a CNMD set of G_{CN} .

Example: In the figure (5), $D = \{A, D, E, C\}$ is MCNMD set but $V-D = \{B, F\}$ is not CNMD set

Proposition 3.7. For any co-neutrosophic $G_{CN} = (A, B)$, $\gamma_{C NMD} (G_{CN}) + \gamma_{C NMD} (\overline{G_{CN}}) \leq 2 O_N$ γ_{CNMD} ($\overline{G_{\text{CN}}}$) is CNMD number of complements G_{CN} .

Proof: Since both of G_{CN} *and* $\overline{G_{CN}}$ *are co-neutrosophic graphs then by theorem3.1* $\gamma_{\text{CNMD}}(\text{GCN}) < 0_N$ and $\gamma_{\text{CNMD}}(\overline{\text{GCN}}) < 0_N$ then $\gamma_{\text{CNMD}}(\overline{\text{G}_{\text{CNN}}}) + \gamma_{\text{CNMD}}(\overline{\text{G}_{\text{CNN}}}) < 20_N$

Theorem 3.3. Let G_{CN} be co-neutrosophic graph, D $\subset V(G_{CN})$ *is a* CNMD *set* of $G_{CN} = (A, B)$ B) if and only if D *be a multi-dominating* (MD) *set of* G_{CN}^* *and for e=xy is an effective edge in E.*

Proof: Let $G_{CN} = (A, B)$ be co-neutrosophic graph, and D is CNMD set of G_{CN} , then $x \in V -$ D has no less than couple of neighbors in D for each vertex, I. e. there exist $y_1, y_2 \in D$ such that both of $(x, y1)$ and $(x, y2)$ are effective edge and the x is adjacent to both of y1, $y2 \in \mathcal{D}$, which means that D is MD of G_{CN}^* .

Let D be a MD set of G_{CN}^* so $\forall y \in V - \mathcal{D}$ there exist pair of vertices $x_1, x_2 \in \mathcal{D}$, such that $(x_1, y \in E \text{ and } (x_2, y) \in E$, since (x_1, y) and (x_2, y) are effective edge by the hypothesis, so y adjacent to two vertices in $\mathcal D$ with effective edges. Hence, $\mathcal D$ is CNMD set of G_{CN} .

Remark. if D be MD set of G_{CN}^* it is not necessary D be CNMD set The example below illustrates the remark

Example 3.4. The theorem 3.3 is not always true unless the edges are not effective. Notice the co-neutrosophic graph G_{CN} in the figure bellow D= {b, c} is

because the edge cd is not effective so that the vertex $c \in V - D$ is adjacent to just one vertex $b \in D$

Theorem 3.4. Assuming that G_{CN} be a unimodal co-neutrosophic graph with no isolated vertex, *and* \mathcal{D} *is a* γ_{CNM} - set of G_{CN} , which it is not independent set (IS),

then $\gamma_{CN} + t \leq \gamma_{C N M D}$, where $t = |(T_A(x), I_A(x), F_A(x))|, x \in \mathcal{D}$

Proof: Let D be CNMD where $|D| = \gamma_{CNM}$ (G_{CN}) is not (IS), and $x \in D$ where $t = |(T_A(x), I_A(x), F_A(x))|$. We have pair of cases: Case1: If $(x) \cap (V - \mathcal{D}) = \emptyset$, Given that D is not (IS) and G_{CN} has no isolates vertex, $N(x) \cap D \neq \emptyset$. Thus $D - \{x\}$ is CND set of G_{CN} , therefore $\gamma_{CN} \leq |D - \{x\}| = \gamma_{CNM} - t$

Hence, $\gamma_{CN} + t \leq \gamma_{CNM}$.

Case 2: If $(V - D) \cap (x) \neq \emptyset$, then $\forall y \in (V - D) \cap (x)$ since D is CNMD, $\exists z \in D$ where (y, z) is an effective edge, because D is CNMD.D is not independent, hence some of D's vertices are neighbors of z. thus $D - \{z\}$ is also CND set of G_{CN} , therefore,

 $\gamma_{CN} \leq |\mathcal{D} - \{z\}| = \gamma_{CNM} - t$, hence $\gamma_{CN} + t \leq \gamma_{CNM}$.

Theorem 3.5. Every co-neutrosophic vertex cover set is a CNMD set of G_{CN} if G_{CN} is any coneutrosophic graph where each vertex has no less than pair of neighbors. *Further* $\gamma_{CNM} = \alpha_o$.

Proof: Suppose that A is a minimum co-neutrosophic vertex covers set of G_{CN} , and

 $y \in V(G_{CN}) - A$.

Obviously, (y) \in A. Since each vertex in G_{CN} has more than one neighbor, the vertex y has at least two neighbors in A. This implies that A is CNMD set of G_{CN} . Hence, $\gamma_{CNM} = \alpha 0$.

Example: Let G_{CN} be co-neutrosophic graph as follows:

the co-neutrosophic vertex cover sets of G_{CN} are $C_1 = \{A, C, E\}, C_2 = \{B, D\}$ then co-neutrosophic vertex covering number $(\alpha_0)=|C_2|$, but C_2 is also MCNMD set then $\gamma_{CNM}(G_{CN})=|C_2|$

Corollary 3.5. Let G_{CN} be co-neutrosophic graph. If $\gamma_{CNM}(G_{CN}) \neq \alpha_0(G_{CN})$ then G_{CN} involves a vertex has less than two neighbors.

Theorem 3.6. If $G_{CN} = (A, B)$ is a connected a unimodal co-neutrosophic graph and with $\gamma_{CN} = \gamma_{CNM}$, then each vertex has more than one neighbor.

Proof: let $x \in \mathcal{D}$ be a vertex with a single neighbor, where \mathcal{D} is a MCNMD set of G_{CN} such that $|\mathcal{D}| = \gamma_{CNM}$, if $V - \mathcal{D} = \emptyset$ then $\gamma_{CN} < \gamma_{CNM} < O_N = \gamma_{CNM}$ which is a contradiction, thus $V \mathcal{D} \neq \emptyset$. Let *x* has neighbor y. If $y \in \mathcal{D}$, so $\mathcal{D}' = \mathcal{D} - \{x\}$ is CND set of G_{CN} with $|\mathcal{D}'| = |\mathcal{D} - \{x\}|$ this leads to $\gamma_{CN} \neq \gamma_{CNM}$, a contradiction.

If $y \in V - \mathcal{D}$, since $\mathcal D$ is MCND set, then $\exists z \in N(y) \cap \mathcal D$ and $z \neq x$, for all vertex in $V - \mathcal D$ has no less than couple of neighbors in D , we noticed that $H = D - \{z, x\} \cup \{y\}$ is CND set of

GCN with $|H| = |\mathcal{D} - \{z, x\}| \cup \{y\}|$ thus $\gamma_{CN} \neq \gamma_{CNM}$ which a contradiction. Hence, each vertex in G_{CN} has no less than two neighbors when $\gamma_{CN} = \gamma_{CNM}$.

Proposition 3.8. Let $G_{CN} = (A, B)$ be any co-neutrosophic graph with vertices each of them has two or more neighbors then γ_{CNM} + $\beta_0 \leq O_N$, where $|S| = \beta_0$ **Proof:** Suppose that S is a maximum independent co-neutrosophic set of G_{CN} , then V- S contains all of the neighbors of each vertex of S. Every vertex has two or more neighbors by hypothesis; hence V-S must be a CNMD set of G_{CN} . Thus $\gamma_{CNM} \leq |V - S| = O_{CN} - \beta_0$. Hence, γ_{CNM} + $\beta_{0} \leq O_{CN}$.

Proposition 3.9. If $G_{CN} = (A, B)$ be a co-neutrosophic graph with S being the only maximal independent co-neutrosophic set, then $\gamma_{CNM} \leq \beta 0$. Where $|S| = \beta_0$

Proof: assume S be a single maximal co-neutrosophic independent set of G_{CN} , suppose that $\exists x \in V - S$. if x has no neighbor then x has to be in S. therefore, x is neighbor with only one vertex $y \in S$, then $S - \{y\} \cup \{x\}$ is the second maximal co-neutrosophic independent set of GCN. This results in a conflict with S. Hence, $\gamma_{CNM} \leq |S| = \beta_0$ **4.Inverse of (CNMD) in**

Definition 4.1. Let G_{CN} be any co-neutrosophic graph without isolated vertex and D_{MCN} be minimum co-neutrosophic multi-domination of G_{CN} if $V - D_{MCN}$ contains a (CNMD) D_{MCN}^{-1} then D_{MCN}^{-1} is called invers (CNMD)s of G_{CN} with respect to D_{MCN}

Remark4.1. An inverse (CNMD) D_{MCN}^{-1} of G_{CN} is said to be a minimal if no proper subset of D_{MCN}^{-1} is inverse CNMD of G_{CN}

Definition 4.2. The minimum set among all inverse CNMD sets is said to be a minimum inverse CNMD of G_{CN} , and γ_{CNM}^{-1} of G_{CN} is the term used to describe the maximum neutrosophic cardinality taken over all minimum inverse CNMD sets of G_{CN} . and denoted by $\gamma_{\text{CNM}}^{-1}(G_{\text{CN}})$ or simply γ_{CNM}^{-1}

Remark 4.2. A minimum inverse CNMD of G_{CN} has a maximum neutrosophic cardinality is called γ_{MCNM}^{-1} – set of G_{CN}

Example 4.1. Consider a co-neutrosophic graph G_{CN} , which is given in figure 8

MCNMD sets of G_{CN} are $D_{CNM(1)} = \{B, G, C, F\}$, $D_{CNM(2)} = \{A, H, D, E\}$

 $\gamma_{CNM} = \max\{\|D_{CNM(1)}\|, \|D_{CNM(1)}\|\}$ =max $\{\sum_{v \in D_{CNM(1)}} |v|, \sum_{u \in D_{CNM(2)}} |u|\}$ = $max{1.7,1.9} = 1.9$

 $D_{CNM(1)}$ is inverse CNMD set $\gamma_{CNM}^{-1} = 1.7$

Theorem 4.1.

Let G_{CN} be any co-neutrosophic graph, then D_{MCN}^{-1} the CNMD inverse of G_{CN} is aminimal if and only if for each vertex $x \in D_{MCN}^{-1}$ either

- 1) $|N(x) \cap D_{MCN}^{-1}| < 2$ or
- 2) $\exists y \in V D_{MCN}^{-1}$ where $\{N(y) \cap D_{MCN}^{-1}\} = 2$ and $y \in N(x)$. **Proof:** Let D_{MCN}^{-1} be γ_{CNM}^{-1} – set of G_{CN} , Suppose the aforementioned condition is not satisfied. $\exists x \in D^{-1}_{MCN}$ where $|N(x) \cap D^{-1}_{MCN}| \ge 2$ and for each vertex $y \in V - D^{-1}_{MCN}$ either $|N(y) \cap D_{MCN}^{-1}| > 2$ or $y \notin N(x)$ Consider $D'_{MCN} = D^{-1}_{MCN} - \{x\}$, since x has at least two neighbors in D^{-1}_{MCN} thus D'_{MCN} is inverse CNMD of G_{CN} , an opposition to minimalism D_{MCN}^{-1} .

Conversely, if D_{MCN}^{-1} is an inverse CNMD of G_{CN} that satisfies (1) and (2), then consider $D'_{MCN} = D_{MCN}^{-1} - \{x\}$ for any vertex $x \in D_{MCN}^{-1}$. D'_{MCN} is not inverse CNMD if condition (1) holds, and it is not inverse CNMD if condition (2) holds if D'_{MCN} has one neighbor named y. Hence D_{MCN}^{-1} is minimal inverse CNMD set of G_{CN} .

Proposition 4.1. If G_{CN} be any co-neutrosophic graphs contains at least one vertex has no more than one neighbor then inverse CNMD not exist

Proof: Consider G_{CN} be any co-neutrosophic graph and $x \in V(G_{CN})$ has at most one neighbor,i.e. $|N(X)| \leq 1$. Then,*x* contained in every MCNMD of G_{CN} i.e.

 $x \notin V - D_{CNM}$, where D_{CNM} is MCNMD of G_{CN} suppose $D_{CNM}^{-1} \subseteq V - D_{CNM}$ is inverse D_{CNM} of G_{CN} with respect to D_{CNM} . Since $x \in CNMD$ then D_{CNM}^{-1} must has two neighbor of x .this is not possible, by $|N(x)| \leq 1$. Hence G_{CN} has no inverse CNMD

Corollary 4.1. if $G_{CN} \cong P_n^{CN}$ or $G_{CN} \cong$ strong co-neutrosophic star graph then an inverse CNMD set not exist.

Observation: If there is inverse CNMD of G_{CN} , then not necessary in general $\gamma_{CNM} \geq \gamma_{CNM}^{-1}$

- i) For any co-neutrosophic graph G_{CN} does not contain isolated vertices, every invers CNMD is inverse neutrosophic dominating set.
- ii) For any co-neutrosophic graph G_{CN} has inverse CNMD then $[A(x) + A(y)] \le$ $\gamma_{\text{CNM}}^{-1} \leq \sum |u_i|$ where $x, y \in D_{\text{CNM}}^{-1}$ and $u_i \in V - D_{\text{CNM}}$.

Theorem 4.2. For any co-neutrosophic graph G_{CN} has $CNMD^{-1}$ then a vertex $x \in V D_{CNM}$ belong to each $CNMD^{-1}$ of G_{CN} in the event that x has two or three neighbors.

Proof: Let D_{CNM} be a MCNMD and D_{CNM}^{-1} be an inverse CNMD of G_{CN} . Then, each vertex $x \in V - D_{CNM}$ has at more than one neighbor in D_{CNM} . Then, there exist two cases.

Case(I) Suppose that $x \in V - D_{CNM}$ and x has exactly couple of neighbors say $\{y, z\}$, i.e.

 $N(x) = \{y, z\}$, since D_{CNM} is MCNMD of G_{CN} then $\{y, z\} \in D_{CNM}$ therefore $N(x) - \{y, z\} = \emptyset$, so x has no other neighbors in V which dominates. Therefore, x needs to dominated by itself. As a result, x is contained in every inverse CNMD.

Case(ii) Suppose that $x \in V - D_{CNM}$ has precisely three neighbors in G_{CN} . Let y, z and r are three neighbors of x, i.e. $N(x) = \{y, z, r\}$, since $x \in V - D_{CNM}$ and D_{CNM} is MCNMD. Then x has at least two neighbors in D_{CNM} , consider y and z are two neigbors in D_{CNM} of x, which dominates x. Now $N(x) - \{y, z\} = \{r\}$, i.e. remaining a singular neighbor of x in $V - D_{CNM}$ since $D_{CNM}^{-1} \subseteq V - D_{CNM}$. If $x \notin D_{CNM}^{-1}$, then D_{CNM}^{-1} must have at least two neighbors of x, but x has only one neighbor in $V - D_{CNM}$. Therefore ,x belong to every D_{CNM}^{-1} of G_{CN} .

Proposition 4.2. Let $G_{CN} = (A, B)$ be any connected co-neutrosophic graph on

 $G_{CN}^* = (V, E)$; then $|V| > 3$ if D_{CNM}^{-1} exists,

Proof: Since is connected and D_{CNM}^{-1} exists by hypothesis, then

- **1)** ∃ $x, y \in D_{CNM}^{-1}$ and then $x, y \in V D_{MCNM}$
- 2) G_{CN} has D_{MCNM} then $\exists z, f \in D_{CNM}^{-1}$ and then $z, f \in V$ From (1) and (2) $x, y, z, f \in V - D_{MCNM} \cup D_{MCNM} = V$ Which is the proof.

Proposition 4.3. $G_{CN} = (A, B)$ be co-neutrosophic graph on

 $G_{CN}^* = (V, E)$ if there is inverse CNMD of G_{CN} then $\gamma_{CNM} + \gamma_{CNM}^{-1} \leq |V|$

Proof: Let D_{CNM} and D_{CNM}^{-1} be a MCNMD and invers CNMD of G_{CN} respectively.

then either G_{CN} be connected or not

- 1) For every element $x \in D_{CNM} \Rightarrow x \in V$ *i.e.* $D_{CNM} \subset V$
- 2) For every element $y \in D_{CNM}^{-1} \Rightarrow y \in V D_{CNM}$ i. $e. D_{CNM} \subset V D_{CNM} \subset V$ from (1) and (2) D_{CNM} \cup $D_{CNM}^{-1} \subset V$ then $|D_{CNM}|+|D_{CNM}^{-1}|<|V| \Rightarrow \gamma_{CNM} + \gamma_{CNM}^{-1} \leq |V|$.

Proposition 4.4. Let $G_{CN} \cong k_n^{CN}$ is complete co-neutrosophic graph with $n \geq 4$ vertices,

$$
\gamma_{\mathit{CNM}}^{-1}(k_n^{\mathit{CN}})=\max[\varphi(x)+\varphi(y)]\,, x,y\in V(k_n^{\mathit{CN}})-\mathit{CNMD}\,.
$$

Proof: Given $G_{CN} \cong k_n^{CN}$ and D_{CNM} be a MCNMD of k_n^{CN} . Then, *CNMD* contain two vertices with maximum neutrosophic value by preposition (4.2.27) thus $\lt V - D_{CNM} >$ is k_{n-2}^{CN} . Then, the inverse CNMD OF k_n^{CN} is MCNMD OF k_{n-2}^{CN} . Hence

 $\gamma_{CNM}^{-1}(k_n^{CN}) = \gamma_{CNM}(k_{n-2}^{CN}) = \max[\varphi(x) + \varphi(y)]x, y \in V(k_n^{CN}) - CNMD$, the proof is complete.

Proposition 4.5. Let $G_{CN} \cong C_n^{CN}$ with $n \geq 2k$ vertices, k ≥ 2 and each edge is an effective then

$$
\gamma_{CNM}^{-1} = \min \{ \sum_{i=0}^{\frac{n}{2}-1} A(x_{j+2i}); j = 1,2 \}, \text{where } A(x_{j+2i}) = (T_A(x_{j+2i}), I_A(x_{j+2i}), F_A(x_{j+2i}))
$$

Proof: Consider $C_n^{CN} = \{x_1, x_2, ..., x_n\}$ be cycle with even vertices by Proposition 3.6, there are two MCNMD sets $\{D_{2A(1)}, D_{2A(2)}\}$ of C_n^{CN} and one of them has maximum neutrosophic cardinality is CNMD number of C_n^{CN} ,

i.e., if $||D_{2A(1)}|| > ||D_{2A(2)}||$, then $D_{2A(2)}$ is inverse CNMD of C_n^{CN} and

 $\gamma_{\text{CNM}}^{-1}(k_n^{\text{CN}}) = ||D_{2A(2)}||$

similarly, if $||D_{2A(2)}|| > ||D_{2A(1)}||$ then $\gamma_{CNM}^{-1}(k_n^{CN}) = ||D_{2A(1)}||$

proposition 4.6. If $G_{CN} \cong k_{n,m}^{CN} = (A, B)$ is a complete co-neutrosophic graph on bipartite underline graph $G_{CN}^* = K_{n \times m} = (V, E)$ then

$$
\gamma_{CNM}^{-1}(k_{n,m}^{CN})
$$
\n
$$
= \begin{cases}\n\text{either } Sc(X) \text{ or } Sc(y) & \text{if } 2 \le n, m \le 3 \text{ and } m \ne n \\
\text{Min}\{Sc(X), Sc(Y)\} & \text{if } n = m \le 3 \\
\text{Min}\{Sc(X), Sc(Y), Sc(x_i + x_j + y_i + y_j)\} & \text{if } m, n > 3 \\
x_i, x_j \in X - D_{CNM} \text{ and } y_i, y_j \in Y - D_{CNM}\n\end{cases}
$$

Where Score(X) is $Sc(X) = \frac{1 + \sum_{v_i \in X} T_A(v_i) + \sum_{v_i \in X} I_A(v_i) - \sum_{v_i \in X} F_A(v_i)}{2}$ $\frac{3}{3}$ and

$$
Sc(Y) = \frac{1 + \sum_{v_j \in Y} T_A(v_j) + \sum_{v_j \in Y} I_A(v_j) - \sum_{v_j \in Y} F_A(v_j)}{3}
$$

Proof: Since G_{CN}^* is bipartite complete graph then $V = X \cup Y$, where X, Y are sets of independent(non-adjacent) vertices, such that for each $x \in X \exists edges \ e_j = xy_j, y_j \in$ $Y, J = 1, 2, ... m$

Since G_{CN} is complete co-neutrosophic graph over G_{CN}^* then for each edge $e \in$ E is an effective edge

now let D_{CNM} is MCNMD of $k_{n,m}^{CN}$ there three cases:

Case 1: if $n = 2$ and = 3, then obviously X is D_{CNM} and Y is $D_{CNM}^{-1} \Rightarrow \gamma_{CNM}^{-1}(k_{n,m}^{CN}) =$ $Sc(Y)$, in the same way we can proof that $\gamma_{CNM}^{-1}(k_{n,m}^{CN}) = Sc(X)$ if $m = 2$.

If n=2 then m≥ 3 it is obvouisly X is MCNMD of $k_{n,m}^{CN}$ because there exist not any subset of Y can be dominating set due to the independently of Y which means that Y is D_{CNM}^{-1} and $\gamma_{CNM}^{-1} = Sc(Y)$. Similarly in case of m=2 and n=3

Case 2: $If n = m \leq 3$, then if $n = m = 2$ then both of X and Y can be D_{CNM} and conversely both of X and Y can be $D_{CNM}^{-1} \Rightarrow \gamma_{CNM}^{-1}(k_{n,m}^{CN}) = \min(Sc(x), Sc(Y)).$

The same condition satisfies if m=n=3

Case 2: If $n, m > 3$, then D_{CNM} contain at least four vertices in three different situations

- i) D_{CNM} contain two vertices from each of X and Y and conversely D_{CNM}^{-1} also contains two vertices from each of X and Y
- ii) X contain only four vertices and equal to D_{CNM} then Y is equal to D_{CNM}^{-1}
- iii) Y contain only four vertices equal to D_{CNM} then X is equal to D_{CNM}^{-1}
- iv) Both of X and Y contains four vertices then one of them is equal to D_{CNM} and the other is equal to D_{CNM}^{-1} and vice versa.

i.e.
$$
Min\{Sc(X), Sc(Y), Sc(x_i + x_j + y_i + y_j)\}\
$$

$$
x_i, x_j \in X - D_{CNM} \text{ and } y_i, y_j \in Y - D_{CNM}
$$

that is the proof.

Proposition 4.7. Every invers CNMD of G_{CN} is invers multi-dominating set of crisp graphs G_{CN}^*

Proof: Let D_{CNM}^{-1} be an inverse CNMD of G_{CN} , then $\forall y \in V - D_{CNM}^{-1}$ has two or more neighbors in D_{CNM}^{-1} , i.e. there exist $x_1, x_2 \in D_{CNM}^{-1}$ such that $\omega(y, x_1) = A(x_1) \vee A(y) > 0$ and $\omega(y, x_2) = A(x_2) \vee A(y) > 0$ it implies that (y, x_1) and $(y, x_2) \in \omega^*$.

Therefore, D_{CNM}^{-1} contains two neighbors of y. Hence D_{CNM}^{-1} is inverse multi-dominating set of G_{CN}^* .

Remark. The converse of preposition (4.7) is not always true. It is illustrated in the example that follows.

Example. Given G_{CN} and G_{CN}^* in figure 9 (a), (b) respectively, obviously {E, C} is inverse multi-dominating set of G_{CN}^* but not inverse in G_{CN} .

Proposition 4.8. Let G_{CN} be co-neutrosophic graph. Inverse multi dominating set of G_{CN}^* is inverse $C N M D^{-1}$ of G_{CN} If $e = xy$ is an effective edge $\forall (x, y) \in E(G_{CN})$.

Proof: Let D_M^{-1} be a γ_M^{-1} set of G_{CN}^* . then, $\forall y \in V - D_M^{-1} \exists x_1, x_2 \in D_M^{-1}$ such that $(y, x_1), (y, x_1) \in E.$

Since each edge in G_{CN} is effective thus D_M^{-1} has two effective neighbors of y. Hence, D_M^{-1} is inverse multi dominating set of G_{CN} .

Conclusion. In this paper, the concepts of a (CNMD) set and number in a co-neutrosophic graph (G_{CN}) introduced and examined also invers multi-dominating set D_{CNM}^{-1} and its number are the purpose of this essay. The co-neutrosophic multi-domination number (CNMD) determined for particular classes of (G_{CN}) and deduce restrictions on the accompanying (CNMD number).

References

- 1. D. J.eyanthi Prassanna, International Journal of Advanced Research in Engineering and Technology (IJARET), 10(6), 442-447(2019)
- 2. R. N. Devia, Minimal Domination via Neutrosophic Over Graphs, In: AIP Conference Proceedings 2277, 100019-1,100019-2(2020)
- 3. M. Mullai, S. Broumi , R. Jeyabalan, R. Meenakshi, Neutrosophic Sets and Systems, 47, 240-248(2021)
- 4. A. Nagoor Gani, M. Basheer Ahamed" Strong and Weak Domination In Fuzzy Graphs", East Asian Math. J. 23 (2007), No. 1, pp. 1–8
- 5. R. Parvathi, G. Thamizhendhi, Fourteenth Int. Conf. on IFSs, Sofia, 15-16 May 2010 NIFS, 16, 2, 39-49(2010)

- 6. H. J. Yousif, A.A. Omran, anti fuzzy domination in anti fuzzy graphs, In:IOP / 2nd International Scientific Conference of Al-Ayen University (ISCAU-2020) p1-11
- 7. Dr. C. Rajan, A. Senthil Kumar, International Journal Of Information And Computing Science, 6(3), 157-166(2019)
- 8. H. J. Yousif, A. A. Omran, Journal of Physics: Conference Series, 1-7(2021)
- 9. S. Broumi, M. Talea, F. Smarandache, A. Bakali, Single Valued Neutrosophic Graphs: Degree,Order and Size, In: IEEE International Conference on Fuzzy Systems (FUZZ), 2444-2451(2016)
- 10. S. Broumi, M. Talea, A. Bakali, F. Smarandache, journal of new theory, 10, 86- 101(2016)
- 11. R. Dhavaseelan, S. Jafari, M. R. Farahani, S. Broumi, Neutrosophic Sets and Systems, 22, 180-187(2018)
- 12. L. Huang, Yu. Hu, Y. Li, P. K. K. Kumar, D. Koley, A. Dey Mathematics, 7(551), 1- 20(2019)