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Abstract 

The goal of this article is to examine the ideas of co-neutrosophic multi-dominating (CNMD) 

set, number 𝛾 𝐶𝑁𝑀𝐷 in a co-neutrosophic graph (𝐺𝐶𝑁) and their inverses 

CNMD−1,𝛾𝐶𝑁𝑀𝐷
−1  respectively. For specific classes of co-neutrosophic graphs (𝐺𝐶𝑁), the 𝛾 𝐶𝑁𝑀𝐷 

and 𝛾𝐶𝑁𝑀𝐷
−1  calculated and constraints on the corresponding 𝛾 𝐶𝑁𝑀𝐷 drived. Also, some example 

for evaluation the inverse co-neutrosophic domination provided. 

Keywords: Single value neutrosophic graph, co-neutrosophic graph, domination set, 

domination number. 

 نيوتروسوفيك الضد البيانية الرسوم في نيوتروسوفيك الضد المتعددة الهيمنة

 2عارف عزالدين نبيل و 1مجيد صابر ميرا

  تكريت جامعة – والرياضيات الحاسوب علوم كلية-الرياضيات قسم2و 1

 خلاصةال

 بياني رسم في الهيمنة اعداد وحساب (CNMD) الهيمنة متعددة مجموعات فكرة فحصو ادخال هو المقالة هذه من الهدف

 الهيمنة اعداد وحساب نيوتروسوفيك، الضد البيانية الرسوم من محددة فئات على الفكرة وتطبيق (𝐺CN) النيوتروسوفيك ضد

 ضد يةالبيان للرسوم العكسية الهيمنة مفهوم ايضا قدمنا أيضًا، لها المقابلة الهيمنة اعداد على القيود ونشتق (CNMD) لـ

 النتروسوفيك.

 لسيطرة.ا رقم السيطرة، مجموعة مشترك، نيوتروسوفيك بياني رسم واحدة، قيمة ذو نيوتروسوفيك بياني رسم المفتاحية: الكلمات
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1.Introduction 

The challenge of identifying the bare minimum of queens required to cover a nxn chessboard 

gave rise to the mathematical study of dominant sets in graphs in the 1850s.Different writers 

have explored more than 50 different kinds of domination factors [1]. In 1965[2], Zadeh 

developed the concept of a fuzzy set as a framework for mathematically capturing ambiguity 

and imprecise information. Fuzzy analogs of key graph theoretic notions, including path, cycle, 

and connectedness, were proposed by Rosenfeld[3].A. Somasundaram and S. Somasundaram 

researched the idea of domination in fuzzy graphs, and A. Somasundaram presents the ideas of 

independent domination, total domination, and linked domination of fuzzy graphs [4].K. T. 

Atanassov[5] introduced the concept of Intuitionistic Fuzzy (IF) relations and Intuitionistic 

Fuzzy Graphs(IFGs).Muhammad A. [6] introduced ideas like linked anti-fuzzy graphs, constant 

anti-fuzzy graphs, and others after learning about anti-fuzzy structural graphs.Muthuraj R. and 

Sasireka A. construct the concepts of dominance on anti-fuzzy graph and linked dominance on 

anti-fuzz in their study on the topic. Dr.C. Rajan & A. Senthil Kumar define the dominating set 

and dominating number of the single valued neutrosophic graph G= (A, B), as well as some 

limits on its dominating number [7]. Ghobadi, Soner, and Mahyoub introduced the inverse 

dominating set in fuzzy graphs [8]. In this paper we introduce the conception of co neutrosophic 

multi dominating set and number in co neutrosophic graphs.  

2.Preliminaries 

Definition 2.1.[9,11] A graph 𝐺𝐶𝑁  =  (𝐴, 𝐵) on an underline simple graph 𝐺𝐶𝑁
∗ =

(𝑉, 𝐸) 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎 single-valued co-neutrosophic graph (SVCNG), 

where 𝐴 ∶ 𝑉 → [0,1] be SVCN vertex set of G 

and 𝐵 ∶ 𝑉 × 𝑉 →  [0,1], SVCN edge set of G 
satisfy the following 

𝑇𝐵(𝑥𝑦)  ≥ max {𝑇𝐴(𝑥), 𝑇𝐴(𝑦)} 
𝐼𝐵(𝑥𝑦)  ≥  max {𝐼𝐴(𝑥), 𝐼𝐴(𝑦)} 

 𝐹𝐵(𝑥𝑦)  ≤  min {𝐹𝐴(𝑥), 𝐹𝐴(𝑦)}for all 𝑥, 𝑦 ∈  𝑉 . 

The graph .1 below is an example of SVCNG. 
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Definition 2.2.[12]. A path 𝑃𝑛
𝐶𝑁  𝑖𝑛 𝐺𝐶𝑁 is a string of various vertices (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) such 

that 

 𝑇𝐵(𝑥𝑖 , 𝑥𝑖+1 )  >  0 for 1 ≤𝑖 ≤ 𝑛  

 

Definition2.3. A connected co-neutrosophic graph 𝐺𝐶𝑁 is one in which any two vertices in it 
have a neutrosophic path between them. 

 

Definition 2.4. A complement of (SVCN) graph 𝐺𝐶𝑁 = (A, B) on G* is a (SVCN) graph 

denoted as 𝐺𝐶𝑁̅̅ ̅̅ ̅ = (𝐴̅, �̅�) such that 𝐴̅ = A i.e., 𝑇𝐴(𝑥) = �̅�𝐴(𝑥), 𝐼𝐴(𝑥) = 𝐼�̅�(𝑥), 
𝐹𝐴(𝑥) = �̅�𝐴(𝑥)and  

�̅��̅�(𝑥, 𝑦) = max(𝑇𝐴(𝑥), 𝑇𝐴(𝑦)) − 𝑇𝐵(𝑥, 𝑦)  

𝐼�̅̅�(𝑥, 𝑦) = max (𝐼𝐴(𝑥), 𝐼𝐴(𝑦)) − 𝐼𝐵(𝑥, 𝑦)  
�̅��̅�(𝑥, 𝑦) = min (𝐹𝐴(𝑥), 𝐹𝐴(𝑦)) − 𝐹𝐵(𝑥, 𝑦) for all 𝑥𝑦 ∈  𝐸. 

Definition 2.5. [10] Consider a neutrosophic graph 𝐺𝑁  = (𝐴, 𝐵) on underline simple graph 

𝐺𝑁
∗ = (𝑉, 𝐸) 

1) The relation between any pairs of elements (vertices) of V is called edge and denoted 

by 𝑒 ∈ 𝐸. 
2) an edge 𝑒 = 𝑥𝑦 𝑖𝑛 𝐺𝑁 is said to effective edge if  

𝑇𝐵(𝑥𝑦) = max(𝑇𝐴(𝑥), 𝑇𝐴(𝑦)) , 𝐼𝐵(𝑥𝑦) = max(𝐼𝐴(𝑥), 𝐼𝐴(𝑦)) 𝑎𝑛𝑑  

 𝐹𝐵(𝑥𝑦) =  𝑚𝑖𝑛(𝐹𝐴(𝑥), 𝐹𝐴(𝑦)) 

3)  A (SVCN) graph 𝐺 = (𝐴, 𝐵) is said to strong graph if for every edge  

 𝑒 =  (𝑥𝑦) ∈ 𝐸 is an effective edge.  

Definition 2.6.[10] A (SVCN) graph 𝐺 = (𝐴, 𝐵) is said to be complete graph if for every 

𝑥, 𝑦 ∈  𝑉 ∃ an effective edge 𝑒 =  (𝑥𝑦) ∈ 𝐸. 
Definition 2.7. Let 𝐺∗ = (𝑉, 𝐸) be underlining graph of a (SVCN) G. then 𝑤 ∈ 𝑉 is said to be 

effectively isolated vertex if 𝑥𝑤 ∈ 𝐸 is not effective ∀ 𝑥 ∈ 𝑁(𝑤),  
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In private case if 𝑇𝐵(𝑥,𝑤) = 𝐼𝐵(𝑥, 𝑤) = 𝐹𝐵(𝑥, 𝑤)= 0 ∀ x ∈ 𝑉 − {𝑤} then 𝑤 is called strongly 

isolated (isolated in the underling graph),  

 

Definition 2.8.[8] independent Co-neutrosophic set S is a subset of 𝑉 (𝐺𝐶𝑁 ) where 

 𝑇𝐵(𝑥, 𝑤) ≠ max(𝑇𝐴(𝑥), 𝑇𝐴(𝑤)) ,𝐼𝐵(𝑥,𝑤) ≠ max (𝐼𝐴(𝑥), 𝐼𝐴(𝑤)) and  

 𝐹𝐵(𝑥, 𝑤) ≠ min(𝐹𝐴(𝑥), 𝐹𝐴(𝑊)) ∀ 𝑥, 𝑤 ∈ 𝑆 .  
In addition, it said to be maximal if there exist no independent Co-neutrosophic  

set 𝑍 ⊂ 𝑉 𝑎𝑛𝑑 |𝑆| < |𝑍|.The independence number 

 𝜷𝒐 (𝐺𝐶𝑁) = max {𝑆𝑖: 𝑆𝑖 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 independent Coneutrosophic set}.  

  

Definition 2.9. [8]A Co-neutrosophic graph 𝐺𝐶𝑁 = (A, B) is called a unimodal if 

(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) = (𝑘, k, k) =(𝑇𝐵(𝑥, 𝑦), 𝐼𝐵(𝑥, 𝑦), 𝐹𝐵(𝑥, 𝑦))while if (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) = 

(𝑐, c, c) ∀ x ∈ 𝑉 (𝐺𝐶𝑁 ) then 𝐺𝐶𝑁 is known as x- nodal, 𝑘, 𝑐 ∈ [0.1]  

 

Definition 2.10.[3] let 𝐺𝐶𝑁 a co-neutrosophic graph then: 

1) A co-neutrosophic vertex cover set A of 𝐺𝐶𝑁 is a subset of V such the for each 

effective edge 𝑒 = 𝑢𝑣 ∈ 𝐸, 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑢 ∈ 𝐴 𝑜𝑟 𝑣 ∈ 𝐴 

2) A co-neutrosophic vertex cover (𝛼𝑂) number =max {𝐴𝑖: 𝐴𝑖 is Co-neutrosophic vertex 

cover set of 𝐺𝐶𝑁 with minimum numbers of vertices} 

3) 𝑢 ∈ 𝑉(𝐺𝐶𝑁) is known as end point if there exist only one vertex 𝑣 ∈ 𝑉 such that 𝑢𝑣 is 

effective edge.  

Definition 2.11.[5] 𝒟 ⊆ 𝑉 (𝐺𝐶𝑁) is called co-neutrosophic dominating (CN𝐷) set of 𝐺𝐶𝑁.  

If ∀𝑢𝑖 ∈ 𝑉 − 𝒟 ∃ 𝑣𝑗  ∈𝒟 such that  

𝑇𝐵(𝑢𝑖𝑣𝑗 ) = max {𝑇𝐴(𝑢𝑖), 𝑇𝐴(𝑣𝑗 )} 

𝐼𝐵(𝑢𝑖𝑣𝑗) =  max {𝐼𝐴(𝑢𝑖), 𝐼𝐴(𝑣𝑗 )} 

 𝐹𝐵(𝑢𝑖𝑣𝑗) =  min {𝐹𝐴(𝑢𝑖), 𝐹𝐴(𝑣𝑗 )}for all 𝑣𝑖  , 𝑣𝑗  ∈  𝑉 .  

Definition 2.12.[5] The minimum co-neutrosophic dominant (MCND) set is the (CND) set D 

of 𝐺𝐶𝑁 with the fewest number of vertices. If there exist no 𝒟′ ⊆ 𝒟 that is CND set, then D is 

known as the minimum CND set of 𝐺𝐶𝑁 and take the maximum cardinality for all MCND sets 

is known as a co-neutrosophic Domination (CND) number of 𝐺𝐶𝑁 and denoted by 𝛾CND (𝐺𝐶𝑁) 

or simply 𝛾CND. 

𝟑. Co-neutrosophic multi-𝒅𝒐𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝒏𝒖𝒎𝒃𝒆𝒓  𝐺𝐶𝑁. 
In this section, we introduce the co-neutrosophic multi-𝒅𝒐𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏 CNM𝐷 set and number 

of 𝐺𝐶𝑁, and Co-neutrosophic vertex covering with suitable illustrations, and we go over 

certain CNMD number of 𝐺𝐶𝑁 by the effective edge attributes. 

Definition 3.1. Let 𝐺𝐶𝑁 = (𝐴, 𝐵) be a co-neutrosophic graph on the underline simple graph 

𝐺𝐶𝑁
∗ = (𝑉, 𝐸), then a non-empty set 𝒟 ⊆ 𝑉 is called (CNM𝐷) set in 𝐺𝐶𝑁 if ∀ x ∈ 𝑉 − 𝒟 

There is more than one neighbors in 𝒟 i.e., ∃ at least two vertices y, z ∈ 𝐷 such that 

 both of xy and xz are effective edges in E i.e.𝑇𝐵(𝑥, 𝑦) = 𝑇𝐴(𝑥)⋀𝑇𝐴(𝑦),  
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𝐹𝐵(𝑥, 𝑦) = 𝐹𝐴(𝑥)⋀𝐹𝐴(𝑦), and  𝐼𝐵(𝑥, 𝑦) = 𝐼𝐴(𝑥)⋀𝐼𝐴(𝑦)similarly for xz. 

Definition 3.2. A minimal CNMD-set D of 𝐺𝐶𝑁 is a CNMD set that has the fewest number of 
vertices possible. 

Definition 3.3. A CNM𝐷 set 𝒟 of 𝐺𝐶𝑁 is called minimum co-neutrosophic multi-domination 

MCNM𝐷 set in 𝐺𝐶𝑁 if ∄ 𝐷′  ⊂ 𝐷 such that, 𝐷′ as CNM𝐷 set of 𝐺𝐶𝑁 . 
 

Definition 3.4. 

1) The cardinality (Score) of any co-neutrosophic  

𝐴(𝑥) = {< 𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >}𝑖𝑠 |𝐴(𝑥)| =
1 + 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥)

3
 

2) The cardinality of order of the co-neutrosophic graph |𝑂𝐶𝑁| = ∑ |𝑣𝑖|𝑣𝑖∈𝑉  

3) The maximal neutrosophic cardinality over all MCNMD sets is known as a CNMD 

number of 𝐺𝐶𝑁 and is represented by the symbol 𝛾CNMD( 𝐺𝐶𝑁) 

Example3.1. Consider a co-neutrosophic graph 𝐺𝐶𝑁 = (A, B), which given in figure (2), 

where we have 𝐷1 = {A, C, E}, 𝐷2 = {B, D, F} are MCNM𝐷 sets also are minimal CNM𝐷 

sets of 𝐺𝐶𝑁. 

Hence, by 𝛾CNMD( 𝐺𝐶𝑁) = 𝑚𝑎𝑥 [| 𝐷1 |, | 𝐷2 |] = 𝑚𝑎𝑥 [|(1,1.6,1.8)|,|(1,1.6,1.4)|] = 𝑚𝑎𝑥 

(1.8,2.2) =2.2 

 
 

Preposition 3.1. Let 𝐺𝐶𝑁  ≅  𝑘𝑛
𝐶𝑁 , n≥ 3 be a complete co-neutrosophic graph. 

 𝑡ℎ𝑒𝑛 𝛾 CNMD(𝑘𝑛
𝐶𝑁) = max {|𝑇𝐴(𝑢𝑖), 𝐼𝐴 (𝑢𝑖), 𝐹𝐴 (𝑢𝑖)|, |𝑇𝐴(𝑢𝑗), 𝐼𝐴 (𝑢𝑗), 𝐹𝐴 (𝑢𝑗)|} ∀𝑢𝑖, 𝑢𝑗 ∈ 

𝑉(𝑘𝑛
𝐶𝑁 ). i, j=1,…, n such that 𝑢𝑖 ≠ 𝑢𝑗  

Proof: Given 𝐺𝐶𝑁 ≡ 𝑘𝑛
𝐶𝑁 be a complete co-neutrosophic graph, then  

𝑇𝐵(𝑢𝑖𝑢𝑗  ) = max {𝑇𝐴(𝑢𝑖), 𝑇𝐴(𝑢𝑗  )} 

𝐼𝐵(𝑢𝑖𝑢𝑗) =  max {𝐼𝐴(𝑢𝑖), 𝐼𝐴(𝑢𝑗 )} 

 𝐹𝐵(𝑢𝑖𝑢𝑗) =  min {𝐹𝐴(𝑢𝑖), 𝐹𝐴(𝑢𝑗 )}for all 𝑢𝑖  , 𝑢𝑗  ∈  V(𝑘𝑛
𝐶𝑁) 
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As a result, every vertex in 𝑘𝑛
𝐶𝑁 has dominance over every other vertex in 𝑘𝑛

𝐶𝑁.Any set in 

𝑘𝑛
𝐶𝑁that has two vertices, such as {𝑢1𝑢2}, will therefore be of the form CNMD set of 

𝑘𝑛
𝐶𝑁Hence 𝛾 CNMD(𝑘𝑛

𝐶𝑁) = max {|𝑇𝐴(𝑢𝑖), 𝐼𝐴 (𝑢𝑖), 𝐹𝐴 (𝑢𝑖)|, |𝑇𝐴(𝑢𝑗), 𝐼𝐴 (𝑢𝑗), 𝐹𝐴 (𝑢𝑗)|}  

Preposition 3.2. Let 𝐺𝐶𝑁 be a co-neutrosophic star graph then 

 𝛾 CNMD(𝑘𝑛,𝑀
𝐶𝑁 ) = |𝑂𝐶𝑁| −|𝑇𝐴(𝑢), 𝐼𝐴(𝑢), 𝐹𝐴(𝑢) |, 𝑢 is root of the star. 

Proof: Given 𝑆𝑛
𝐶𝑁 be a strong co-neutrosophic star graph with 𝑣 as a root of 𝑆𝑛

𝐶𝑁 then for 

every vertex in star 𝑆𝑛
𝐶𝑁 except the vertex {𝑣} has a single neighbor. Then 𝑉 − {𝑣} is only 

CNMD set of 𝑆𝑛
𝐶𝑁 , therefore 𝛾 CNMD (𝐺CN) = |𝑉 − {𝑣}|=|𝑂𝐶𝑁| −|𝑇𝐴(𝑢), 𝐼𝐴(𝑢), 𝐹𝐴(𝑢) |, 𝑣 

being a root vertex.  

Proposition 3.3: If 𝐶𝑛
𝐶𝑁 be strong co-neutrosophic cycle graph with n vertices {𝑢1, 𝑢2,.., 𝑢𝑛} 

then  

𝛾 CNMD (𝐶𝑛
𝐶𝑁) =

{
 
 

 
 𝑚𝑎𝑥 {∑ |𝑇𝐴(𝑣𝑗+2𝑖), 𝐼𝐴 (𝑣𝑗+2𝑖), 𝐹𝐴 (𝑣𝑗+2𝑖)|; 𝑗 = 1,2

𝑛

2
−1

𝑖=0
} if n is even

𝑚𝑎𝑥 {∑ |𝑇𝐴(𝑣𝑗+2𝑖), 𝐼𝐴 (𝑣𝑗+2𝑖), 𝐹𝐴 (𝑣𝑗+2𝑖)|; 𝑗 = 1,2, …𝑛
⌊
𝑛

2
⌋

𝑖=0
} if n is odd

}
 
 

 
 

, 

 𝑗 + 2𝑖 𝑚𝑜𝑑 𝑛 

Proof: Let 𝐶𝑛
𝐶𝑁 𝑤𝑖𝑡ℎ {𝑢1, 𝑢2,.., 𝑢𝑛} be a strong cycle, so there exist two cases: 

Case1: As a result, ∀ 𝑢 ∉ 𝒟, 𝑢 have to have couple of neighbors in 𝒟 and this satisfy if there 

are two edges between any pair of vertices in D. 

 Thus, 𝒟𝑗 = {𝑢𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑎𝑙𝑙 𝑗 𝑖𝑠 𝑡𝑎𝑘𝑒𝑛 𝑒𝑡ℎ𝑖𝑒𝑟 𝑒𝑣𝑒𝑛 𝑜𝑟 𝑜𝑑𝑑} which means that there are only 

two different CNMD which are 𝒟1 and 𝒟2 of odd vertices and even vertices respectively. 

Therefore, 

𝛾 CNMD (𝐶𝑛
𝐶𝑁) = 𝑚𝑎𝑥 {∑  |𝐴(𝑣𝑗+2𝑖)| ; 𝑗 + 2𝑖 𝑚𝑜𝑑 𝑛 , 𝑗 = 1,2

𝑛

2
−1

𝑖=0
}, where 𝐴(𝑣𝑗+2𝑖) =

{𝑇𝐴(𝑣𝑗+2𝑖), 𝐼𝐴(𝑣𝑗+2𝑖), 𝐹𝐴(𝑣𝑗+2𝑖)} 

Case 2: if 𝑛 is odd. 

Each vertex in V-D has pair of neighbors, similar to case 1, so for each j the minimum one of 

the last two vertices in the cycle also must be in 𝒟𝑗 ,so there are 𝑛 distinct CNMD sets rely on 

𝑗; 𝑗 = 1,2, …, 𝑛. It is simple to conclude that all of Dj's sets are CNMD sets. Therefore,  

𝛾 CNMD (𝐶𝑛
𝐶𝑁)= 𝑚𝑎𝑥 {∑ |𝑇𝐴(𝑣𝑗+2𝑖), 𝐼𝐴 (𝑣𝑗+2𝑖), 𝐹𝐴 (𝑣𝑗+2𝑖)|; 𝑗 = 1,2, …𝑛

⌊
𝑛

2
⌋

𝑖=0
} 

The proof comes from the two cases mentioned above. □ 

Proposition3.4. Let 𝐺CN ≡𝑃𝑛
𝐶𝑁be a strong co-neutrosophic path n vertex (𝑣1, 𝑣1, …, 𝑣𝑛 ) 

then 

𝛾 CNMD(𝑃𝑛
𝑁)=

{
 
 

 
 ∑ |𝑇𝐴(𝑣2𝑖+1), 𝐼𝐴 (𝑣2𝑖+1), 𝐹𝐴 (𝑣2𝑖+1)|

⌊
𝑛

2
⌋

𝑖=0
𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑚𝑎𝑥 {
|𝑣2𝑖−1| + ∑  ||𝑇𝐴(𝑣2𝑖+2𝑗), 𝐼𝐴 (𝑣2𝑖+2𝑗), 𝐹𝐴 (𝑣2𝑖+2𝑗)||

𝑛

2
−1

𝑗=0
,

𝑖 = 1,2,… ,
𝑛

2
; 𝑎𝑛𝑑 2𝑖 + 2𝑗 ≡ 𝑡(𝑚𝑜𝑑(𝑛 + 1)),

} 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

}
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. 

Proof. For any path the CNMD must contain both end vertices of it, then there are pair of 

distinct cases depend on 𝑛 as follows. 

Case 1. When 𝑛 is odd, 𝒟 contain a sequence of alternate vertices starting from the first vertex 

and ending with the last vertex of the path i.e., 𝒟 = {𝑣2𝑖+1, i = 0, …. .⌊
𝑛

2
⌋, it is obvious that 𝒟 

is CNMD set. Also, 𝒟 is 𝑀CNMD set, since if there exist a set 𝐹 with a smaller number of 

vertices than set D, then 𝐹 is not CNMD set. Thus, 𝛾 CNMD(𝑃𝑛
𝑁) = ∑ |𝑣2𝑖+1|

⌊
𝑛

2
⌋

𝑖=0
 

Case 2. If 𝑛 is even, the alternating sequence technique is not enough because it ignores one of 

the two ends, so another vertex must be added to include both end vertices, thus the vertices 𝑣1 

and 𝑣1 must belongs to every 𝑀CNMD set. In this case, every MCNMD set must contain two 

neighboring vertices, and each subsequent pair of two vertices in D must have a distance of two 

edges. Now, for each adjacent pair 𝑣𝑖 and 𝑣𝑖+1 of vertices belongs to 𝒟 the other vertices of the 

path which belongs to 𝒟 must be alternate in both sides before 𝑣𝑖 and after 𝑣𝑖+1,so let 

 𝐷𝑖 = {{𝑣2𝑖−1, 𝑣2𝑖+2𝑗, 𝑗 = 0, …,
𝑛

2
− 1}, 𝑖 =1, … 

𝑛

2
 𝑎𝑛𝑑 2𝑖 + 2𝑗 ≡ 𝑡 (𝑚𝑜𝑑 (𝑛 + 1))}.  

It is explicit that each of set 𝐷𝑖 is 𝑀CNMD set. Thus, 

𝛾 CNMD (𝑃𝑛
𝑁)=𝑚𝑎𝑥 {|𝑣2𝑖−1| + ∑  ||𝑇𝐴(𝑣2𝑖+2𝑗), 𝐼𝐴 (2𝑗), 𝐹𝐴 (𝑣2𝑖+2𝑗)||

𝑛

2
−1

𝑗=0
, 𝑖 =

1,2,… ,
𝑛

2
; 𝑎𝑛𝑑 2𝑖 + 2𝑗 ≡ 𝑡(𝑚𝑜𝑑(𝑛 + 1)), } 

Example 3.2. Suppose that 𝑃6
𝐶𝑁 , 𝑃7

𝐶𝑁 are given in a figure (3) below as 𝐺𝑎 𝑎𝑛𝑑 𝐺𝑏 
respectively 

 
 

The MCNMD sets of 𝑃6
𝐶𝑁 are 𝐷1 = {A, B, D, F}, 𝐷2 = {A, C, D, F}, 𝐷3= {A, C, E, F} 
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|𝐴| = |
1+0.2+0.5−0.6

3
| = 0.36667 ,|𝐵| = |

1+0.3+0.7−0.6

3
| = 0.46667 ,|𝐶| = |

1+0.5+0.6−0.4

3
| =

0.56667 

|𝐷| = |
1+0.6+0.4−0.8

3
| = 0.4 ,|𝐸| = |

1+0.6+0.4−0.5

3
| = 0.5 ,|𝐹| = |

1+0.5+0.6−0.3

3
| = 0.6 

|𝐺| = |
1+0.4+0.3−0.2

3
| = 0.5 , |𝐻| = |

1+0.9+0.3−0.5

3
| = 0.56667 , , |𝐼| = |

1+0.7+0.3−0.1

3
| =

0.6333 

, |𝐽| = |
1+0.2+0.6−0.7

3
| = 0.36667, , |𝐾| = |

1+0.5+0.2−0.7

3
| = 0.3333, , |𝐿| = |

1+0.3+0.5−0.8

3
| =

0.3333,, |𝑀| = |
1+0.7+0.5−0.8

3
| = 0.46667 

The MCNMD sets of 𝑃6
𝐶𝑁 (N=6 Even number) are 𝐷1 = {A, B, D, F}, 𝐷2 = {A, C, D, F}, 𝒟3 

= {A, C, E, F} 

 
|𝐷1|=1.4333, |𝐷2|=1. 9333, |𝐷3|=2.0333  

𝛾 CNMD (𝐺CN) = 𝑚𝑎𝑥 [|𝐷1|, |𝐷2|, |𝐷3|= 𝑚𝑎𝑥 [1.4333, 1.9333, 2.0333] = 2.0333 

While MCNMD sets of 𝑃7
𝐶𝑁 (N=7 Odd number) is just 𝒟1 = {G, I, K, M}, 

|𝒟1|=1.93327 
 

Proposition 3.5. Every CNMD set of 𝐺𝐶𝑁 = (A, B) is CND set of 𝐺𝐶𝑁 . 

Proof: The proof is come directly from the definition of MCNMD set.  

 

Proposition 3.6. For any strong co-neutrosophic tree graph 𝑇𝑛
𝐶𝑁.if S be a set of all leaf vertices 

𝑣𝑖 then 

 ∑ |𝑣𝑖|𝑣𝑖∈𝑆  ≤  𝛾 𝐶𝑁𝑀𝐷 < 𝑂𝑁. 

Proof: 1) Since for any tree with n>2 vertices not all the vertices are leaves then it is obviously 

S < V(G) and ∑ |𝑣𝑖|𝑣𝑖∈𝑆 <𝑂𝑁. 

2) According to neighbors of the non-leaf vertices there are two cases  

Case1: If for each non-leaf vertex has more than one leaf vertex as neighbors  

 ∑ |𝑣𝑖|𝑣𝑖∈𝑆 = 𝛾 𝐶𝑁𝑀𝐷 

Case2: If there exist at least one non-leaf vertex has less than two leaf vertices then 

 ∃ 𝑣 ∈ 𝐶𝑁𝑀𝐷 𝑎𝑛𝑑 𝑣 ∉ 𝑆 then 𝑆 ⊂ 𝐶𝑁𝑀𝐷 which means that ∑ |𝑣𝑖|𝑣𝑖∈𝑆 < 𝛾 𝐶𝑁𝑀𝐷 

From 1 and 2 we obtain ∑ |𝑣𝑖|𝑣𝑖∈𝑆  ≤  𝛾 𝐶𝑁𝑀𝐷 < 𝑂𝑁. 

 

Example. In the graph 4𝑎 below 

 ∑ |𝑣𝑖|𝑣𝑖∈𝑆 =0.6667, 𝐶𝑁𝑀𝐷 = {𝐴, 𝐶, 𝐹, 𝐺, 𝐷}  ⇒ 𝛾𝐶𝑁𝑀𝐷 = 0.833 𝑎𝑛𝑑  

 𝑂𝑁 = 1.46667 ⇒ ∑ |𝑣𝑖|𝑣𝑖∈𝑆 < 𝛾 𝐶𝑁𝑀𝐷 < 𝑂𝑁. 
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And in 4b, since all the non-leaf vertices adjacent to a leaf vertex then  

S= 𝐶𝑁𝑀𝐷 ⇒ ∑ |𝑣𝑖|𝑣𝑖∈𝑆 = 𝛾 𝐶𝑁𝑀𝐷 < 𝑂𝑁 

 
Theorem 3.1. For any graph 𝐺𝐶𝑁 , ∑ |𝑣𝑖|𝑣𝑖∈𝑆 < 𝛾 𝐶𝑁𝑀𝐷  < 𝑂𝑁 . Where S is a set of all the 

vertices with one or no neighbors.  

Proof: Let 𝐺𝐶𝑁 be any co-neutrosophic graph,  

𝒟 be a CNMD set of 𝐺𝐶𝑁 and |𝒟|= 𝛾𝐶𝑁𝑀𝐷(𝐺𝐶𝑁) 𝑎𝑛𝑑 𝑉(𝐺𝐶𝑁 )  =  𝑉(𝐻) ∪ 𝑉(𝑆), 𝑆 is a set 

including each of the vertices that has less than two neighbors and 𝐻 containing vertices of 

𝑉(𝐺𝐶𝑁) which have two or more neighbors. Now we must demonstrate that 𝑆 ∈ 𝒟 for lower 
bounded. 

Assuming u ∈S, u is either has a single neighborhood or it is isolated vertex. We terminate 

that 𝑢 belong to each MCNMD set of 𝐺𝐶𝑁 in both situations. Hence 𝑆 ∈  𝒟 → | 𝑆| ≤ | 𝐷| 

Furthermore ∑ |𝑢𝑖|𝑣𝑖 ∈𝑆  ≤ 𝛾𝐶𝑁𝑀𝐷 . however, for upper bound 𝛾𝐶𝑁𝑀𝐷  <  𝑂𝑁 is obviously. 

Hence, 

∑ |𝑣𝑖|𝑣𝑖∈𝑆 < 𝛾 𝐶𝑁𝑀𝐷  < 𝑂𝑁. 

Example3. 3. Consider 𝐺𝐶𝑁 = (A, B) in figure 5. 
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The 𝑀CNMD sets are 𝒟1 = {A, D, E, C}, 𝒟2 = {A, D, F, C}, S= {A, C} 

𝒟3 = {A, E, F, C},  

|𝐴| = |
1+0.3+0.5−0.7

3
| = 0.36667 , |𝐵| = |

1+0.8+0.3−0.6

3
| = 0.5 , |𝐶| = |

1+0.1+0.6−0.8

3
| = 0.3  

 |𝐷| = |
1+0.6+0.7−0.2

3
| = 0.7 , |𝐸| = |

1+0.5+0.4−0.6

3
| = 0.43333, |𝐹| = |

1+0.8+0.5−0.6

3
| =

0.56667 
|𝒟1| = 1.8 , |𝒟2| = 1.93334 , |𝒟3| = 2.0667 |S| = 0.66667 

We observe that every MCNMD set contains one neighbor for each vertex. 

Hence 𝛾2𝐴𝐹 (𝐺𝐴𝐹)  =  𝑚𝑎𝑥 {| 𝒟1|, | 𝒟2|, | 𝒟3|}  =  𝑚𝑎𝑥 {1.8, 1.93334, 2.0667}  =

 2.0667 >  |𝑆 |, 𝑤ℎ𝑒𝑟𝑒 𝑆 =  { A, C}. 

Theorem. 3.2. If D is a CNMD set of 𝐺𝐶𝑁, so 𝑉 − 𝒟 is not always CNMD set of 𝐺𝐶𝑁. 

Proof: Assume that 𝑢 ∈ (𝐺CN) and D be the CNMD set of 𝐺𝐶𝑁 

Case 1 If u have less than two neighbors in 𝐺CN, u must belong to every MCNMD set in 𝐺𝐶𝑁, 

Consequently, 𝑉 − 𝒟 is not CNMD because it either has one neighbor who is u or none at all. 

group of 𝐺𝐶𝑁. 

Case 2: Assume that each 𝑥 ∈ 𝐷 is dominated by not less than two vertices 𝑦, 𝑧 ∈ 𝑉 − 𝐷. In 

this situation, each 𝑥 ∈ 𝐷 has at least couple of neighbors in 𝑉 − 𝒟. If D is a CNMD set of 

𝐺𝐶𝑁, the outcome is attained by cases 1 and 2. Therefore, 𝑉 − 𝒟 not necessary be a CNMD set 

of 𝐺𝐶𝑁. 

Example: In the figure (5), D= {A, D, E, C} is MCNMD set but V-D = {B, F} is not CNMD 

set 

Proposition 3.7. For any co-neutrosophic 𝐺𝐶𝑁= (A, B), 𝛾𝐶𝑁𝑀𝐷 (𝐺𝐶𝑁) +𝛾𝐶𝑁𝑀𝐷 (𝐺𝐶𝑁̅̅ ̅̅ ̅) ≤ 2 𝑂𝑁  

𝛾𝐶𝑁𝑀𝐷 (𝐺𝐶𝑁̅̅ ̅̅ ̅ ) is CNMD number of complements 𝐺𝐶𝑁 . 

Proof: Since both of 𝐺𝐶𝑁 and 𝐺𝐶𝑁̅̅ ̅̅ ̅ are co-neutrosophic graphs then by theorem3.1 

𝛾 𝐶𝑁𝑀𝐷(GCN)  < 𝑂𝑁 and 𝛾 𝐶𝑁𝑀𝐷(𝐺𝐶𝑁̅̅ ̅̅ ̅̅ )  < 𝑂𝑁 then 𝛾 𝐶𝑁𝑀𝐷(𝐺𝐶𝑁)+ 𝛾 𝐶𝑁𝑀𝐷(𝐺𝐶𝑁̅̅ ̅̅ ̅)  < 2𝑂𝑁□ 
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Theorem 3.3. Let 𝐺𝐶𝑁 be co-neutrosophic graph, D⊂ 𝑉(𝐺𝐶𝑁 ) is a CNMD set of 𝐺𝐶𝑁 = (A, 

B) if and only if D be a multi-dominating (MD) set of 𝐺𝐶𝑁
∗  and for e=xy is an effective edge in 

E. 

Proof: Let 𝐺𝐶𝑁 = (A, B) be co-neutrosophic graph, and 𝒟 is CNMD set of 𝐺𝐶𝑁, then 𝑥 ∈ 𝑉 − 

𝒟 has no less than couple of neighbors in D for each vertex, I. e. there exist 𝑦1, 𝑦2 ∈ 𝒟 such 

that both of (𝑥, 𝑦1) and (𝑥, 𝑦2) are effective edge and the 𝑥 is adjacent to both of 𝑦1, 𝑦2 ∈ 𝒟, 

which means that D is MD of 𝐺𝐶𝑁
∗ . 

Let 𝒟 be a MD set of 𝐺𝐶𝑁
∗  so ∀ y ∈ 𝑉 − 𝒟 there exist pair of vertices 𝑥1,𝑥2 ∈ 𝒟, such that 

(𝑥1,, 𝑦 ∈ 𝐸 and (𝑥2,, 𝑦) ∈ 𝐸 , since (𝑥1,, 𝑦) 𝑎𝑛𝑑 (𝑥2,, 𝑦) are effective edge by the hypothesis, 

so y adjacent to two vertices in 𝒟 with effective edges. Hence, 𝒟 is CNMD set of 𝐺𝐶𝑁. 

 

Remark. if D be MD set of 𝐺𝐶𝑁
∗  it is not necessary D be CNMD set  

The example below illustrates the remark  

 

Example 3.4. The theorem 3.3 is not always true unless the edges are not effective. Notice the 

co-neutrosophic graph 𝐺𝐶𝑁 in the figure bellow D= {b, c} is  

 
because the edge cd is not effective so that the vertex 𝑐 ∈ 𝑉 − 𝐷 is adjacent to just one vertex 

𝑏 ∈ 𝐷 

Theorem 3.4. Assuming that 𝐺𝐶𝑁 be a unimodal co-neutrosophic graph with no isolated vertex, 

and 𝒟 is a 𝛾𝐶𝑁𝑀- set of𝐺𝐶𝑁 , which it is not independent set (IS), 

 then 𝛾𝐶𝑁 + 𝑡 ≤ 𝛾𝐶𝑁𝑀𝐷,where t =|(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥))|,𝑥 ∈ 𝒟 

Proof: Let 𝒟 be CNMD where |𝒟| = 𝛾𝐶𝑁𝑀 (𝐺𝐶𝑁 ) is not (IS), and 𝑥 ∈ 𝒟 where  

 𝑡 = |(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥))| . We have pair of cases: 

Case1: If (𝑥) ∩ (𝑉 − 𝒟) = ∅, Given that D is not (IS) and 𝐺𝐶𝑁 has no isolates vertex, 

𝑁(𝑥) ∩ 𝒟 ≠ ∅ . Thus 𝒟 −{𝑥} is CND set of 𝐺𝐶𝑁, therefore 𝛾𝐶𝑁≤ | 𝒟 −{𝑥} | = 𝛾𝐶𝑁𝑀 − 𝑡 
Hence, 𝛾𝐶𝑁 + 𝑡 ≤ 𝛾𝐶𝑁𝑀. 

Case 2: If (𝑉 − 𝒟) ∩ (𝑥) ≠ ∅, then ∀𝑦 ∈ (𝑉 − 𝒟) ∩ (𝑥) since 𝒟 is CNMD, ∃ 𝑧 ∈ 𝒟 where (𝑦, 𝑧) 
is an effective edge, because D is CNMD.D is not independent, hence some of D's vertices are 

neighbors of z. thus 𝒟 − {𝑧} is also CND set of 𝐺𝐶𝑁 ,therefore,  
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𝛾𝐶𝑁 ≤ |𝒟 − {𝑧} | = 𝛾𝐶𝑁𝑀 − 𝑡, hence 𝛾𝐶𝑁 + 𝑡 ≤ 𝛾𝐶𝑁𝑀.  

 

Theorem 3.5. Every co-neutrosophic vertex cover set is a CNMD set of 𝐺𝐶𝑁 if 𝐺𝐶𝑁 is any co-

neutrosophic graph where each vertex has no less than pair of neighbors. Further 𝛾𝐶𝑁𝑀 = 𝛼𝑜. 

Proof: Suppose that 𝐴 is a minimum co-neutrosophic vertex covers set of 𝐺𝐶𝑁, and 

 𝑦 ∈ 𝑉(𝐺𝐶𝑁) − 𝐴. 

Obviously, (𝑦) ∈ 𝐴. Since each vertex in 𝐺𝐶𝑁 has more than one neighbor, the vertex 𝑦 has at 

least two neighbors in 𝐴. This implies that 𝐴 is CNMD set of 𝐺𝐶𝑁. Hence, 𝛾𝐶𝑁𝑀= 𝛼0.  

 

Example: Let 𝐺𝐶𝑁 be co-neutrosophic graph as follows:  

the co-neutrosophic vertex cover sets of 𝐺𝐶𝑁 are 𝐶1 = {𝐴, 𝐶, 𝐸}, 𝐶2 = {𝐵,𝐷}  
then co-neutrosophic vertex covering number (𝛼𝑂)=|𝐶2|, but 𝐶2 is also MCNMD set then 

𝛾𝐶𝑁𝑀(𝐺𝐶𝑁) = |𝐶2| 

 
 

Corollary 3.5. Let GCN be co-neutrosophic graph. If 𝛾𝐶𝑁𝑀(𝐺𝐶𝑁) ≠ 𝛼𝑂(𝐺𝐶𝑁) then 𝐺𝐶𝑁 involves 
a vertex has less than two neighbors. 

 

Theorem 3.6. If 𝐺𝐶𝑁= (A, B) is a connected a unimodal co-neutrosophic graph and with 

𝛾𝐶𝑁=𝛾𝐶𝑁𝑀 ,then each vertex has more than one neighbor. 

Proof: let 𝑥 ∈ 𝒟 be a vertex with a single neighbor, where 𝒟 is a 𝑀CNMD set of 𝐺𝐶𝑁 such 

that |𝒟| = 𝛾𝐶𝑁𝑀,if 𝑉 − 𝒟 = ∅ then 𝛾𝐶𝑁 < 𝛾𝐶𝑁𝑀 < 𝑂𝑁 = 𝛾𝐶𝑁𝑀 which is a contradiction, thus 𝑉 − 

𝒟 ≠ ∅. Let x has neighbor y. If y ∈ 𝒟, so 𝒟′ = 𝒟 −{x} is CND set of 𝐺𝐶𝑁 with |𝒟′| = |𝒟 − {x}| 

this leads to 𝛾𝐶𝑁 ≠ 𝛾𝐶𝑁𝑀, a contradiction.  

If y ∈ 𝑉 − 𝒟, since 𝒟 is 𝑀CND set, then ∃ 𝑧 ∈ 𝑁(𝑦) ∩ 𝒟 and 𝑧 ≠ 𝑥, for all vertex in 𝑉 − 𝒟 has 

no less than couple of neighbors in 𝒟, we noticed that 𝐻 = 𝒟 − {𝑧, 𝑥} ∪ {𝑦} is CND set of 
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GCN with |𝐻| = |𝒟 − {𝑧, 𝑥} ∪ {𝑦}| thus 𝛾𝐶𝑁 ≠ 𝛾𝐶𝑁𝑀 which a contradiction. Hence, each 

vertex in 𝐺𝐶𝑁 has no less than two neighbors 

when 𝛾𝐶𝑁 = 𝛾𝐶𝑁𝑀.  

 

Proposition 3.8. Let 𝐺𝐶𝑁= (A, B) be any co-neutrosophic graph with vertices each of them 

has two or more neighbors then 𝛾𝐶𝑁𝑀 + 𝛽𝑜 ≤𝑂𝑁.where |𝑆| =  𝛽𝑜 

Proof: Suppose that 𝑆 is a maximum independent co-neutrosophic set of 𝐺𝐶𝑁. then V- S 

contains all of the neighbors of each vertex of S. Every vertex has two or more neighbors by 

hypothesis; hence V-S must be a CNMD set of 𝐺𝐶𝑁. Thus 𝛾𝐶𝑁𝑀 ≤ | 𝑉 − 𝑆 | = 𝑂𝐶𝑁 − 𝛽𝑜 . 

Hence, 𝛾𝐶𝑁𝑀 + 𝛽𝑜 ≤ 𝑂𝐶𝑁.  

 

Proposition 3.9. If 𝐺𝐶𝑁= (A, B) be a co-neutrosophic graph with S being the only maximal 

independent co-neutrosophic set, then 𝛾𝐶𝑁𝑀 ≤ 𝛽0.Where |𝑆| =  𝛽𝑜 

Proof: assume 𝑆 be a single maximal co-neutrosophic independent set of 𝐺𝐶𝑁, suppose that  

 ∃ 𝑥 ∈ 𝑉 − 𝑆. if 𝑥 has no neighbor then 𝑥 has to be in 𝑆. therefore, 𝑥 is neighbor with only one 

vertex 𝑦 ∈ 𝑆, then 𝑆 − {𝑦} ∪ {𝑥} is the second maximal co-neutrosophic independent set of 

GCN. This results in a conflict with S. Hence, 𝛾𝐶𝑁𝑀 ≤ |𝑆| = 𝛽𝑜 

4.Inverse of (CNMD) in 𝑮𝑪𝑵 

Definition 4.1. Let 𝐺𝐶𝑁 be any co-neutrosophic graph without isolated vertex and 𝐷𝑀𝐶𝑁 be 

minimum co-neutrosophic multi-domination of 𝐺𝐶𝑁 if 𝑉 − 𝐷𝑀𝐶𝑁 contains a (CNMD) 𝐷𝑀𝐶𝑁
−1  

then 𝐷𝑀𝐶𝑁
−1  is called invers (CNMD)s of 𝐺𝐶𝑁 with respect to 𝐷𝑀𝐶𝑁 

Remark4.1. An inverse (CNMD) 𝐷𝑀𝐶𝑁
−1  𝑜𝑓 𝐺𝐶𝑁is said to be a minimal if no proper subset of 

𝐷𝑀𝐶𝑁
−1  is inverse CNMD of 𝐺𝐶𝑁 

Definition 4.2. The minimum set among all inverse CNMD sets is said to be a minimum 

inverse CNMD of 𝐺𝐶𝑁,and 𝛾𝐶𝑁𝑀
−1  of 𝐺𝐶𝑁 is the term used to describe the maximum 

neutrosophic cardinality taken over all minimum inverse CNMD sets of 𝐺𝐶𝑁. and denoted by 

𝛾𝐶𝑁𝑀
−1 (𝐺𝐶𝑁) or simply 𝛾𝐶𝑁𝑀

−1  

Remark 4.2. A minimum inverse CNMD of 𝐺𝐶𝑁 has a maximum neutrosophic cardinality is 

called 𝛾𝑀𝐶𝑁𝑀
−1 − 𝑠𝑒𝑡 of 𝐺𝐶𝑁 

 

Example 4.1. Consider a co-neutrosophic graph 𝐺𝐶𝑁, which is given in figure 8 
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MCNMD sets of 𝐺𝐶𝑁 are 𝐷𝐶𝑁𝑀(1) = {𝐵, 𝐺, 𝐶, 𝐹}, 𝐷𝐶𝑁𝑀(2) = {𝐴,𝐻, 𝐷, 𝐸} 

𝛾𝐶𝑁𝑀 = max {‖𝐷𝐶𝑁𝑀(1)‖, ‖𝐷𝐶𝑁𝑀(1)‖}=max {∑ |𝑣|𝑣∈𝐷𝐶𝑁𝑀(1) , ∑ |𝑢|𝑢∈𝐷𝐶𝑁𝑀(2) } =

max{1.7,1.9} = 1.9 

𝐷𝐶𝑁𝑀(1) is inverse CNMD set 𝛾𝐶𝑁𝑀
−1 = 1.7 

 

Theorem 4.1. 

Let 𝐺𝐶𝑁 be any co-neutrosophic graph, then 𝐷𝑀𝐶𝑁
−1  the CNMD inverse of 𝐺𝐶𝑁 is aminimal if 

and only if for each vertex 𝑥 ∈ 𝐷𝑀𝐶𝑁
−1  either 

1) |𝑁(𝑥) ∩ 𝐷𝑀𝐶𝑁
−1 | < 2 𝑜𝑟 

2)  ∃ 𝑦 ∈ 𝑉 − 𝐷𝑀𝐶𝑁
−1  where {𝑁(𝑦) ∩ 𝐷𝑀𝐶𝑁

−1 } = 2 𝑎𝑛𝑑 𝑦 ∈ 𝑁(𝑥). 

Proof: Let 𝐷𝑀𝐶𝑁
−1  be 𝛾𝐶𝑁𝑀

−1 − 𝑠𝑒𝑡 of 𝐺𝐶𝑁, Suppose the aforementioned condition is not 

satisfied. ∃ 𝑥 ∈ 𝐷𝑀𝐶𝑁
−1  where |𝑁(𝑥) ∩ 𝐷𝑀𝐶𝑁

−1 | ≥ 2 and for each vertex 𝑦 ∈ 𝑉 − 𝐷𝑀𝐶𝑁
−1  

either |𝑁(𝑦) ∩ 𝐷𝑀𝐶𝑁
−1 | > 2 𝑜𝑟 𝑦 ∉ 𝑁(𝑥) 

Consider 𝐷𝑀𝐶𝑁
′ = 𝐷𝑀𝐶𝑁

−1 − {𝑥},since 𝑥 has at least two neighbors in 𝐷𝑀𝐶𝑁
−1  thus 𝐷𝑀𝐶𝑁

′  is 

inverse CNMD of 𝐺𝐶𝑁, an opposition to minimalism 𝐷𝑀𝐶𝑁
−1 . 

Conversely, if 𝐷𝑀𝐶𝑁
−1  is an inverse CNMD of 𝐺𝐶𝑁 that satisfies (1) and (2), then consider 

𝐷𝑀𝐶𝑁
′ = 𝐷𝑀𝐶𝑁

−1 − {𝑥} for any vertex 𝑥 ∈ 𝐷𝑀𝐶𝑁
−1  . 𝐷𝑀𝐶𝑁

′  is not inverse CNMD if condition (1) 

holds, and it is not inverse CNMD if condition (2) holds if 𝐷𝑀𝐶𝑁
′  has one neighbor named y. 

Hence 𝐷𝑀𝐶𝑁
−1  is minimal inverse CNMD set of 𝐺𝐶𝑁. 

Proposition 4.1. If 𝐺𝐶𝑁 be any co-neutrosophic graphs contains at least one vertex has no 

more than one neighbor then inverse CNMD not exist 
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Proof: Consider 𝐺𝐶𝑁 be any co-neutrosophic graph and 𝑥 ∈ 𝑉(𝐺𝐶𝑁) has at most one 

neighbor,i.e. |𝑁(𝑋)| ≤ 1. Then,𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 every MCNMD of 𝐺𝐶𝑁 i.e. 

𝑥 ∉ 𝑉 − 𝐷𝐶𝑁𝑀,where 𝐷𝐶𝑁𝑀 is MCNMD of 𝐺𝐶𝑁.suppose 𝐷𝐶𝑁𝑀
−1 ⊆ 𝑉 − 𝐷𝐶𝑁𝑀 is inverse 𝐷𝐶𝑁𝑀 

of 𝐺𝐶𝑁 with respect to 𝐷𝐶𝑁𝑀. Since 𝑥 ∈ 𝐶𝑁𝑀𝐷 then 𝐷𝐶𝑁𝑀
−1  must has two neighbor of 𝑥 .this is 

not possible, by |𝑁(𝑥)| ≤ 1.𝐻𝑒𝑛𝑐𝑒 𝐺𝐶𝑁 has no inverse CNMD 

Corollary 4.1. if 𝐺𝐶𝑁 ≅ 𝑃𝑛
𝐶𝑁 or 𝐺𝐶𝑁 ≅strong co-neutrosophic star graph then an inverse 

CNMD set not exist. 

Observation: If there is inverse CNMD of 𝐺𝐶𝑁, then not necessary in general 𝛾𝐶𝑁𝑀 ≥ 𝛾𝐶𝑁𝑀
−1  

i) For any co-neutrosophic graph 𝐺𝐶𝑁 does not contain isolated vertices, every invers 

CNMD is inverse neutrosophic dominating set. 

ii) For any co-neutrosophic graph 𝐺𝐶𝑁 has inverse CNMD then [𝐴(𝑥) + 𝐴(𝑦)] ≤

𝛾𝐶𝑁𝑀
−1 ≤ ∑|𝑢𝑖| where 𝑥, 𝑦 ∈ 𝐷𝐶𝑁𝑀

−1  𝑎𝑛𝑑 𝑢𝑖 ∈ 𝑉 − 𝐷𝐶𝑁𝑀. 

Theorem 4.2. For any co-neutrosophic graph 𝐺𝐶𝑁 has 𝐶𝑁𝑀𝐷−1 then a vertex 𝑥 ∈ 𝑉 −

𝐷𝐶𝑁𝑀 belong to each 𝐶𝑁𝑀𝐷−1 of 𝐺𝐶𝑁 in the event that x has two or three neighbors. 

Proof: Let 𝐷𝐶𝑁𝑀 be a MCNMD and 𝐷𝐶𝑁𝑀
−1  be an inverse CNMD of 𝐺𝐶𝑁. Then, each 

vertex 𝑥 ∈ 𝑉 − 𝐷𝐶𝑁𝑀 has at more than one neighbor in 𝐷𝐶𝑁𝑀 . Then, there exist two 

cases. 

Case(I) Suppose that 𝑥 ∈ 𝑉 − 𝐷𝐶𝑁𝑀 and 𝑥 has exactly couple of neighbors say {𝑦, 𝑧},i.e.  

𝑁(𝑥) = {𝑦, 𝑧}, since 𝐷𝐶𝑁𝑀 is MCNMD of 𝐺𝐶𝑁 then {𝑦, 𝑧} ∈ 𝐷𝐶𝑁𝑀 therefore 𝑁(𝑥) − {𝑦, 𝑧}=∅ 

, so 𝑥 has no other neighbors in V which dominates. Therefore, x needs to dominated by 

itself. As a result, x is contained in every inverse CNMD. 

Case(ii) Suppose that 𝑥 ∈ 𝑉 − 𝐷𝐶𝑁𝑀 has precisely three neighbors in 𝐺𝐶𝑁. Let 𝑦, 𝑧 and 

𝑟 are three neighbors of 𝑥, i.e. 𝑁(𝑥) = {𝑦, 𝑧, 𝑟}, since 𝑥 ∈ 𝑉 − 𝐷𝐶𝑁𝑀 and 𝐷𝐶𝑁𝑀 is 

MCNMD.Then 𝑥 has at least two neighbors in 𝐷𝐶𝑁𝑀, consider 𝑦 and 𝑧 are two neigbors in 

𝐷𝐶𝑁𝑀 𝑜𝑓 𝑥, which dominates 𝑥. Now 𝑁(𝑥) − {𝑦, 𝑧}={𝑟}, i.e. remaining a singular 

neighbor of 𝑥 in 𝑉 − 𝐷𝐶𝑁𝑀 since 𝐷𝐶𝑁𝑀
−1 ⊆ 𝑉 − 𝐷𝐶𝑁𝑀.If 𝑥 ∉ 𝐷𝐶𝑁𝑀

−1 , then 𝐷𝐶𝑁𝑀
−1  must have 

at least two neighbors of 𝑥 ,but 𝑥 has only one neighbor in 𝑉 − 𝐷𝐶𝑁𝑀. Therefore ,𝑥 belong 

to every 𝐷𝐶𝑁𝑀
−1  of 𝐺𝐶𝑁. 

Proposition 4.2. Let 𝐺𝐶𝑁 = (𝐴, 𝐵) be any connected co-neutrosophic graph on 

 𝐺𝐶𝑁
∗ = (𝑉, 𝐸); then |𝑉| > 3 if 𝐷𝐶𝑁𝑀

−1  exists,  
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Proof: Since is connected and 𝐷𝐶𝑁𝑀
−1  exists by hypothesis, then 

1) ∃ 𝑥, 𝑦 ∈ 𝐷𝐶𝑁𝑀
−1  𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑥, 𝑦 ∈ 𝑉 − 𝐷𝑀𝐶𝑁𝑀 

2) 𝐺𝐶𝑁 ℎ𝑎𝑠 𝐷𝑀𝐶𝑁𝑀 then ∃ 𝑧, 𝑓 ∈ 𝐷𝐶𝑁𝑀
−1  𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑧, 𝑓 ∈ 𝑉 

From (1) and (2) 𝑥, 𝑦, 𝑧, 𝑓 ∈ 𝑉 − 𝐷𝑀𝐶𝑁𝑀 ∪ 𝐷𝑀𝐶𝑁𝑀 = 𝑉 

Which is the proof. 

Proposition 4.3. 𝐺𝐶𝑁 = (𝐴, 𝐵) be co-neutrosophic graph on 

 𝐺𝐶𝑁
∗ = (𝑉, 𝐸)if there is inverse CNMD of 𝐺𝐶𝑁 then 𝛾𝐶𝑁𝑀 + 𝛾𝐶𝑁𝑀

−1 ≤ |𝑉|  

Proof: Let 𝐷𝐶𝑁𝑀 and 𝐷𝐶𝑁𝑀
−1  be a MCNMD and invers CNMD of 𝐺𝐶𝑁 respectively.  

then either 𝐺𝐶𝑁 be connected or not 

1) For every element 𝑥 ∈ 𝐷𝐶𝑁𝑀  ⇒ 𝑥𝜖𝑉 𝑖. 𝑒. 𝐷𝐶𝑁𝑀 ⊂ 𝑉 

2) For every element 𝑦 ∈ 𝐷𝐶𝑁𝑀
−1  ⇒ 𝑦𝜖𝑉 − 𝐷𝐶𝑁𝑀 𝑖. 𝑒. 𝐷𝐶𝑁𝑀 ⊂ 𝑉 − 𝐷𝐶𝑁𝑀 ⊂ 𝑉 

from (1) and (2) 𝐷𝐶𝑁𝑀 ∪ 𝐷𝐶𝑁𝑀
−1 ⊂ 𝑉 

then |𝐷𝐶𝑁𝑀|+|𝐷𝐶𝑁𝑀
−1 |<|𝑉|  ⇒  𝛾𝐶𝑁𝑀 + 𝛾𝐶𝑁𝑀

−1 ≤ |𝑉|. 

Proposition 4.4. Let 𝐺𝐶𝑁 ≅ 𝑘𝑛
𝐶𝑁 is complete co-neutrosophic graph with n≥ 4 vertices,  

 𝛾𝐶𝑁𝑀
−1 (𝑘𝑛

𝐶𝑁) = max[𝜑(𝑥) + 𝜑(𝑦)] , 𝑥, 𝑦 ∈ 𝑉(𝑘𝑛
𝐶𝑁) − 𝐶𝑁𝑀𝐷. 

Proof: Given 𝐺𝐶𝑁 ≅ 𝑘𝑛
𝐶𝑁 and 𝐷𝐶𝑁𝑀 be a MCNMD of 𝑘𝑛

𝐶𝑁. Then, 𝐶𝑁𝑀𝐷 contain two 

vertices with maximum neutrosophic value by preposition (4.2.27) thus < 𝑉 − 𝐷𝐶𝑁𝑀 > is 

𝑘𝑛−2
𝐶𝑁 . Then, the inverse CNMD OF 𝑘𝑛

𝐶𝑁 is MCNMD OF 𝑘𝑛−2
𝐶𝑁 .Hence 

 𝛾𝐶𝑁𝑀
−1 (𝑘𝑛

𝐶𝑁) = 𝛾𝐶𝑁𝑀(𝑘𝑛−2
𝐶𝑁 ) = max[𝜑(𝑥) + 𝜑(𝑦)] 𝑥, 𝑦 ∈ 𝑉(𝑘𝑛

𝐶𝑁) − 𝐶𝑁𝑀𝐷 , the proof is 

complete. 

Proposition 4.5. Let 𝐺𝐶𝑁 ≅ 𝐶𝑛
𝐶𝑁 with 𝑛 ≥ 2𝑘 vertices, k≥ 2 and each edge is an effective 

then  

𝛾𝐶𝑁𝑀
−1 = min {∑ 𝐴(𝑥𝑗+2𝑖); 𝑗 = 1,2

𝑛

2
−1

𝑖=0
},where 𝐴(𝑥𝑗+2𝑖) = (𝑇𝐴(𝑥𝑗+2𝑖), 𝐼𝐴(𝑥𝑗+2𝑖), 𝐹𝐴(𝑥𝑗+2𝑖)) 

Proof: Consider 𝐶𝑛
𝐶𝑁 = {𝑥1, 𝑥2, … , 𝑥𝑛} be cycle with even vertices by Proposition 3.6, 

there are two MCNMD sets {𝐷2𝐴(1), 𝐷2𝐴(2)} of 𝐶𝑛
𝐶𝑁 and one of them has maximum 

neutrosophic cardinality is CNMD number of 𝐶𝑛
𝐶𝑁 , 

i.e., if ‖𝐷2𝐴(1)‖ > ‖𝐷2𝐴(2)‖ , then 𝐷2𝐴(2) is inverse CNMD of 𝐶𝑛
𝐶𝑁 and 
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 𝛾𝐶𝑁𝑀
−1 (𝑘𝑛

𝐶𝑁) = ‖𝐷2𝐴(2)‖ 

similarly, if ‖𝐷2𝐴(2)‖ > ‖𝐷2𝐴(1)‖ then 𝛾𝐶𝑁𝑀
−1 (𝑘𝑛

𝐶𝑁) = ‖𝐷2𝐴(1)‖ 

proposition 4.6. If 𝐺𝐶𝑁 ≅ 𝑘𝑛,𝑚
𝐶𝑁 = (𝐴, 𝐵) is a complete co-neutrosophic graph on bipartite 

underline graph 𝐺𝐶𝑁
∗ = 𝐾𝑛×𝑚 = (𝑉, 𝐸) then 

𝛾𝐶𝑁𝑀
−1 (𝑘𝑛,𝑚

𝐶𝑁 )

=

{
 
 

 
 

𝑒𝑖𝑡ℎ𝑒𝑟 𝑆𝑐(𝑋)𝑜𝑟 𝑆𝑐(𝑦) 𝑖𝑓 2 ≤ 𝑛,𝑚 ≤ 3 𝑎𝑛𝑑 𝑚 ≠ 𝑛

𝑀𝑖𝑛{𝑆𝑐(𝑋), 𝑆𝑐(𝑌)} 𝑛 = 𝑚 ≤ 3
 

𝑀𝑖𝑛{𝑆𝑐(𝑋), 𝑆𝑐(𝑌), 𝑆𝑐(𝑥𝑖 + 𝑥𝑗 + 𝑦𝑖 + 𝑦𝑗)}

𝑥𝑖 , 𝑥𝐽 ∈ 𝑋 − 𝐷𝐶𝑁𝑀 𝑎𝑛𝑑 𝑦𝑖 , 𝑦𝐽 ∈ 𝑌 − 𝐷𝐶𝑁𝑀

𝑚,𝑛 > 3

}
 
 

 
 

 

Where Score(X) is Sc(X)=
1+∑ 𝑇𝐴(𝑣𝑖)+∑ 𝐼𝐴(𝑣𝑖)−𝑣𝑖 ∈𝑋

∑ 𝐹𝐴(𝑣𝑖)𝑣𝑖 ∈𝑋𝑣𝑖 ∈𝑋

3
 and 

 Sc(Y)=
1+∑ 𝑇𝐴(𝑣𝑗)+∑ 𝐼𝐴(𝑣𝑗)−𝑣𝑗 ∈𝑌

∑ 𝐹𝐴(𝑣𝑗)𝑣𝑗 ∈𝑌𝑣𝑗 ∈𝑌

3
 

Proof: Since 𝐺𝐶𝑁
∗  is bipartite complete graph then 𝑉 =  𝑋 ∪ 𝑌,𝑤ℎ𝑒𝑟𝑒 𝑋, 𝑌 are sets of 

independent(non-adjacent) vertices, such that for each 𝑥 ∈ 𝑋 ∃ 𝑒𝑑𝑔𝑒𝑠 𝑒𝑗 = 𝑥𝑦𝑗 , 𝑦𝑗 ∈

𝑌, 𝐽 = 1,2,…𝑚 

 Since 𝐺𝐶𝑁 is complete co-neutrosophic graph over 𝐺𝐶𝑁
∗  then for each edge 𝑒 ∈

𝐸 𝑖𝑠 𝑎𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑑𝑔𝑒 

now let 𝐷𝐶𝑁𝑀 is MCNMD of 𝑘𝑛,𝑚
𝐶𝑁  there three cases: 

Case 1: 𝑖𝑓𝑛 = 2 𝑎𝑛𝑑 = 3, then obviously X is 𝐷𝐶𝑁𝑀 and Y is 𝐷𝐶𝑁𝑀
−1  ⇒ 𝛾𝐶𝑁𝑀

−1 (𝑘𝑛,𝑚
𝐶𝑁 ) =

𝑆𝑐(𝑌), in the same way we can proof that 𝛾𝐶𝑁𝑀
−1 (𝑘𝑛,𝑚

𝐶𝑁 ) = 𝑆𝑐(𝑋) 𝑖𝑓 𝑚 = 2. 

If n=2 then m≥ 3 it is obvouisly X is MCNMD of 𝑘𝑛,𝑚
𝐶𝑁  because there exist not any 

subset of Y can be dominating set due to the independently of Y which means that 

Y is 𝐷𝐶𝑁𝑀
−1  and 𝛾𝐶𝑁𝑀

−1 = 𝑆𝑐(𝑌) .Similarly in case of m=2 and n=3 

Case 2: 𝐼𝑓𝑛 = 𝑚 ≤ 3, then if 𝑛 = 𝑚 = 2 then both of X and Y can be 𝐷𝐶𝑁𝑀 and 

conversely both of X and Y can be 𝐷𝐶𝑁𝑀
−1  ⇒  𝛾𝐶𝑁𝑀

−1 (𝑘𝑛,𝑚
𝐶𝑁 ) = min ( 𝑆𝑐(𝑥), 𝑆𝑐(𝑌) ).  

The same condition satisfies if m=n=3 

Case 2: 𝐼𝑓𝑛,𝑚 > 3, then 𝐷𝐶𝑁𝑀 contain at least four vertices in three different situations 
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i) 𝐷𝐶𝑁𝑀 contain two vertices from each of X and Y and conversely 𝐷𝐶𝑁𝑀
−1  also contains 

two vertices from each of X and Y 

ii) X contain only four vertices and equal to 𝐷𝐶𝑁𝑀 then Y is equal to 𝐷𝐶𝑁𝑀
−1  

iii) Y contain only four vertices equal to 𝐷𝐶𝑁𝑀 then X is equal to 𝐷𝐶𝑁𝑀
−1  

iv) Both of X and Y contains four vertices then one of them is equal to 𝐷𝐶𝑁𝑀 and the 

other is equal to 𝐷𝐶𝑁𝑀
−1  and vice versa. 

i.e. 

 
𝑀𝑖𝑛{𝑆𝑐(𝑋), 𝑆𝑐(𝑌), 𝑆𝑐(𝑥𝑖 + 𝑥𝑗 + 𝑦𝑖 + 𝑦𝑗)}

𝑥𝑖 , 𝑥𝐽 ∈ 𝑋 − 𝐷𝐶𝑁𝑀 𝑎𝑛𝑑 𝑦𝑖 , 𝑦𝐽 ∈ 𝑌 − 𝐷𝐶𝑁𝑀
 

that is the proof. 

Proposition 4.7. Every invers CNMD of 𝐺𝐶𝑁 is invers multi-dominating set of crisp graphs 

𝐺𝐶𝑁
∗  

Proof: Let 𝐷𝐶𝑁𝑀
−1  be an inverse CNMD of 𝐺𝐶𝑁 , then ∀ 𝑦 ∈ 𝑉 − 𝐷𝐶𝑁𝑀

−1  has two or more 

neighbors in 𝐷𝐶𝑁𝑀
−1  ,i.e. there exist 𝑥1, 𝑥2 ∈ 𝐷𝐶𝑁𝑀

−1  such that 𝜔(𝑦, 𝑥1) = 𝐴(𝑥1)⋁𝐴(𝑦) > 0 

and 𝜔(𝑦, 𝑥2) = 𝐴(𝑥2)⋁𝐴(𝑦) > 0 it implies that (𝑦, 𝑥1) and (𝑦, 𝑥2) ∈ 𝜔
∗. 

Therefore, 𝐷𝐶𝑁𝑀
−1  contains two neighbors of y. Hence 𝐷𝐶𝑁𝑀

−1  is inverse multi-dominating 

set of 𝐺𝐶𝑁
∗ . 

Remark. The converse of preposition (4.7) is not always true. It is illustrated in the 

example that follows.  

Example. Given 𝐺𝐶𝑁 and 𝐺𝐶𝑁
∗  in figure 9 (a), (b) respectively, obviously {E, C} is inverse 

multi-dominating set of 𝐺𝐶𝑁
∗  but not inverse in 𝐺𝐶𝑁.  
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Proposition 4.8. Let 𝐺𝐶𝑁 be co-neutrosophic graph.Inverse multi dominating set of 𝐺𝐶𝑁
∗  is 

inverse 𝐶𝑁𝑀𝐷−1 of 𝐺𝐶𝑁 If 𝑒 = 𝑥𝑦 is an effective edge ∀ (𝑥, 𝑦) ∈ 𝐸(𝐺𝐶𝑁).  

Proof: Let 𝐷𝑀
−1 be a 𝛾𝑀

−1 set of 𝐺𝐶𝑁
∗  . then, ∀ 𝑦 ∈ 𝑉 − 𝐷𝑀

−1 ∃ 𝑥1, 𝑥2 ∈ 𝐷𝑀
−1 such that 

(𝑦, 𝑥1), (𝑦, 𝑥1) ∈ 𝐸.  

Since each edge in 𝐺𝐶𝑁 is effective thus 𝐷𝑀
−1 has two effective neighbors of y. Hence, 𝐷𝑀

−1 

is inverse multi dominating set of  GCN. 

Conclusion. In this paper, the concepts of a (CNMD) set and number in a co-neutrosophic 

graph ( GCN) introduced and examined also invers multi-dominating set𝐷𝐶𝑁𝑀
−1  and its number 

are the purpose of this essay. The co-neutrosophic multi-domination number (CNMD) 

determined for particular classes of (GCN) and deduce restrictions on the accompanying 

(CNMD number). 
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