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Abstract 

Fuzzy sets have been implemented efficiently to manage unclear data, language terms, and 

vague notions. Recently, considerable work has been dedicated to merging neural-network 

techniques with fuzzy sets. In this study, present the structure of a fuzzy feed-forward neural 

network (FFFNN) with a trapezoidal fuzzy set. In addition to handling real input vectors, it is 

also capable of handling fuzzy input vectors. Generally, the output of a FNN is a fuzzy vector. 

According to the extension principle of Zadeh, each unit of a FNN has an input-output 

relationship. To determine the costs associated with fuzzy calculations and fuzzy objectives, 

developed a cost function. At that point, created a learning algorithm from the cost capacity to 

align the four variables of each trapezoidal fuzzy weight. In conclusion, demonstrate our 

methodology using numerical models. 

This paper discusses fuzzy generalized delta rules with distinct back propagation techniques on 

trapezoidal fuzzy sets. The suggested architecture offers a more compelling and distinctive 

feature in that every node can process fuzzy sets or verbal terms, maintaining the simplicity of 

the back propagation algorithm. As a result, the resulting architecture can deal with issues in 

which input parameters and desired outcomes are expressed verbally. Furthermore, this 

methodology functions at a higher level of abstraction of data by operating at the verbal level 
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rather than the numerical level. Our goal is to realize monitored learning in this type of 

supervised neural network, and the effort is based on a standard back propagation algorithm.  

 

Keywords: Neural networks, learning algorithm, back-propagation algorithm, fuzzy sets. 

 استعمال الشبكة العصبية الضبابية ذات التغذية الأمامية للمعالجة اللغوية

 2وسوزان صابر حيدر 1راهيعبد الرحيم خلف 

 كلية دجلة الجامعة  1
 جامعة السليمانية   -كلية الادارة والاقتصاد  –قسم الاحصاء والمعلوماتية  2

 الخلاصة

ضبابية بنجاح من أجل التعامل مع البيانات غير الدقيقة أو المصطلحات اللغوية أو المفاهيم المجموعات التم استخدام لقد 

 اتوالمجموعغير الواضحة. في الآونة الأخيرة، تم بذل جهد كبير في اتجاه الجمع بين الشبكة العصبية الاصطناعية 

ف، يمكن ذية الأمامية مع مجموعة ضبابية شبه منحرقترح بنية الشبكة العصبية الضبابية ذات التغأالضبابية. في هذا البحث، 

لحالتين، الى متجه المدخلات الحقيقية. في كلتا ا بالإضافةللشبكة العصبية المقترحة أن تتعامل مع متجهات الإدخال الضبابية 

ة من ل وحدتكون النواتج من الشبكة العصبية الضبابية هي مخرجات غامضة. يتم تحديد علاقة المدخلات والمخرجات لك

( h -cut. بعد ذلك نحدد دالة التكلفة لمجموعات المستويات )Zadehالشبكة العصبية الضبابية من خلال مبدأ تمديد 

شبه  معلمات لكل وزن ضبابي أربعللمخرجات الغامضة والأهداف الغامضة ثم نشتق خوارزمية تعلم من دالة التكلفة لتعديل 

م النظر في مجموعات ضبابية شبه منحرفة، وتمت مناقشة قاعدة دلتا المعممة ت ددية.نوضح نهجنا بأمثلة ع أخيرًامنحرف. 

الضبابية مع خوارزميات الانتشار العكسي المختلفة. الخاصية الأكثر إثارة للاهتمام والمميزة للبنية المقترحة هي قدرة كل 

طة خوارزمية الانتشار العكسي. وبالتالي، عقدة على معالجة مجموعات ضبابية أو مصطلحات لغوية، مع الحفاظ على بسا

فإن البنية الناتجة قادرة على التعامل مع المشكلات التي يتم فيها وصف معلمات الإدخال والأهداف المرغوبة بمصطلحات 

ستوى ملغوية. تتميز هذه المنهجية بميزة أخرى مثيرة للاهتمام تتمثل في قدرتها على العمل على المستوى اللغوي بدلاً من ال

 العددي، أي أنها يمكن أن تعمل على مستوى أعلى من تجريد البيانات. هدفنا هو تحقيق عملية التعلم تحت الإشراف

(supervised) على خوارزمية الانتشار العكسي التقليدية. معتمدا في هذا النوع من الشبكات العصبية 

 ارزمية الانتشار العكسي، المجموعات الضبابية.الشبكات العصبية، خوارزمية التعلم، خو :الكلمات المفتاحية
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Introduction  

The definition of a FNN is almost the same as that of a back-propagation (BP) network. The 

distinction lies in using fuzzy figures instead of actual numbers and broadened operations rather 

than traditional operations. The objective of this connection is to blend the advantages of both 

areas to process inaccurate or hazy data [4]. 

Replacing FNNs with crisp networks has the following benefits: 

• Data with uncertainty can be handled with fuzziness. As a result, it is possible to approximate 

a wider range of functions. 

• Fuzzy input data can be considered as an extension of crisp input data, so a few training data 

can cover the entire input range. There are several points that can be taken into consideration 

in order to reduce the risk of overtraining that is always present when using the conventional 

back propagation learning law. 

• Taking into account the input range it allows us to gain insight into how the network reacts to 

unfamiliar inputs. 

• It can be viewed as a form of "relaxation" of the error surface due to the vagueness of the 

weights. Back-propagation learning laws may become trapped in local minimal when this 

impact is utilized. 

There are, however, some disadvantages to using fuzzy neural systems. A proportional back-

propagation net has a much lower computational cost than a FNN (storing a trapezoidal fuzzy 

number as of now requires four genuine values). 

 

A general Architecture of FNNS 

The primary goal of this study is to devise a standard structure for FNNs along with a suitable 

learning method where every component can manage fuzzy sets and verbal expressions. 

Simultaneously, the back-propagation algorithm's straight forwardness, efficacy, and features 
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were safeguarded [2]. The basic architecture used is the feed-forward neural network, with 

layers (𝑙 = 1,2,3, . . . , 𝐿) as:  

𝑙 = 1:                           input layer with 𝑛𝐼 nodes 

𝑙 = 2,3, . . . , 𝐿 − 1:       hidden layers with 𝑛𝐻  nodes 

𝑙 = 𝐿:                           output layer with  𝑛𝑂 nodes   

An input linguistic term or fuzzy set will be given to the network (input 𝑛𝐼), which will produce 

an 𝑛𝑂 output fuzzy set. An illustration of how each node processes and transforms fuzzy sets is 

shown in figure (2) [6],[8],[14]. 

Augmentation of standard BP networks suggested by D.E. Rumelhart et al. (1986)[12] 

encompassed fuzzified input vectors, objective vectors, connection weights, and offsets (e.g., 

broadened to fuzzy figures). For the fuzzy data, incorporated trapezoidal fuzzy figures. To 

arrive at a definite learning principle, circumscribe fuzzy weights and fuzzy inputs in 

trapezoidal fuzzy figures while allowing fuzzy inputs and objectives to be represented in any 

fuzzy figure [12]. 

Architecture of Trapezoidal FNNs 

This section proposes a FNN with trapezoidal fuzzy figures for its weights, inputs, and outputs. 

This neural network can manage fuzzy and accurate inputs with fuzzy numbers as outcomes. 

Subsequently, a learning technique is derived from a cost function defined for fuzzy outputs 

and goals' level sets (i.e., ℎ − 𝑐𝑢𝑡𝑠). Finally, the proficiency of the proposed FNN for executing 

fuzzy if-then rules was tested through a numerical example. The proposed architecture further 

utilized normalized trapezoidal fuzzy sets (NTFS) as its fundamental element is presented in 

figure (1). Moreover, this option has been settled because of the ease of explaining an NTFS 

and its competence from a computational perspective. As demonstrated in figure (1), the 

membership function of a trapezoidal fuzzy number can be outlined by its four components as 
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follows: Therefore, a trapezoid fuzzy number can be identified by its four components as 

follows: 

 𝐴 = (𝑎, 𝑏, 𝛼, 𝛽) 

where: 

𝝁𝑨(𝒙) =

{
 
 

 
 
𝟎      , 𝒊𝒇 𝒙 ≤ 𝒂 − 𝜶 𝒐𝒓 𝒙 ≥ 𝒃 + 𝜷
𝒙−𝒂+𝜶

𝜶
    ,  𝒊𝒇 𝒂 − 𝜶 < 𝒙 ≤ 𝒂

𝟏       , 𝒊𝒇 𝒂 ≤ 𝒙 ≤ 𝒃
−𝒙+𝒃+𝜷

𝜷
    ,  𝒊𝒇 𝒃 < 𝒙 ≤ 𝒃 + 𝜷 }

 
 

 
 

 ............................................................... (1) 

 

Figure 1: Membership Function of a Trapezoidal Fuzzy Number [2] 

Here are a few specific cases that can be derived easily [2],[5]: 

    𝑎 ≠ 𝑏 , 𝛼 = 𝛽                    Set of fuzzy symmetric trapezoids, 

    𝑎 = 𝑏 , 𝛼 ≠ 0 , 𝛽 ≠ 0       Set of triangular fuzzy points, 

    𝑎 = 𝑏 , 𝛼 = 𝛽 = 0            Sets of real values (crisp), 

    𝑎 ≠ 𝑏 , 𝛼 = 𝛽 = 0            Sets that are crisp (based on intervals). 

Frequently, it will be written simply 𝐴 = (𝐴𝑎, 𝐴𝑏, 𝐴𝛼, 𝐴𝛽) instead of 𝐴 = (𝑎, 𝑏, 𝛼, 𝛽). 

As far as NTFS is concerned, manipulating fuzzy sets is a straight forward process. A positive 

fuzzy set can be summarized as follows: 

 (𝑨𝒂, 𝑨𝒃, 𝑨𝜶, 𝑨𝜷) + (𝑩𝒂, 𝑩𝒃, 𝑩𝜶, 𝑩𝜷) = (𝑨𝒂 +𝑩𝒂, 𝑨𝒃 + 𝑩𝒃, 𝑨𝜶 +𝑩𝜶, 𝑨𝜷 +𝑩𝜷) ........................ (2) 
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and the product of a fuzzy set by a positive constant is given by: 

𝒌 ∗ (𝑨𝒂, 𝑨𝒃, 𝑨𝜶, 𝑨𝜷) = (𝒌 ∗ 𝑨𝒂, 𝒌 ∗ 𝑨𝒃, 𝒌 ∗ 𝑨𝜶, 𝒌 ∗ 𝑨𝜷)  ............................................................. (3) 

A normalized fuzzy set can be approximated as the product of two positive NTFS: 

 (𝑨𝒂, 𝑨𝒃, 𝑨𝜶, 𝑨𝜷) ∗ (𝑩𝒂, 𝑩𝒃, 𝑩𝜶, 𝑩𝜷) ≈ (𝑨𝒂𝑩𝒂, 𝑨𝒃𝑩𝒃, 𝑨𝒂𝑩𝜶 + 𝑨𝜶𝑩𝒂, 𝑨𝒃𝑩𝜷 + 𝑨𝜷𝑩𝒃)  ................ (4) 

Fuzzy sets with negative values increase computation time [1],[3],[9]. Each NTFS component 

represents one of four weights that characterize links between nodes, 

 𝑾𝒊𝒋 = (𝑾𝒊𝒋
𝒂 ,  𝑾𝒊𝒋

𝒃 , 𝑾𝒊𝒋
𝜶 ,  𝑾𝒊𝒋

𝜷
) .................................................................................................. (5) 

A fuzzy network comprises nodes that process and transform fuzzy trapezoidal sets. NTFS are 

received at each node by weights composed of four terms, with the connectivity defined by 

connections between nodes. There are four terms that correspond to different components of 

the NTFS. As shown in figure (2), a single node has the following characteristics. An example 

of how this capability may be used is to produce fuzzy output based on linguistic terms or fuzzy 

sets received by the network [2],[5]. 

 

Figure 2: Fuzzy Neural Node [2] 

As the outputs of connected nodes are added together, a generic node's state is determined 

 𝑶𝒊,𝒍−𝟏 = (𝑶𝒊,𝒍−𝟏
𝒂 ,  𝑶𝒊,𝒍−𝟏

𝒃 ,  𝑶𝒊,𝒍−𝟏
𝜶 ,  𝑶𝒊,𝒍−𝟏

𝜷
)  ........................................................................................ (6) 
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In addition, the weights associated with such connections are important 

 𝑾𝒊𝒋,𝒍 = (𝑾𝒊𝒋,𝒍
𝒂 , 𝑾𝒊𝒋,𝒍

𝒃 ,  𝑾𝒊𝒋,𝒍
𝜶 , 𝑾𝒊𝒋

𝜷
)  .................................................................................................. (7) 

That is  

 𝒏𝒆𝒕𝒋, 𝒍 = ∑ 𝑾𝒊𝒋,𝒍

#(𝒍−𝟏)

𝒊=𝟏

⋅ 𝒚𝒊,𝒍−𝟏

= { ∑ 𝑾𝒊𝒋,𝒍
𝒂

#(𝒍−𝟏)

𝒊=𝟏

⋅ 𝒚𝒊,𝒍−𝟏
𝒂  ,  ∑ 𝑾𝒊𝒋,𝒍

𝒃

#(𝒍−𝟏)

𝒊=𝟏

⋅ 𝒚𝒊,𝒍−𝟏
𝒃  ,  ∑ 𝑾𝒊𝒋,𝒍

𝜶

#(𝒍−𝟏)

𝒊=𝟏

⋅ 𝒚𝒊,𝒍−𝟏
𝜶  ,  ∑ 𝑾𝒊𝒋,𝒍

𝜷

#(𝒍−𝟏)

𝒊=𝟏

⋅ 𝒚𝒊,𝒍−𝟏
𝜷

} 

 = (𝒏𝒆𝒕𝒋, 𝒍
𝒂 ,  𝒏𝒆𝒕𝒋, 𝒍

𝒃 ,  𝒏𝒆𝒕𝒋, 𝒍
𝜶 ,  𝒏𝒆𝒕𝒋, 𝒍

𝜷
)  ................................................................................................ (8) 

 The quadruple,(𝑛𝑒𝑡𝑗, 𝑙
𝑎 ,  𝑛𝑒𝑡𝑗, 𝑙

𝑏 ,  𝑛𝑒𝑡𝑗, 𝑙
𝛼 ,  𝑛𝑒𝑡𝑗, 𝑙

𝛽
), Trapezoidal fuzzy sets must fulfill the 

following constraints to be meaningful: 

 𝒏𝒆𝒕𝒋, 𝒍
𝒂 ≤ 𝒏𝒆𝒕𝒋, 𝒍

𝒃 ,   𝒏𝒆𝒕𝒋, 𝒍
𝜶 ≥ 𝟎,   𝒏𝒆𝒕𝒋, 𝒍

𝜷
≥ 𝟎  .............................................................................. (9)  

As far as the permissible weight values are concerned, different constraints can be adopted 

during the initialization and updating phases. 

In the following, six different possible strategies are got: 

 𝑾𝒊𝒋,𝒍
𝒂 ≤ 𝑾𝒊𝒋,𝒍

𝒃 ,  𝑾𝒊𝒋,𝒍
𝜶 ≥ 𝟎,   𝑾𝒊𝒋

𝜷
≥ 𝟎)  ...................................................................................... (10) 

 𝟎 ≤ 𝑾𝒊𝒋,𝒍
𝒂 ≤ 𝑾𝒊𝒋,𝒍

𝒃 ,  𝑾𝒊𝒋,𝒍
𝜶 ≥ 𝟎, 𝑾𝒊𝒋

𝜷
≥ 𝟎) ....................................................................................... (11) 

 𝑾𝒊𝒋,𝒍
𝒂 ≠ 𝑾𝒊𝒋,𝒍

𝒃 ≠ 𝑾𝒊𝒋,𝒍
𝜶 = 𝑾𝒊𝒋

𝜷
 ......................................................................................................... (12) 

 𝑾𝒊𝒋,𝒍
𝒂 = 𝑾𝒊𝒋,𝒍

𝒃  ,  𝑾𝒊𝒋,𝒍
𝜶 = 𝑾𝒊𝒋

𝜷
 ....................................................................................................... (13) 

 𝑾𝒊𝒋,𝒍
𝒂 = 𝑾𝒊𝒋,𝒍

𝜶  ,  𝑾𝒊𝒋,𝒍
𝒃 = 𝑾𝒊𝒋

𝜷
 ....................................................................................................... (14) 
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 𝑾𝒊𝒋,𝒍
𝒂 = 𝑾𝒊𝒋,𝒍

𝒃 = 𝑾𝒊𝒋,𝒍
𝜶 = 𝑾𝒊𝒋

𝜷
  ........................................................................................................ (15) 

Determining the right weighting strategy for a neural network can be a challenge. One option 

is to use eq. (10), a simple way to satisfy eq. (9). All positive weights are provided by eq. (11) 

which can limit the capacity of the network. Alternatively, all four weights can be completely 

independent eq. (12), equal eq. (15), or somewhere between eq. (13) and eq. (14). With the last 

option eq. (12), explicit constraints are not imposed, allowing the network to learn eq. (9) with 

the correct datasets during the training phase. Neural networks can benefit from using this 

choice because it simplifies the process and optimizes performance [2], [7], [9], [12]. 

To standardize the process, sigmoidal activation functions used to create normalized fuzzy sets 

from fuzzy trapezoidal sets. In addition to producing a homogeneous environment, this 

nonlinear transformation has other advantages. The function adjusts the fuzzy set values, 

allowing for more precise output. A sigmoidal activation function is a powerful tool that can 

modify fuzzy set values to produce a more accurate data representation. This type of 

transformation is advantageous in applications where precise output is required. The output of 

the fuzzy set can be precisely calibrated and controlled by utilizing the sigmoidal activation 

function. Overall, using the sigmoidal activation function on fuzzy trapezoidal sets effectively 

produces normalized fuzzy sets. This nonlinear transformation is advantageous because it 

produces a homogeneous environment, allowing for a more precise: 

 𝑶 = 𝒇(𝒏𝒆𝒕) = 𝒇(𝒏𝒆𝒕𝒂,  𝒏𝒆𝒕𝒃,  𝒏𝒆𝒕𝜶,  𝒏𝒆𝒕𝜷)  .............................................................................. (16) 

As depicted in figure (3), a trapezoidal fuzzy set will approximate this value through linear 

interpolation 𝑂 = (𝑂𝑎, 𝑂𝑏,  𝑂𝛼, 𝑂𝛽). The membership function of whose members is as 

follows: 

 µ(𝑶) =

{
 
 

 
 
𝟎     , 𝒊𝒇 𝑶 < 𝒇(𝒏𝒂 − 𝒏𝜶) 𝒐𝒓 𝑶 ≥ 𝒇(𝒏𝒃 − 𝒏𝜷)
𝑶−𝒇(𝒏𝒂−𝒏𝜶)

𝒇(𝒏𝒂)−𝒇(𝒏𝒂−𝒏𝜶)
     ,  𝒊𝒇 𝒇(𝒏𝒂 − 𝒏𝜶) ≤ 𝑶 ≤ 𝒇(𝒏𝒂)

𝟏    , 𝒊𝒇 𝒇(𝒏𝒂) ≤ 𝑶 ≤ 𝒇(𝒏𝒃)

𝒇(𝒏𝒃−𝒏𝜷)−𝑶

𝒇(𝒏𝒃−𝒏𝜷)−𝒇(𝒏𝒃)
     ,  𝒊𝒇 𝒇(𝒏𝒃) ≤ 𝑶 ≤ 𝒇(𝒏𝒃 − 𝒏𝜷)

}
 
 

 
 

  .......................................... (17) 
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that is 

 𝑶𝒋,𝒍 = 𝒇(𝒏𝒆𝒕𝒋,𝒍
𝒂 ,  𝒏𝒆𝒕𝒋,𝒍

𝒃 ,  𝒏𝒆𝒕𝒋,𝒍
𝜶 ,  𝒏𝒆𝒕𝒋,𝒍

𝜷
) 

        ≅ {𝒇(𝒏𝒆𝒕𝒋,𝒍
𝒂 ),  𝒇(𝒏𝒆𝒕𝒋,𝒍

𝒃 ),  𝒇(𝒏𝒆𝒕𝒋,𝒍
𝒂 ) − 𝒇(𝒏𝒆𝒕𝒋,𝒍

𝒂 − 𝒏𝒆𝒕𝒋,𝒍
𝜶 ), 𝒇(𝒏𝒆𝒕𝒋,𝒍

𝒃 + 𝒏𝒆𝒕𝒋,𝒍
𝜷
) − 𝒇(𝒏𝒆𝒕𝒋,𝒍

𝒃 )} 

              = {𝑶𝒋,𝒍
𝒂 ,  𝑶𝒋,𝒍

𝒃 , 𝑶𝒋,𝒍
𝜶 , 𝑶𝒋,𝒍

𝜷
}   .................................................................................................. (18) 

 

Figure 3: The transformation produced by the NTFS activation function [2]. 

When calculating h-level sets of fuzzy outputs from fuzzy inputs, fuzzy weights, and fuzzy 

biases, it is essential to restrict the fuzzy weights and fuzzy biases to trapezoidal fuzzy numbers. 

This enables the derivation of the crisp learning rule in the following section. However, any 

fuzzy number can be used for both fuzzy and fuzzy inputs. The input-output relation of each 

unit for h-level sets can be derived using this method. Thus, crisp learning rules can be 

generated, which is highly beneficial for a variety of applications: 

Input units: 

 [𝑶𝒑𝒊]𝒉 = [[𝑶𝒑𝒊]𝒉
𝑳 , [𝑶𝒑𝒊]𝒉

𝑼] = [[𝑿𝒑𝒊]𝒉
𝑳 , [𝑿𝒑𝒊]𝒉

𝑼] ............................................................................. (19) 

where  

 [[𝑿𝒑𝒊]𝒉
𝑳 , [𝑿𝒑𝒊]𝒉

𝑼] = [𝑿𝒑𝒊
𝒂 − (𝟏 − 𝒉)𝑿𝒑𝒊

𝜶  , 𝑿𝒑𝒊
𝒃 + (𝟏 − 𝒉)𝑿𝒑𝒊

𝜷
]  ...................................................... (20) 

Hidden units: 

 [𝑶𝒑𝒋]𝒉 = [[𝑶𝒑𝒋]𝒉
𝑳 , [𝑶𝒑𝒋]𝒉

𝑼 = [𝒇([𝑵𝒆𝒕𝒑𝒋]𝒉
𝑳) , 𝒇([𝑵𝒆𝒕𝒑𝒋]𝒉

𝑼)] ........................................................... (21) 
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 [𝑵𝒆𝒕𝒑𝒋]𝒉
𝑳 = ∑ [𝑾𝒊𝒋]𝒉

𝑳 . [𝑶𝒑𝒊]𝒉
𝑳𝒏𝑰

   𝒊=𝟏

[𝑾𝒊𝒋]𝒉
𝑳≥𝟎

+∑ [𝑾𝒊𝒋]𝒉
𝑳 . [𝑶𝒑𝒊]𝒉

𝑼𝒏𝑰
   𝒊=𝟏

[𝑾𝒊𝒋]𝒉
𝑳<𝟎

+ [𝝑𝒋]𝒉
𝑳  ...................................... (22) 

 [𝑵𝒆𝒕𝒑𝒋]𝒉
𝑼 = ∑ [𝑾𝒊𝒋]𝒉

𝑼. [𝑶𝒑𝒊]𝒉
𝑼𝒏𝑰

   𝒊=𝟏

[𝑾𝒊𝒋]𝒉
𝑼≥𝟎

+∑ [𝑾𝒊𝒋]𝒉
𝑼. [𝑶𝒑𝒊]𝒉

𝑳𝒏𝑰
   𝒊=𝟏

[𝑾𝒊𝒋]𝒉
𝑼<𝟎

+ [𝝑𝒋]𝒉
𝑼 ..................................... (23) 

Such that: 

 [[𝑾𝒊𝒋]𝒉
𝑳 , [𝑾𝒊𝒋]𝒉

𝑼] = [𝑾𝒊𝒋
𝒂 − (𝟏 − 𝒉)𝑾𝒊𝒋

𝜶  , 𝑾𝒊𝒋
𝒃 + (𝟏 − 𝒉)𝑾𝒊𝒋

𝜷
] .................................................... (24) 

Output units: 

 [𝑶𝒑𝒌]𝒉 = [[𝑶𝒑𝒌]𝒉
𝑳 , [𝑶𝒑𝒌]𝒉

𝑼] = [𝒇([𝑵𝒆𝒕𝒑𝒌]𝒉
𝑳) , 𝒇([𝑵𝒆𝒕𝒑𝒌]𝒉

𝑼)] ...................................................... (25) 

 [𝑵𝒆𝒕𝒑𝒌]𝒉
𝑳 = ∑ [𝑾𝒋𝒌]𝒉

𝑳 . [𝑶𝒑𝒋]𝒉
𝑳𝒏𝑯

  𝒋=𝟏

[𝑾𝒋𝒌]𝒉
𝑳≥𝟎

+ ∑ [𝑾𝒋𝒌]𝒉
𝑳 . [𝑶𝒑𝒋]𝒉

𝑼𝒏𝑯
  𝒋=𝟏

[𝑾𝒋𝒌]𝒉
𝑳<𝟎

+ [𝝑𝒌]𝒉
𝑳  .................................. (26) 

 [𝑵𝒆𝒕𝒑𝒌]𝒉
𝑼 = ∑ [𝑾𝒋𝒌]𝒉

𝑼. [𝑶𝒑𝒋]𝒉
𝑼𝒏𝑯

  𝒋=𝟏

[𝑾𝒋𝒌]𝒉
𝑼≥𝟎

+∑ [𝑾𝒋𝒌]𝒉
𝑼. [𝑶𝒑𝒋]𝒉

𝑳𝒏𝑯
  𝒋=𝟏

[𝑾𝒋𝒌]𝒉
𝑼<𝟎

+ [𝝑𝒌]𝒉
𝑼 ................................. (27) 

A FNN's learning process 

The learning process of trapezoidal FNN is also based on a suitable error function, which is 

minimized with respect to the weights and bias. Let us define a cost function to be minimized 

in learning of the FNN using the trapezoidal fuzzy output and the corresponding trapezoidal 

target output. 

Cost Function 

A major challenge is to choose an error function that minimizes the difference between the 

desired output and the actual output for every 𝑚 output nodes of the 𝐿 layer during the learning 

phase 𝑡𝑘 = {𝑡𝑘,𝑙
𝑎 , 𝑡𝑘,𝑙

𝑏 , 𝑡𝑘,𝑙
𝛼 ,  𝑡𝑘,𝑙

𝛽
} and the output of the neural network 𝑂𝑘 =
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{𝑂𝑘,𝑙
𝑎 , 𝑂𝑘,𝑙

𝑏 , 𝑂𝑘,𝑙
𝛼 , 𝑂𝑘,𝑙

𝛽
} as a result of each example in the learning set. Through fuzzy arithmetic, 

it is possible to fuzzy the usual error function: 

 𝒆𝒑𝒉 = ∑ 𝒆𝒑𝒌𝒉
𝒏𝒐
𝒌=𝟏   ........................................................................................................................... (28)  

where 

 𝒆𝒑𝒌𝒉 = 𝒆𝒑𝒌𝒉
𝑳 + 𝒆𝒑𝒌𝒉

𝑼   ...................................................................................................................... (29)  

where 𝑒𝑝𝑘ℎ
𝐿  and 𝑒𝑝𝑘ℎ

𝑈  are the squared errors for the lower limits and the upper limits of the ℎ-

level sets, respectively:  

 𝒆𝒑𝒌𝒉
𝑳 = 𝒉.

([𝒕𝒑𝒌]𝒉
𝑳−[𝑶𝒑𝒌]𝒉

𝑳)𝟐

𝟐
  ............................................................................................................... (30)  

 𝒆𝒑𝒌𝒉
𝑼 = 𝒉.

([𝒕𝒑𝒌]
𝑼−[𝑶𝒑𝒌]𝒉

𝑼)𝟐

𝟐
  ............................................................................................................... (31)  

In addition, it can be efficient to contemplate the differences between the 4 components of a 

trapezoidal fuzzy set as an alternative and efficient strategy (figure 4): 

 [𝒕𝒌
𝒂]
𝒉
− [𝑶𝒌, 𝑳

𝒂 ]
𝒉
 , [𝒕𝒌

𝒃]
𝒉
− [𝑶𝒌, 𝑳

𝒃 ]
𝒉
 , [𝒕𝒌

𝜶]
𝒉
− [𝑶𝒌, 𝑳

𝜶 ]
𝒉
 , [𝒕𝒌

𝜷
]
𝒉
− [𝑶𝒌, 𝑳

𝜷
]
𝒉
  ..................................... (32)  

Such components should be minimized independently by the cost function, i.e. 

 𝑬𝒉 = {𝑬𝒉
𝒂,  𝑬𝒉

𝒃 ,  𝑬𝒉
𝜶,  𝑬𝒉

𝜷
}  ............................................................................................................... (33)  

 = {∑ ([𝒕𝒌
𝒂]𝒉 − [𝑶𝒌

𝒂]𝒉)
𝒎
𝒌=𝟏

𝟐
, ∑ ([𝒕𝒌

𝒃]𝒉 − [𝑶𝒌
𝒃]𝒉)

𝒎
𝒌=𝟏

𝟐
,  ∑ ([𝒕𝒌

𝜶]𝒉 − [𝑶𝒌
𝜶]𝒉)

𝒎
𝒌=𝟏

𝟐
,  ∑ ([𝒕𝒌

𝜷
]𝒉 −

𝒎
𝒌=𝟏

[𝑶𝒌
𝜷
]𝒉)

𝟐
}  ......................................................................................................................................... (34) 

As a result of this solution, delta-rule computations can be simplified. Since such error functions 

are critical in back-propagation algorithms, modifying only those components that differ from 

their target is the most appropriate strategy. 
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Figure 4: The Components of the Error Function 

Learning Algorithm 

The cost function is defined in the previous subsection. let us use this cost function 𝑒𝑝ℎ to derive 

the learning algorithm. This algorithm specifies trapezoidal fuzzy weights and biases using their 

four parameters. First, consider the learning of the fuzzy weight 𝑊𝑗𝑘,𝐼 =

(𝑊𝑗𝑘,𝐼
𝑎 ,𝑊𝑗𝑘,𝐼

𝑏 , 𝑊𝑗𝑘,𝐼
𝛼 , 𝑊𝑗𝑘,𝐼

𝛽
) from the 𝑗𝑡ℎ hidden unit to the 𝑘𝑡ℎ output unit. The cost function 

provides the amount of adjustment required for each parameter. Using this information, an 

update rule was derived for each parameter 𝑒𝑝ℎ  

 𝜟𝑾𝒋𝒌
𝒂−𝜶(𝒕 + 𝟏) = −𝜼

𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒂−𝜶+ 𝜶.𝜟𝒘𝒋𝒌

𝒂−𝜶(𝒕)  ................................................................................ (35) 

 𝜟𝑾𝒋𝒌
𝒂 (𝒕 + 𝟏) = −𝜼

𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒂 + 𝜶. 𝜟𝒘𝒋𝒌

𝒂 (𝒕) ......................................................................................... (36) 

 𝜟𝑾𝒋𝒌
𝒃 (𝒕 + 𝟏) = −𝜼

𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒃 + 𝜶. 𝜟𝒘𝒋𝒌

𝒃 (𝒕) ......................................................................................... (37) 

 𝜟𝑾𝒋𝒌
𝒃+𝜷

(𝒕 + 𝟏) = −𝜼
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒃+𝜷 + 𝜶. 𝜟𝒘𝒋𝒌

𝒃+𝜷
(𝒕) ................................................................................. (38) 

where 𝜂 is a learning constant, 𝛼 is a momentum constant and 𝑡 indexes the number of 

adjustments. 
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 The explicit calculation of each derivative in equations (35) - (38) is shown as: 

The ℎ-level of 𝑊𝑗𝑘 can be calculated as: 

 [𝑾𝒋𝒌]𝒉
= [[𝑾𝒋𝒌]𝒉

𝑳  , [𝑾𝒋𝒌]𝒉
𝑼]  ........................................................................................................ (A1)

 

where: 

 [𝑾𝒋𝒌]𝒉
𝑳 = (𝟏 − 𝒉) ⋅ 𝑾𝒋𝒌

𝒂−𝜶 + 𝒉 ⋅𝑾𝒋𝒌
𝒂

 

  ......................................................................................... (A2) 

 [𝑾𝒋𝒌]𝒉
𝑼 = (𝟏 − 𝒉) ⋅ 𝑾𝒋𝒌

𝒃+𝜷
+ 𝒉 ⋅ 𝑾𝒋𝒌

𝒃

 

  ......................................................................................... (A3) 

Therefore; obtained the following relations: 

 
𝝏[𝑾𝒋𝒌]𝒉

𝑳

𝝏𝑾𝒋𝒌
𝒂−𝜶 =

𝝏[𝑾𝒋𝒌]𝒉
𝑼

𝝏𝑾𝒋𝒌
𝒃+𝜷 = (𝟏 − 𝒉) .......................................................................................................... (A4) 

 
𝝏[𝑾𝒋𝒌]𝒉

𝑼

𝝏𝑾𝒋𝒌
𝒂−𝜶 =

𝝏[𝑾𝒋𝒌]𝒉
𝑼

𝝏𝑾𝒋𝒌
𝒂 =

𝝏[𝑾𝒋𝒌]𝒉
𝑳

𝝏𝑾𝒋𝒌
𝒃 =

𝝏[𝑾𝒋𝒌]𝒉
𝑳

𝝏𝑾𝒋𝒌
𝒃+𝜷 = 𝟎

 

  ................................................................................... (A5) 

 
𝝏[𝑾𝒋𝒌]𝒉

𝑳

𝝏𝑾𝒋𝒌
𝒂 =

𝝏[𝑾𝒋𝒌]𝒉
𝑼

𝝏𝑾𝒋𝒌
𝒃 = 𝒉 .................................................................................................................... (A6) 

The derivatives in each set of the FNN can be calculated using the input-output relation in 

equations (19)-(23) and the above relationships in (AI)-(A6), 𝜕𝑒𝑝ℎ/𝜕𝑊𝑗𝑘
𝑠  in the learning 

algorithm from the cost function 𝑒𝑝ℎ

 

as follows: 

a). 
𝜕𝑒𝑝ℎ

𝜕𝑊𝑗𝑘
𝑎−𝛼 =

𝜕𝑒𝑝ℎ

𝜕[𝑊𝑗𝑘]ℎ
𝐿  .

𝜕[𝑊𝑗𝑘]ℎ
𝐿

𝜕𝑊𝑗𝑘
𝑎−𝛼  +  

𝜕𝑒𝑝ℎ

𝜕[𝑊𝑗𝑘]ℎ
𝑈  .

𝜕[𝑊𝑗𝑘]ℎ
𝑈

𝜕𝑊𝑗𝑘
𝑎−𝛼   

 =  𝜕𝑒𝑝𝑗𝑘
𝐿 /𝜕[𝑊𝑗𝑘]ℎ

𝐿  . (1 − ℎ)  

 = {
−𝒉 . 𝜹𝒑𝒌𝒉

𝑳  [𝑶𝒑𝒋]𝒉
𝑳  . (𝟏 − 𝒉), 𝒊𝒇 [𝑾𝒋𝒌]𝒉

𝑳  ≥ 𝟎

 −𝒉 . 𝜹𝒑𝒌𝒉
𝑳  [𝑶𝒑𝒋]𝒉

𝑼 . (𝟏 − 𝒉), 𝒊𝒇 [𝑾𝒋𝒌]𝒉
𝑳  < 𝟎

}  ......................................................................... (39)

 

where: 
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 𝛿𝑝𝑘ℎ
𝐿 = ([𝑡𝑝𝑘]ℎ

𝐿 − [𝑂𝑝𝑘]ℎ
𝐿)[𝑂𝑝𝑘]ℎ

𝐿(1 − [𝑂𝑝𝑘]ℎ
𝐿) 

b). 
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒂 = {

−𝒉 . 𝜹𝒑𝒌𝒉
𝑳  [𝑶𝒑𝒋]𝒉

𝑳  . (𝒉), 𝒊𝒇 [𝑾𝒋𝒌]𝒉
𝑳  ≥ 𝟎

 −𝒉 . 𝜹𝒑𝒌𝒉
𝑳  [𝑶𝒑𝒋]𝒉

𝑼 . (𝒉), 𝒊𝒇 [𝑾𝒋𝒌]𝒉
𝑳  < 𝟎

}  ...................................................................  (40) 

c). 
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒃 = {

−𝒉 . 𝜹𝒑𝒌𝒉
𝑼  [𝑶𝒑𝒋]𝒉

𝑼 . (𝒉), 𝒊𝒇 [𝑾𝒋𝒌]𝒉
𝑼  ≥ 𝟎

 −𝒉 . 𝜹𝒑𝒌𝒉
𝑼  [𝑶𝒑𝒋]𝒉

𝑳  . (𝒉), 𝒊𝒇 [𝑾𝒋𝒌]𝒉
𝑼  < 𝟎

}  .................................................................... (41)

 

where: 

 𝛿𝑝𝑘ℎ
𝑈 = ([𝑡𝑝𝑘]ℎ

𝑈 − [𝑂𝑝𝑘]ℎ
𝑈)[𝑂𝑝𝑘]ℎ

𝑈(1 − [𝑂𝑝𝑘]ℎ
𝑈) 

d). 
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒃+𝜷 = {

−𝒉 ⋅ 𝜹𝒑𝒌𝒉
𝑼  [𝑶𝒑𝒋]𝒉

𝑼 ⋅ (𝟏 − 𝒉),   𝒊𝒇[𝑾𝒋𝒌]𝒉
𝑼 ≥ 𝟎,

−𝒉 ⋅ 𝜹𝒑𝒌𝒉
𝑼  [𝑶𝒑𝒋]𝒉

𝑳 ⋅ (𝟏 − 𝒉),   𝒊𝒇[𝑾𝒋𝒌]𝒉
𝑼 < 𝟎,

} ................................................... (42) 

From above relations, obtained the following relations: 

 
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒂−𝜶 = (𝟏 − 𝒉) ⋅ 𝝏𝒆𝒑𝒌𝒉

𝑳 /𝝏[𝑾𝒋𝒌]𝒉
𝑳   .............................................................................................. (43) 

 
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒂 = 𝒉 ⋅ 𝝏𝒆𝒑𝒌𝒉

𝑳 /𝝏[𝑾𝒋𝒌]𝒉
𝑳   ..........................................................................................................  (44) 

 
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒃 = 𝒉 ⋅ 𝝏𝒆𝒑𝒌𝒉

𝑼 /𝝏[𝑾𝒋𝒌]𝒉
𝑼  ........................................................................................................... (45) 

 
𝝏𝒆𝒑𝒉

𝝏𝑾𝒋𝒌
𝒃+𝜷 = (𝟏 − 𝒉) ⋅ 𝝏𝒆𝒑𝒌𝒉

𝑼 /𝝏[𝑾𝒋𝒌]𝒉
𝑼  .............................................................................................. (46) 

Then the four parameters of the fuzzy weight 𝑊𝑗𝑘 are updated as: 

𝑾𝒋𝒌
𝒔 (𝒕 + 𝟏) = 𝑾𝒋𝒌

𝒔 (𝒕) + 𝜟𝑾𝒋𝒌
𝒔 (𝒕),   𝒔 = 𝒂 − 𝜶,  𝒂,  𝒃,  𝒃 + 𝜷  .......................................... (47) 

The fuzzy weight 𝑊𝑖𝑗, and the fuzzy biases 𝜃𝑗and 𝜃𝑘 are also adjusted in the same manner as 

the fuzzy weight 𝑊𝑗𝑘. 

In fact, for the computation of the delta rule: 
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 [𝜟𝑾𝒊𝒋, 𝒍]𝒉
𝑳(𝒕) = −𝜼

𝝏𝒆𝒑𝒉

𝝏𝑾𝒊𝒋
𝑳 = ([𝜟𝑾𝒊𝒋, 𝒍

𝒂 ]𝒉
𝑳(𝒕), [𝜟𝑾𝒊𝒋, 𝒍

𝒃 ]𝒉
𝑳(𝒕), [𝜟𝑾𝒊𝒋, 𝒍

𝜶 ]𝒉
𝑳(𝒕), [𝜟𝑾𝒊𝒋, 𝒍

𝜷
]𝒉
𝑳(𝒕))  ............... (48) 

 [𝜟𝑾𝒊𝒋, 𝒍]𝒉
𝑼(𝒕) = −𝜼

𝝏𝒆𝒑𝒉

𝝏𝑾𝒊𝒋
𝑼 = ([𝜟𝑾𝒊𝒋, 𝒍

𝒂 ]𝒉
𝑼(𝒕), [𝜟𝑾𝒊𝒋, 𝒍

𝒃 ]𝒉
𝑼(𝒕), [𝜟𝑾𝒊𝒋, 𝒍

𝜶 ]𝒉
𝑼(𝒕), [𝜟𝑾𝒊𝒋, 𝒍

𝜷
]𝒉
𝑼(𝒕))

 

.............. (49) 

The four components of [𝛥𝑊𝑖𝑗, 𝑙]ℎ
𝐿(𝑡) and [𝛥𝑊𝑖𝑗, 𝑙]ℎ

𝑈(𝑡) in the event that updates are made 

sequentially, they can be considered independent terms. Therefore, it is possible to derive a 

fuzzy generalized delta rule as follows: 

[𝜟𝑾𝒊𝒋, 𝒍]𝒉
𝑳(= (−𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝒂 ]𝒉

𝑳(𝒕)
, −𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝒃 ]𝒉

𝑳(𝒕)
, −𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝜶 ]𝒉

𝑳(𝒕)
, −𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝜷

]𝒉
𝑳(𝒕)
)  ................................. (50) 

 [𝜟𝑾𝒊𝒋, 𝒍]𝒉
𝑼(𝒕) = (−𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝒂 ]𝒉

𝑼(𝒕)
, −𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝒃 ]𝒉

𝑼(𝒕)
, −𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝜶 ]𝒉

𝑼(𝒕)
, −𝜼

𝝏𝒆𝒑𝒉

𝝏[𝑾𝒊𝒋, 𝒍
𝜷

]𝒉
𝑼(𝒕)

)  ........................... (51) 

where [𝛥𝑊𝑖𝑗, 𝑙]ℎ
𝐿 and [𝛥𝑊𝑖𝑗, 𝑙]ℎ

𝑈 are obtained as: 

 [𝜟𝑾𝒊𝒋, 𝒍]𝒉
𝑳 = 𝜼 ⋅ [𝜹𝒋,𝒍]𝒉

𝑳 ⋅ [𝑶𝒋,𝒍−𝟏]𝒉
𝑳

 

  ................................................................................................ (52)
 

Each output unit (k=1, 2, .., no), compare its product

 [
[𝑂𝑘,𝐿]ℎ

 
with a correspondent desired 

output (target value

 
[𝑡𝑘,𝐿]ℎ) which was received from input training patterns, and compute its 

error information term by: 

 𝜹𝒌,𝑳]𝒉
𝑳 = ([𝒕𝒌,𝑳]𝒉

𝑳 − [𝑶𝒌,𝑳]𝒉
𝑳) ⋅ 𝒇/([𝒏𝒆𝒕𝒌,𝑳]𝒉

𝑳) 

           = ([𝒕𝒌,𝑳]𝒉
𝑳 − [𝑶𝒌,𝑳]𝒉

𝑳) ⋅ [𝑶𝒌,𝑳]𝒉
𝑳 ⋅ (𝟏 − [𝑶𝒌,𝑳]𝒉

𝑳)  ................................................................... (53)
 

and 

 [𝜹𝒌,𝑳]𝒉
𝑼 = ([𝒕𝒌,𝑳]𝒉

𝑼 − [𝑶𝒌,𝑳]𝒉
𝑼) ⋅ 𝒇/([𝒏𝒆𝒕𝒌,𝑳]𝒉

𝑼) 

             = ([𝒕𝒌,𝑳]𝒉
𝑼 − [𝑶𝒌,𝑳]𝒉

𝑼) ⋅ [𝑶𝒌,𝑳]𝒉
𝑼 ⋅ (𝟏 − [𝑶𝒌,𝑳]𝒉

𝑼) ................................................................. (54)
 

got the following: 

[𝜹𝒌,𝑳]𝒉 = ([𝜹𝒌,𝑳]𝒉
𝑳 , [𝜹𝒌,𝑳]𝒉

𝑼) ........................................................................................................... (55)
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Also, each hidden unit (j) sums its delta inputs coming from units in the output layer for (l=1, 

2, …, L-1) as: 

 [𝜹𝒋,𝒍]𝒉
𝑳 = {∑ [𝜹𝒕,𝒍+𝟏]𝒉

𝑳 ⋅
𝒏𝑯
 𝒕=𝟏

[𝑾𝒋𝒕]𝒉
𝑳≥𝟎

[𝑾𝒋𝒕]𝒉
𝑳 + ∑ [𝜹𝒕,𝒍+𝟏]𝒉

𝑼 ⋅
𝒏𝑯
 𝒕=𝟏

[𝑾𝒋𝒌]𝒉
𝑼<𝟎

[𝑾𝒋𝒕]𝒉
𝑼]} ⋅ [𝑶𝒋,𝒍]𝒉

𝑳 ⋅ (𝟏 − [𝑶𝒋,𝒍]𝒉
𝑳)

 

.... (56)
 

and 

 [𝜹𝒋,𝒍]𝒉
𝑼 = {∑ [𝜹𝒕,𝒍+𝟏]𝒉

𝑼 ⋅
𝒏𝑯
 𝒕=𝟏

[𝑾𝒋𝒕]𝒉
𝑳≥𝟎

[𝑾𝒋𝒕]𝒉
𝑼 +∑ [𝜹𝒕,𝒍+𝟏]𝒉

𝑳 ⋅
𝒏𝑯
 𝒕=𝟏

[𝑾𝒋𝒌]𝒉
𝑼<𝟎

[𝑾𝒋𝒕]𝒉
𝑳]} ⋅ [𝑶𝒋,𝒍]𝒉

𝑼 ⋅ (𝟏 − [𝑶𝒋,𝒍]𝒉
𝑼)  ... (57) 

Starting with a random weighting and with the constraint eq. (15), weights have been updated 

independently in the subsequent steps [13][14].  

Numerical Example 

By using FNN, let us approximate the implementation of fuzzy if-then rules in this example. In 

this mapping, we assume both the input and output spaces are unit intervals [0, 1]. A fuzzy 

output-input pair (𝑋𝑝, 𝑇𝑝) can be depicted in the space of input-outputs, and the h-level sets 

with h = 0.2, 0.4, 0.6, 0.8 of 𝑋𝑝  ×  𝑇𝑝, and 𝜂 = 0.5. 

The following three pairs of fuzzy input-output variables will be used as training data. Using 

the proposed learning algorithm, one output unit, two input units, and four hidden input units 

were used to train a FNN. 

Table 1: Training Data Sets  

𝑥1 𝑥2 target 

{0.85, 0.95, 0.05, 0.05} {0.45, 0.55, 0.05, 0.05} {0.85, 0.90, 0.05, 0.05} 
{0.05, 0.15, 0.05, 0.05} {0.05, 0.15, 0.05, 0.05} {0, 0, 0, 0} 

{0.45, 0.55, 0.05, 0.05} {0.05, 0.15, 0.05, 0.05} {0.08, 0.12, 0.10, 0.10} 

 

Based on a uniform interval [-0.6, +0.6], the following matrix contains the initial weights 

Following is a simplified breakdown of the general weight matrix into three matrices: 
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Initial Weights from first Input unit to hidden Layer |𝑊1𝑗| =

𝑊11

𝑊12

𝑊13

𝑊14

=

 {0.145,0.50,0.05,0.05}
{0.50,0.55,0.05,0.05}
{0.40,0.50,0.05,0.05}
{0.20,0.25,0.05,0.05}

  

Initial Weights from second Input unit to hidden Layer |𝑊2𝑗| =

𝑊21

𝑊22

𝑊23

𝑊24

=

{0.50,0.55,0.05,0.05}
{0.45,0.50,0.05,0.05}
{0.50,0.60,0.05,0.05}
{0.30,0.35,0.05,0.05}

 

Initial Weights from hidden Layer to output Layer |𝑊𝑖1| =

𝑊11

𝑊21

𝑊31

𝑊41

=

{0.20,0.25,0.05,0.05}
{0.35,0.40,0.05,0.05}
{0.50,0.60,0.05,0.05}
{0.20,0.30,0.05,0.05}

 

We experimented to explore the effects of FFFNN, focusing on a network with one hidden layer 

and four nodes. Determined the minimum mean square error (MSE) during the training and 

testing the training and validation datasets. After training the selected network for 700 epochs, 

applied the proposed method and obtained an adjusted weight set, and the results of the 

experiments are discussed below: 

Final Weights from first Input unit to hidden Layer |𝑊1𝑗| =

𝑊11

𝑊12

𝑊13

𝑊14

=

[
 
 
 
 𝑊11

𝐿

𝑊12
𝐿

𝑊13
𝐿

𝑊14
𝐿

 

𝑊11
𝑈

𝑊12
𝑈

𝑊13
𝑈

𝑊14
𝑈 ]
 
 
 
 

 

 = [

0.169885899018162 0.601283205655338

 0.535284832258353 0.676849246277717

0.447023992640629 0.660410319402502

 0.224906638518036 0.365249342582516 

]  

Final Weights from second Input unit to hidden Layer |𝑊2𝑗| =

𝑊21

𝑊22

𝑊23

𝑊24

=

[
 
 
 
 𝑊21

𝐿

𝑊22
𝐿

𝑊23
𝐿

𝑊24
𝐿

 

𝑊21
𝑈

𝑊22
𝑈

𝑊23
𝑈

𝑊24
𝑈 ]
 
 
 
 

 

 = [

0.513174887715498 0.6895292344931

0.468680205313246 0.577518983836384

0.524895054927393 0.698028528523752

0.313185867450725 0.420430153800426

] 
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From hidden layer to output layer, final weights |𝑊𝑖1| =

𝑊11

𝑊21

𝑊31

𝑊41

=

[
 
 
 
 𝑊11

𝐿

𝑊21
𝐿

𝑊31
𝐿

𝑊41
𝐿

 

𝑊11
𝑈

𝑊21
𝑈

𝑊31
𝑈

𝑊41
𝑈 ]
 
 
 
 

  

 = [

0.428214120839701 0.8939696346077

 0.604092466391081 1.050576700048008

0.749136635633001 1.256616092942895

0.424145346094889 0.8752893843754

]  

Optimizing neural network performance is a crucial factor in successful model development. 

In this study, the minimum value of the ((MSE) achieved was (9.9655511e-006) for the training 

set. Increasing the number of hidden nodes in the layers helps reduce the number of iterations 

necessary to reach an optimal weight and develop a good model. In this case, 700 iterations are 

sufficient to achieve the desired results. This approach can be applied to any neural network 

problem that deals with uncertain or vague information. 

Conclusions 

This study delves into the architecture of FFFNN, specifically focusing on trapezoidal fuzzy 

weights for h-level sets. As a result of its ability to process fuzzy sets and linguistic terms while 

utilizing the simplicity of the back propagation algorithm, the proposed solution is unique and 

valuable. By examining this architecture, researchers can better understand how to utilize 

FFFNNs effectively. Fuzzy logic has become a popular problem-solving tool because it works 

with linguistic terms rather than just numerical values. An approach such as this is helpful when 

the input parameters and desired targets are expressed in words. Through the use of NTFS, the 

network can provide a higher level of flexibility and accuracy by allowing higher data 

abstraction levels to be achieved. As a result of its ability to handle linguistic terms, fuzzy logic 

has become an effective solution to many problems. BP's convergence properties are 

maintained using a particular error function to simplify and make the learning algorithm more 

efficient. FNNs demonstrate good generalization properties, and a recent example has provided 

evidence that FFFNN have the potential to deliver satisfactory results in learning sets and three 

distinct test sets. Furthermore, FFFNN has been demonstrated to possess good generalization 
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properties. This further confirms the potential of the newly proposed FNN architecture, in 

which each node can process fuzzy sets or linguistic terms. 
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