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Abstract

Fuzzy sets have been implemented efficiently to manage unclear data, language terms, and
vague notions. Recently, considerable work has been dedicated to merging neural-network
techniques with fuzzy sets. In this study, present the structure of a fuzzy feed-forward neural
network (FFFNN) with a trapezoidal fuzzy set. In addition to handling real input vectors, it is
also capable of handling fuzzy input vectors. Generally, the output of a FNN is a fuzzy vector.
According to the extension principle of Zadeh, each unit of a FNN has an input-output
relationship. To determine the costs associated with fuzzy calculations and fuzzy objectives,
developed a cost function. At that point, created a learning algorithm from the cost capacity to
align the four variables of each trapezoidal fuzzy weight. In conclusion, demonstrate our

methodology using numerical models.

This paper discusses fuzzy generalized delta rules with distinct back propagation techniques on
trapezoidal fuzzy sets. The suggested architecture offers a more compelling and distinctive
feature in that every node can process fuzzy sets or verbal terms, maintaining the simplicity of
the back propagation algorithm. As a result, the resulting architecture can deal with issues in
which input parameters and desired outcomes are expressed verbally. Furthermore, this

methodology functions at a higher level of abstraction of data by operating at the verbal level
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rather than the numerical level. Our goal is to realize monitored learning in this type of

supervised neural network, and the effort is based on a standard back propagation algorithm.

Keywords: Neural networks, learning algorithm, back-propagation algorithm, fuzzy sets.
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Introduction

The definition of a FNN is almost the same as that of a back-propagation (BP) network. The
distinction lies in using fuzzy figures instead of actual numbers and broadened operations rather
than traditional operations. The objective of this connection is to blend the advantages of both

areas to process inaccurate or hazy data [4].
Replacing FNNs with crisp networks has the following benefits:

* Data with uncertainty can be handled with fuzziness. As a result, it is possible to approximate

a wider range of functions.

« Fuzzy input data can be considered as an extension of crisp input data, so a few training data
can cover the entire input range. There are several points that can be taken into consideration
in order to reduce the risk of overtraining that is always present when using the conventional

back propagation learning law.

» Taking into account the input range it allows us to gain insight into how the network reacts to

unfamiliar inputs.

* It can be viewed as a form of "relaxation" of the error surface due to the vagueness of the
weights. Back-propagation learning laws may become trapped in local minimal when this

impact is utilized.

There are, however, some disadvantages to using fuzzy neural systems. A proportional back-
propagation net has a much lower computational cost than a FNN (storing a trapezoidal fuzzy

number as of now requires four genuine values).

A general Architecture of FNNS

The primary goal of this study is to devise a standard structure for FNNs along with a suitable
learning method where every component can manage fuzzy sets and verbal expressions.

Simultaneously, the back-propagation algorithm'’s straight forwardness, efficacy, and features
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were safeguarded [2]. The basic architecture used is the feed-forward neural network, with
layers (I = 1,2,3,...,L) as:

l=1: input layer with n; nodes
l=23,...,L—1: hidden layers with ny nodes
l=1L: output layer with n, nodes

An input linguistic term or fuzzy set will be given to the network (input n;), which will produce
an n, output fuzzy set. An illustration of how each node processes and transforms fuzzy sets is
shown in figure (2) [6],[8],[14].

Augmentation of standard BP networks suggested by D.E. Rumelhart et al. (1986)[12]
encompassed fuzzified input vectors, objective vectors, connection weights, and offsets (e.qg.,
broadened to fuzzy figures). For the fuzzy data, incorporated trapezoidal fuzzy figures. To
arrive at a definite learning principle, circumscribe fuzzy weights and fuzzy inputs in
trapezoidal fuzzy figures while allowing fuzzy inputs and objectives to be represented in any
fuzzy figure [12].

Architecture of Trapezoidal FNNs

This section proposes a FNN with trapezoidal fuzzy figures for its weights, inputs, and outputs.
This neural network can manage fuzzy and accurate inputs with fuzzy numbers as outcomes.
Subsequently, a learning technique is derived from a cost function defined for fuzzy outputs
and goals' level sets (i.e., h — cuts). Finally, the proficiency of the proposed FNN for executing
fuzzy if-then rules was tested through a numerical example. The proposed architecture further
utilized normalized trapezoidal fuzzy sets (NTFS) as its fundamental element is presented in
figure (1). Moreover, this option has been settled because of the ease of explaining an NTFS
and its competence from a computational perspective. As demonstrated in figure (1), the

membership function of a trapezoidal fuzzy number can be outlined by its four components as
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follows: Therefore, a trapezoid fuzzy number can be identified by its four components as

follows:
A= (ab,ap)
where:
(0 Jifx<a—a or x=b+p
Ix_zm ,ifa—a<x<a I
”A(x):{I ,ifanSb ¥ ............................................................... (1)
l‘“ﬁ”*” L ifb<x<b+p J

a-a a b b+8

Figure 1: Membership Function of a Trapezoidal Fuzzy Number [2]
Here are a few specific cases that can be derived easily [2],[5]:

a¥b,a=p Set of fuzzy symmetric trapezoids,
a=b,a#0,8+0 Set of triangular fuzzy points,
a=b,a==0 Sets of real values (crisp),

a¥b,a=0=0 Sets that are crisp (based on intervals).
Frequently, it will be written simply A = (A%, AP, A%, A®) instead of A = (a, b, a, 5).

As far as NTFS is concerned, manipulating fuzzy sets is a straight forward process. A positive

fuzzy set can be summarized as follows:

(A% AP, A%, AB) + (B% B®,B*,BF) = (A* + B4, AP + B’,A* + B*, AP + BF) ........................ ()
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and the product of a fuzzy set by a positive constant is given by:

k(A% AP, A% AP) = (k* A%k« AP,k x A% K % AB) oo (3)
A normalized fuzzy set can be approximated as the product of two positive NTFS:

(A% AP, A%, AP) « (B%, B, B%, BF) ~ (A®°B% AP’B?, A°B* + A°B* A’Bf + APBY) .............. (4)

Fuzzy sets with negative values increase computation time [1],[3],[9]. Each NTFS component

represents one of four weights that characterize links between nodes,

Wi = (W& WE, WE WE) e (5)

A fuzzy network comprises nodes that process and transform fuzzy trapezoidal sets. NTFS are
received at each node by weights composed of four terms, with the connectivity defined by
connections between nodes. There are four terms that correspond to different components of
the NTFS. As shown in figure (2), a single node has the following characteristics. An example
of how this capability may be used is to produce fuzzy output based on linguistic terms or fuzzy

sets received by the network [2],[5].

Figure 2: Fuzzy Neural Node [2]

As the outputs of connected nodes are added together, a generic node’s state is determined

Oi-1 = (0F1_1, 0811, OF_1, 0F 1) oottt 6)
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In addition, the weights associated with such connections are important

_ b B
Wl],l - (WZ’I, Wl],l’ g,l’ Wl]) .................................................................................................. (7)
That is
#(1-1)
net; | = Z Wiji-¥ii-1
i=1
#(1-1) #(1-1) #(1-1) #(1-1)
_ b b
= { Z Wit Y1 Z Wiii Yig-1 Z Wi Yit-1 Z Wﬁ-,z
i-1 i1 i1 i1
B
“Yii-1}
= (netj , netf p netiy, net]’f L) e e 8)

The quadruple,(netf,, net}f v netjy, netf ), Trapezoidal fuzzy sets must fulfill the

following constraints to be meaningful:
b
netj, < netj, mnetj,; =0, net]’.fl 2 0 s 9)

As far as the permissible weight values are concerned, different constraints can be adopted

during the initialization and updating phases.

In the following, six different possible strategies are got:

CISWE,  WE 20, WEH20) e (10)
O S W& SWh ), WE =0, Wi 2 0) st (12)

C W WE = Wh et (12)
W =W W& = Wh ettt (13)

CI=WE, Wh = Wh et (14)
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a —
Wi =

b _ B
WE = WE = WE sttt (15)

Determining the right weighting strategy for a neural network can be a challenge. One option
is to use eg. (10), a simple way to satisfy eq. (9). All positive weights are provided by eq. (11)
which can limit the capacity of the network. Alternatively, all four weights can be completely
independent eq. (12), equal eq. (15), or somewhere between eq. (13) and eq. (14). With the last
option eq. (12), explicit constraints are not imposed, allowing the network to learn eq. (9) with
the correct datasets during the training phase. Neural networks can benefit from using this

choice because it simplifies the process and optimizes performance [2], [7], [9], [12].

To standardize the process, sigmoidal activation functions used to create normalized fuzzy sets
from fuzzy trapezoidal sets. In addition to producing a homogeneous environment, this
nonlinear transformation has other advantages. The function adjusts the fuzzy set values,
allowing for more precise output. A sigmoidal activation function is a powerful tool that can
modify fuzzy set values to produce a more accurate data representation. This type of
transformation is advantageous in applications where precise output is required. The output of
the fuzzy set can be precisely calibrated and controlled by utilizing the sigmoidal activation
function. Overall, using the sigmoidal activation function on fuzzy trapezoidal sets effectively
produces normalized fuzzy sets. This nonlinear transformation is advantageous because it

produces a homogeneous environment, allowing for a more precise:
0 = f(net) = f(net®, net?, net® netb) ..., (16)

As depicted in figure (3), a trapezoidal fuzzy set will approximate this value through linear

interpolation 0 = (0%, 0P, 0%, 0F). The membership function of whose members is as

follows:
(0 Jf 0 < f(n*—n") or 0= f(n’—nk)
% , if f(n* —n*) <0< f(n?)
H.(O) = | lf f(na) < 0 <f(nb) | .......................................... (17)
n nﬁ .
o i fah <o<fmb-nf)
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that is

_ b
0= f(net;-fl, net;), net;-’f,, netfl)

= {f(netf)), f(netl), f(net)) — f(netf, — netf), f(net?, + net!)) — f(net?))}

_ a b a B
= {08, 084 0%, OF} oo (18)
YSi10 10
el J!‘!"’.“!‘“‘
o ]
3 Bl { o
[ A
P P _______
R P XN
- ‘—iuo 0.0
10 0s 0o

Figure 3: The transformation produced by the NTFS activation function [2].

When calculating h-level sets of fuzzy outputs from fuzzy inputs, fuzzy weights, and fuzzy
biases, it is essential to restrict the fuzzy weights and fuzzy biases to trapezoidal fuzzy numbers.
This enables the derivation of the crisp learning rule in the following section. However, any
fuzzy number can be used for both fuzzy and fuzzy inputs. The input-output relation of each
unit for h-level sets can be derived using this method. Thus, crisp learning rules can be

generated, which is highly beneficial for a variety of applications:

Input units:

[0,:1n = [[0pilk , [0pi]0] = [[Xpilh s [Xpild] oo (19)
where

[Xpilh  [(Xpidf] = [X& — (1= W)X, X+ (= W)XE] o (20)
Hidden units:

(0,1 = [[0p15  [0p]1 = [F(INetp;15) » FUNEtp D] oo (21)
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[Netyili, = X" icy  (Wyilh [0pilh + 2™ it [Wiilh- [0pilh + [9j1h oovveevevvvvvviviiiiissisnns (22)
[Wj15=0 [Wijlk<0

[Netyilih = X" oy [Wilh-[0pilh + XM ey [Wiilh-[0pilf 4 [915 coovvveeeniiecrcciicenas (23)
[Wij],l{ZO [Wij];ll<0

Such that:

[Wilh Wyl = W — A=W, Wh+ (L= D)W o (24)

Output units:

[0pk]n = [[Opilhy » [Opi]i] = [F(INetpi]R) , FUNEtREIIN] covveeiiriieiiriiecssseennns (25)

[Netplh = X"y Wiklh [0p1h + 2521 [Wiklh [0pi1h + [kl covvvvvvvvvvviviiiisins (26)
[Wiklk=0 Wik]k<0

[Netpelh =Xy Wikl [0pi1h + 3™y Wiklh- [0pi1h + [Ok]h coovvevvvvvvvvviiiins (27)
Wik]¥=0 Wikl¥<0

A FNN's learning process

The learning process of trapezoidal FNN is also based on a suitable error function, which is
minimized with respect to the weights and bias. Let us define a cost function to be minimized
in learning of the FNN using the trapezoidal fuzzy output and the corresponding trapezoidal
target output.

Cost Function

A major challenge is to choose an error function that minimizes the difference between the

desired output and the actual output for every m output nodes of the L layer during the learning

phase t, = {t2,, t2, t{, tf,z} and the output of the neural network O, =
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{0¢, 0p,0%, 0,51} as a result of each example in the learning set. Through fuzzy arithmetic,

it is possible to fuzzy the usual error function:

eph = Zk—l epkh ........................................................................................................................... (28)
where
plkh = €l T Cpkhy wrvvvvsssreessssssssee s (29)

where egkh and e;,’kh are the squared errors for the lower limits and the upper limits of the h-

level sets, respectively:

([tpklh—[0pk]i)?

i = e (30)
U_ U2

egkh = h.w ............................................................................................................... (31)

In addition, it can be efficient to contemplate the differences between the 4 components of a

trapezoidal fuzzy set as an alternative and efficient strategy (figure 4):

[t81, — [0 11, [t2], — [08 11,/ (681, — [OF 11,/ [Eh], = [0F L1, cooveeeeererereessesesesssessscesaes (32)
Such components should be minimized independently by the cost function, i.e.

Ep = {8 BB, EE, EPY oo (33)

2

= (X, ([t81n — [0810)7, T0q([t2]n — (081", T ([t81n — [0811)°, Tt ([th]n —

As a result of this solution, delta-rule computations can be simplified. Since such error functions
are critical in back-propagation algorithms, modifying only those components that differ from

their target is the most appropriate strategy.
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Figure 4: The Components of the Error Function

Learning Algorithm

The cost function is defined in the previous subsection. let us use this cost function e, to derive
the learning algorithm. This algorithm specifies trapezoidal fuzzy weights and biases using their
four parameters. First, consider the learning of the fuzzy weightWj,, =
Wi Wik Wi, k,) from the j* hidden unit to the k** output unit. The cost function

provides the amount of adjustment required for each parameter. Using this information, an

update rule was derived for each parameter e,

Wit +1)=—nq aw“ 7 F AW T(B) i (35)
Wo(t+1)=— awa O AWSE) oot (36)
Wh(t+1) = aw,, F A AWH(D) oo (37)

wiF+1)=- ;::;’,’ki‘,; F AW () o (38)

wheren is a learning constant, « is a momentum constant and t indexes the number of

adjustments.
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The explicit calculation of each derivative in equations (35) - (38) is shown as:

The h-level of Wj, can be calculated as:

Wik W= (Wil s IWIIRT oo (A1)
where:

Wiklh = (1= h) - W+ R W oo (A2)
Wiklh = (A= h) - WPt e Wh (A3)

Therefore; obtained the following relations:

AWk oWl
a-a b+p
aw].k aw]_k

AWpdh _ dWpdh  aWidh  dWpdh

—a a = g = 0 s (A5)
awe, awes, awh, — owhi

L U
Wikl _ 0Wjklp _
= =
aws, W,

The derivatives in each set of the FNN can be calculated using the input-output relation in
equations (19)-(23) and the above relationships in (Al)-(A6), de,,/dWj; in the learning

algorithm from the cost function e, as follows:

L 4
) 6eph — aeph a[ij]h aeph a[ij]h
TOWETT alwpd, oW alwy, oW

= ey /0[Wiklf; - (1= )

B {—h-‘s;L;kh [0,]] - (1 = h),if W lj, = 0} (39)
—h-S,L,kh [0,,,-],‘{.(1 _mif W, JL g

where
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b = (tmilh = [0 Opilf (1 — [0,1]1)

b, 260t _ {—h - 8pkn [Opj1f, - (), if [Wlf, = 0} )
W, 8 10,10 (), if Wl < 0 7
0 depn {_h 80k [0pi1h - (), if W]l = 0} 1)
aw, 80 (0,1 (), if Wl < 0
where
5£’kh = ([tpk]ll{ - [Opk]g)[opk];z](l - [Opk];z])
d), e _ {—h S [0pjlh - (M —h),  if[Wjl; = 0.} 42)
WP =k 8 0,15 (M=), if(wyY <o) T
From above relations, obtained the following relations:
de
W}':‘a = (1= h) - 0€h, /BIW ]k oot (43)
a
a;”v'}_f’“ = B D€Ly /OIW R h oot (44)
de
aw;';,j; = R BEUp /OIW ] oo (45)
aeph _ U U
W —_ (1 - h) * aepkh/a[W]k]h .............................................................................................. (46)
jk
Then the four parameters of the fuzzy weight W;, are updated as:
Wi(t+1) =W +AW5(), s=a-a a b, b+f . (47)

The fuzzy weight W;;, and the fuzzy biases 6;and 6, are also adjusted in the same manner as
the fuzzy weight Wj.

In fact, for the computation of the delta rule:
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[AWy, J5 () = — ZW = ([AWE (150, [AW] (15 @), [AWE (15D, [Awﬁ JE®) (48)
[AWy, ]h (®) = awu = ([AW§ 1R @), [AW]; 115 (®), [AWE 15 (D), [AW,, N4G) - (49)

The four components of [AW;; JE(t) and [AW;;, 1Y () in the event that updates are made

sequentially, they can be considered independent terms. Therefore, it is possible to derive a
fuzzy generalized delta rule as follows:

depn depn depn depn
owg, k@’ o}, Jk@’ o k@’ o, Ik

[AW; 15 (= (-7

deyn deyn deyp depp
aw,; 1Yt o _ h__ _ ph__ p
[AWy, 0k (® = (-1 Towg gf@’ ~aw?, o’ ~Towg i@’ T oaw?, i@

where [AW;; ]} and [AW;; ]}/ are obtained as:

[AWU’ l];‘l =n- [6]’1];; . [0]"1_1];‘[ ................................................................................................ (52)

Each output unit (k=1, 2, .., no), compare its product [0y ], with a correspondent desired

[

output (target value [t ;],) which was received from input training patterns, and compute its

error information term by:

Sicilh = (]l — [Okr]R) - f/ ([netyr]7)
= ([tk,L]%L — [Ok,L]%l) . [Ok,L]%L . (1 — [Ok,L]%L) ................................................................... (53)

and

Bkl = ([tielh — [Okili) - f/([nety]})

= ([trrlh = [0kL])) - [0k L] - (1 =[O L1R) cooveeereeeineiee s (54)
got the following:
[k L]h = ([Ok L]k, [OIL1E) coerreeereereie et (55)
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Also, each hidden unit (j) sums its delta inputs coming from units in the output layer for (I=1,
2,...,L-1)as:

[8;ulh = (E™oy  [Bersali - Wielh + X2y [Beisalh - Wieli 1} - [0505 - (1 — [0j,41F) -...(56)
[th];‘lZO [ij];{<0

and

[8julk = Z™ct Bepraly - Wil + o1 [8eraalh - Wieli D} - [0ju]k - (1 = [0j41R) -..(57)
[Wjelh=0 [Wjklh <0
Starting with a random weighting and with the constraint eq. (15), weights have been updated

independently in the subsequent steps [13][14].

Numerical Example

By using FNN, let us approximate the implementation of fuzzy if-then rules in this example. In
this mapping, we assume both the input and output spaces are unit intervals [0, 1]. A fuzzy
output-input pair (X,, T,,) can be depicted in the space of input-outputs, and the h-level sets
withh=0.2,0.4,0.6,0.8 of X,, x T,, andn = 0.5.

The following three pairs of fuzzy input-output variables will be used as training data. Using
the proposed learning algorithm, one output unit, two input units, and four hidden input units
were used to train a FNN.

Table 1: Training Data Sets

X, X, target

{0.85, 0.95, 0.05, 0.05} {0.45, 0.55, 0.05, 0.05} {0.85, 0.90, 0.05, 0.05}
{0.05, 0.15, 0.05, 0.05} {0.05, 0.15, 0.05, 0.05} {0, 0, O, 0}
{0.45, 0.55, 0.05, 0.05} {0.05, 0.15, 0.05, 0.05} {0.08, 0.12, 0.10, 0.10}

Based on a uniform interval [-0.6, +0.6], the following matrix contains the initial weights
Following is a simplified breakdown of the general weight matrix into three matrices:
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w,; {0.145,0.50,0.05,0.05}
Wy, _ {0.50,0.55,0.05,0.05}
Wiz~ {0.40,0.50,0.05,0.05}
W14+ {0.20,0.25,0.05,0.05}
W, {0.50,0.55,0.05,0.05}
W, {0.45,0.50,0.05,0.05}
W33~ {0.50,0.60,0.05,0.05}
W24 {0.30,0.35,0.05,0.05}

Initial Weights from first Input unit to hidden Layer |W;| =

Initial Weights from second Input unit to hidden Layer [Wy;| =

Wy, {0.20,0.25,0.05,0.05}
W, _ {0.35,0.40,0.05,0.05}
W31~ {0.50,0.60,0.05,0.05}
Wi {0.20,0.30,0.05,0.05}

We experimented to explore the effects of FFFNN, focusing on a network with one hidden layer

Initial Weights from hidden Layer to output Layer |[W ;| =

and four nodes. Determined the minimum mean square error (MSE) during the training and
testing the training and validation datasets. After training the selected network for 700 epochs,
applied the proposed method and obtained an adjusted weight set, and the results of the

experiments are discussed below:

Wiy Wi wi]

. . . o wy, wk, wol
Final Weights from first Input unit to hidden Layer |[W ;| = ), ~ = | il
13 |Wis Wiz

Wi lW%zl W§]4J

0.169885899018162 0.601283205655338
0.535284832258353 0.676849246277717
0.447023992640629 0.660410319402502
0.224906638518036 0.365249342582516

Wy (W3 W5
Wo _ I W3, Wi I
Was Wi, wis
Woas lWé4 Wgth

Final Weights from second Input unit to hidden Layer |W;| =

0.513174887715498 0.6895292344931
_10.468680205313246 0.577518983836384
~ 10.524895054927393 0.698028528523752

0.313185867450725 0.420430153800426
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Wiq wh wi
Woi _ I W3 W3 I
Wi |ws wi
Wa leLu WZ1J

From hidden layer to output layer, final weights [W;;| =

0.428214120839701 0.8939696346077
0.604092466391081 1.050576700048008
0.749136635633001 1.256616092942895
0.424145346094889 0.8752893843754
Optimizing neural network performance is a crucial factor in successful model development.
In this study, the minimum value of the ((MSE) achieved was (9.9655511e-006) for the training
set. Increasing the number of hidden nodes in the layers helps reduce the number of iterations
necessary to reach an optimal weight and develop a good model. In this case, 700 iterations are
sufficient to achieve the desired results. This approach can be applied to any neural network

problem that deals with uncertain or vague information.

Conclusions

This study delves into the architecture of FFFNN, specifically focusing on trapezoidal fuzzy
weights for h-level sets. As a result of its ability to process fuzzy sets and linguistic terms while
utilizing the simplicity of the back propagation algorithm, the proposed solution is unique and
valuable. By examining this architecture, researchers can better understand how to utilize
FFFNNs effectively. Fuzzy logic has become a popular problem-solving tool because it works
with linguistic terms rather than just numerical values. An approach such as this is helpful when
the input parameters and desired targets are expressed in words. Through the use of NTFS, the
network can provide a higher level of flexibility and accuracy by allowing higher data
abstraction levels to be achieved. As a result of its ability to handle linguistic terms, fuzzy logic
has become an effective solution to many problems. BP's convergence properties are
maintained using a particular error function to simplify and make the learning algorithm more
efficient. FNNs demonstrate good generalization properties, and a recent example has provided
evidence that FFFNN have the potential to deliver satisfactory results in learning sets and three

distinct test sets. Furthermore, FFFNN has been demonstrated to possess good generalization
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properties. This further confirms the potential of the newly proposed FNN architecture, in

which each node can process fuzzy sets or linguistic terms.
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