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Abstract

In this work, an inverse Cauchy problem of the Helmholtz equation for thermal conductivity at
the edge of the target was considered. In this paper, the temperature on the unknown boundary
(the inner boundary) is determined by taking advantage of the Cauchy data that can be obtained
from the known part, the part that can be reached (the outer boundary), This problem is solved
numerically using the proposed method, and the stability of the approximate solution has been
confirmed by adding noise to the Cauchy data.

Key words: inverse Cauchy problem, modified Helmholtz equation, polynomial expansion,
Conjugate Gradient Least Square Method (CGLS), Bi-Conjugate Gradients Stabilized Method
(BICGSTAB), Preconditioned Conjugate Gradients Method (PCG).
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Introduction

Finding an unknown boundary and its resistive properties is one of the crucial applications in
inverse problem design and optimization. This encourages us to solve an inverse Cauchy
problem governed by a Helmholtz equation to determine the temperature on appear-shaped
inner border inside an ellipse form domain.
In this article, we take a look at the inverse problem, which entails estimating the temperature
t on an inner border profiting from the given Cauchy data on the outer boundary (boundary
temperature and heat flux). Assuming that the steady-state temperature t satisfies the Helmholtz
equation governing thermal conductivity at the target edge:

Vit+k?’t=0 O\D
Based on the knowledge of the Dirichlet temperature data t and Neumann heat flux data g—; on

the outer part of the boundary dQ where n is the outward unit normal at dQ , and a boundary
condition (Dirichlet, Neumann or Robin) on the boundary dD of D [18]. These kinds of
problems are ill-posed. In reality, in Hadamard's view, a problem is well-posed if the existence,
uniqueness, and stability of the solution are guaranteed [7]. Otherwise, the problem is ill-posed
if the solution does not meet one of these requirements, in which case an inverse problem must
be developed to address it. The inverse problem is typically thought to be more challenging to
solve than the direct ones.

In addition, the inverse problems are unstable [7], meaning that even a minor measurement
mistake in the input data might result in a significant inaccuracy in the solution. Inverse
Problems have recently been discussed in a number of scientific fields see Kubo, 1988 [16].

One of the inverse problem examples is the Cauchy problem. Chakib et al., 2018 [6],
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Hernandez-Montero et al., 2019 [8], Isakov, 2017[12], Kabanikhin, 2012 [15], Lavrent'ev, 1986
[17], Liu and Wang, 2018 [19], and Nachaoui et al., 2021 [21] are a few references to this.
When it comes to these kinds of problems, the boundary conditions (Dirichlet, Neumann) are
only known for a portion of the boundary (the accessible portion), while the other portion of
the boundary lacks any available information, making it under-specified or inaccessible.

To address this kind of problems, an appropriate method must be selected in order to lessen the
ill-posedness of the studied problem. Numerous technigues have been developed during the
past 20 years to solve the Cauchy problem for the Helmholtz equation. The truncation method
Yang, 2019 [26], the conjugate gradient method Marin et al., 2003 [20], the meshless
generalized finite difference method Hua et al., 2017 [9], and the fractional Tikhonov
regularization method Qia and Feng, 2017[23] are a few of these methods that are used for this
type of problems.

In reality, the quality of approximation is significantly impacted by the reliance of the numerical
solutions to the direct Helmholtz equation on the physical parameter; for additional information,
see Ihlenburg and Babuka, 1995 and 1997 [10][12]. See [3], [4], [5], and [23] for several
approaches that have been developed to solve the Cauchy Helmholtz equation for some large
parameter. Jourhmane and Nachaoui, 1996 [13] suggested an alternating algorithm based on
relaxation of alternating algorithms.

According to Berdawood et al., 2021[2], an efficient relaxed alternating procedure proved the
convergence for all values of wave numbers k in the case of the Helmholtz equation and
accelerated the convergence in the case of the modified Helmholtz equation. They also
demonstrated that we can find an interval of relaxation parameter in which the convergence is
guaranteed for any value wave number k.

In order to approximate the solution of a Cauchy Problem for Helmholtz-type equation in a
confined domain surrounded by a smooth boundary, the goal of this work is to investigate an
approach based on polynomial expansion. In this study, a meshless method to approximate the
temperature on the inaccessible inner boundary, following the method proposed by Rasheed et
al. [24] in which they use it to solve an inverse Cauchy problem for Laplacian equation. This

approach was also used by Jameel et al. in 2022 [14] and by Jameel [14]. The rest of this paper
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Is structured as follows. Section 2 reminds us of the inverse Cauchy problem for the Helmholtz
equation. Section 3 of our paper provides our proposed approximation approach. In section 4,

a few numerical techniques are examined and shown by using them for chosen cases.
Inverse Cauchy problems for the Helmholtz equation
The domain 2 < R? with the boundary I' =TI, U I,
L={(r0) :r =p.(6) 0 < 6 < 2w} outer boundary
and
L={(r,0) : r=p;(6) 0 < 6 < 2m}inner boundary
where 0 < p.(6) <1, 0 < p;(0) < 1.

We take into account the inverse Cauchy problem for the Helmholtz equation, which is as

follows

At(x,y) + k*t(x,y) =F Q\D (1)
t(p,0) = h(6) ondQ =TIy )
Lp,0)=g®) ondQ =T, 3)

Take note that F is given on Q\D and the accessible portion of the domain border contains the
Cauchy data t(x,y) and 9,t(x,y), Say h(68),g(6) respectively. Two boundary criteria are
stated for the part I';. While no boundary condition is stated on T',. To ascertain the temperature
t on the interior under-determined boundary, the inverse problem for the modified Helmholtz
equation is formulated. Remembering that the following expression may be used to define the
normal derivative of , denoted by d,,t from [20] :

at(p,0 " 9t(p,0
0t (p, 8) = n(9) |22 - L2000 4)

Volume: 2, Issue: 3, July 2024 235 P-1SSN: 2958-4612
Manuscript Code: 776B E-ISSN: 2959-5568



Academic Science Journal

®)
)= —22 5
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The normal derivative d,t(x,y) can be expressed in terms of d,t and 9, ¢ by
ot =n(0) [cos CE %sin 6) ] d,t +1(6) [sin @) — ;)—zcos 6) ] dyt (6)

Approximation of Solution by a Polynomial Expansion

The solution t(x, ) is expressed as a polynomial expansion as follows:

t(x,y) =Xty Z§‘=1 Cij xtTy=1 (7)
To find t(x, y), the coefficients c;; must be determined the number of these coefficient is

n= m("z”l) , and the maximal order of above polynomial is m — 1. Using equation (7)

we find 9, t(x,y), 9, t(x,y), and At :

O t(x,y) = X Xhocy (i — ) xP 7yt 8
dy tx,y) = X Xioqcy G — 1D x Tyl (9)
Oxx t= XLy Xioqcy (i =N —j— 1) xtT2yit (10)
yy tC,y) = T Xioqcy G = DG = 2)xTyI =3 (11)

At(x,y) + k*u(x,y) = X724 Z§=1[Cij(i —PGE—j—DxtI2yi 4
G—1 G —2)xt Ty 3] + k2xiTy/ ™1 (12)

The coefficient ¢;; in equation (7) is shown as an n-dimensional vector ¢ with component ¢,
where k=1,...,n. In reality, the coefficients c;; are reordered taking into account that i =
1,..,m,j=1,..,i for each index i, j. Assuming the formula k = 1(12;1) + j to correspond to

one index k. The vector t is given by the inner product of a” with c.
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t(x,y) =[1xyx?xyy? x3x%y xy? y3 ..]

replace(8) and (9) in to (6) gives us an expression of d,,t . Similarly, for each point on the
accessible part of the boundary T; the normal derivative d,,t can be expressed as an inner

product of a vector e with c, such that the component 1 — th of e is given by:
e; =1(6) [(i — xtTilyi-1 (Cos(G) - %sin(@)) +(—DxtTyi2 (sin(G) - %cos(&))] (14)

For 1=1, ..., n and by keeping the same indices i, j of the coefficients for those used to calculate
e,from c;; Now for each point in the domain the term Au(x,y) — k*u(x, y) can be expressed
from (12) as an inner product of a vector d with c, where the 1 — th component d,, =1, ...,n

and is given by:
dy=@{—PNUE—j—Dx"T2y/ 4+ (= 1D( = 2)x' Ty 3 — kPxi Tyt (15)

Choosing n; points on boundary Ty , say (x;y;) = (cos(8,),sin(8;)), i = 1,2, ...n, to verify
the boundary condition (2)-(3) and also we take n, points in the domain Q\D, say (xj,yj)j =
1,2,...n, , to satisfy the equation (1), So we obtain the a linear system

Ac=b (16)

m(m+1)

The vector b is of longer (2n; + n,) and A is ((2n; + n,) X .

) matrix given

respectively by:
A=[a] ~anief - eqy di..dpo],b = [h(61) =+ h(0n1)g(61) - g(On1) Fr - Fo, ] (17)

Solving the linear System

To solve the linear system Ac = b, we use the well-known Conjugate Gradient least square
method (CGLS) [1], Bi-conjugate Gradients Stabilized method (BICGSTAB) [25] and
Preconditioned Conjugate Gradients Method (PCG)[1].
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Stopping criterion
The condition under which the algorithm can stop is crucial for any numerical approach, thus

we selected the following stopping criteria

Absolute error < Tol (18)
Relative error < Tol (19)

Additionally, we must specify the beginning data for the algorithms CGLS, BICGSTAB and
PCG. To do this, we provide an educated approximation for t on the under —specified boundary

I, and in the initial iteration, the zero vector was used as an initial guess.

Numerical Results and Discussion

In this part, we examine a few cases and numerically resolve them to demonstrate the
effectiveness of our suggested approach. Considering two cases of exact solution (polynomial
and non-polynomial), this exact solution is used to calculate the function F, its trace h and its
normal derivative g on Ty. Utilizing the precise supplied data on the accessible portion of the
boundary Iy, zero beginning data for solving the linear system using CGLS, BICGSTAB and
PCG like-methods mentioned in sections 6.1 and 6.2, with appropriate tolerance and stopping
criteria.

1. Polynomial case

In the following we study a Cauchy problem of Helmholtz equation with some polynomial

exact solution.

Example 1. Consider the Cauchy problem for a Helmholtz equation with exact
solutiont(x,y) = 6x2y? — x* — y*, defined by an ellipse form domain with a pear-shaped
inner boundary p,.-(0.5 x 0.4)/sqrt(0.25 = (cos(8))? + 0.16 = (sin(#))?) and p; = 0.6 +
0.125 xcos(3*0) i.eI; = {(x,y): = 0.6 + 0.125 * cos(3 * 6)}. With the following Cauchy
data: h = 6x%y? — x* — y4,

! !

g =n(0)|cos (8) — %sin 6) l d,t +n(0) [sin @) — %cos (6) |0yt
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where p changes at every 8. We investigate many values for a different physical parameter.

k = /15,4/25.5,v/52 . For the numerical calculations, we take:

n, = 63,nr =5,s0on, =315, andm = 2,...,10

contrasting the approximate solution produced by applying the CGLS, BICGSTAB and PCG

algorlthms Wlth t(\l — 1n—12 Tha nhtainad raciilte ara nracantad in tahlac 1 ’),3

=)

Doman
T A= - I
+ + + Ederior Boundsry and domain poils
* Sl 0 Inletior Boundary
LEY 4 . P R -
+ + . * .

o+ + +
+ +.. + + ®

-~

.
*
" B &

A"
.
+
+
+
+

L 8 SR SRas g

R
satrtres,
','.o.o#toooo',‘
.|~+0¢00+oo,+
‘.Q'MH.H.o-tf-bo..‘

.
+

+ 99900090 .' * .4
.
0"’_0

Figure 1: The Domain for Example 1

Table 1: Results by CGLS, BICGSTAB and PCG for k = V15 with g = 2, different value of

mand Tol = 10712

m | Iteration Relative error Iteration Relative error Iteration Relative error
cgls cgls bicgstab bicgstab pcg pcg

2 2 9.69532919E-01 15 9.69532919E-01 2 9.69532919E-01
3 5 3.39222809E+00 45 3.39222809E+00 5 3.39222809E+00
4 9 9.10773081E+00 10.5 9.10773081E+00 9 9.10773081E+00
5 18 9.85279080E-13 25.5 3.35070376E-11 18 1.95296785E-11
6 30 2.81320132E-11 90.5 1.53611473E-10 30 2.29419799E-10
7 60 3.67254071E-12 406.5 6.14751311E-10 63 1.92803179E-09
8 108 5.46202437E-10 25275 6.21897883E-10 121 4.99766518E-10
9 273 1.18365009E-12 24335 1.92979054E-02 284 3.56822472E-10
10 592 3.86602847E-10 8874 4.37307360E-04 651 7.77403825E-10

For m=5 the relative error is equal 9.85279080E-13for CGLS, 3.35070376E-11 for
BICGSTAB and 1.95296785E-11for PCG that is a good approximation .The mistakes and
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comparison between the precise solution and the approximation obtained by CGLS,
BICGSTAB, and PCG are shown in the figures below.
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Figure 2.a: Error by CGLS Figure 2.b: Error by BICGSTAB
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Figure 2.c: Error by PCG Figure 2.d: Comparison of exact and
approximate solutions
Now, we give the results for k = v25.5:
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Table 2: Results by CGLS , BICGSTAB and PCG for k = v/25.5 with § = 2, different value
of mand Tol = 10712

m iteration Relative Error iteration Relative Error iteration Relative Error
CGLS CGLS BICGSTAB BICGSTAB PCG PCG
2 2 9.69420047E-01 15 9.69420047E-01 2 9.69420047E-01
3 5 1.33340696E+00 4.5 1.33340696E+00 5 1.33340696E+00
4 9 6.90992732E+00 9 6.90992732E+00 9 6.90992732E+00
5 20 1.49603744E-13 31 1.96529893E-10 20 4.00257780E-12
6 39 1.30796757E-12 173 1.05715939E-09 38 7.94199652E-10
7 65 2.70963175E-10 7315 1.51869797E-10 7 1.75857159E-11
8 125 1.10574178E-09 7383 2.68053074E-08 145 3.32221169E-09
9 274 2.91417943E-09 11057 6.52970915E-04 306 3.35635603E-09
10 683 1.00323558E-09 3018 6.28593345E-03 744 8.68182686E-10

For m=5 the relative error is equal 1.49603744E-13 for CGLS, 1.96529893E-10 for BICGSTAB

and 4.00257780E-12 for PCG that is a good approximation .The errors and comparison between
the precise solution and the approximation obtained by CGLS, BICGSTAB, and PCG are

shown in the figures below.

wsmes S wh TOLS

Figure 3.a: Error by CGLS
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Figure 3.b: Error by BICGSTAB
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Figure 3.c: Error by PCG

Now, we give the results for k = v/52 :
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Figure 3.d: Comparison of exact and
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Table 3: Results by CGLS, BICGSTAB and PCG for k = V52 with g = 2, different value of
mand Tol = 10712

m iteration Relative Error iteration Relative Error iteration Relative Error
CGLS CGLS BICGSTAB BICGSTAB PCG PCG
2 2 9.69379643E-01 15 9.69379643E-01 2 9.69379643E-01
3 5 1.38826578E+00 5.5 1.38826578E+00 5 1.38826578E+00
4 11 4,23033843E+00 9 4.23033843E+00 9 4.23033843E+00
5 21 4.35753252E-12 31 5.12507238E-11 20 4.11563815E-11
6 44 3.26990410E-11 333 5.95615615E-09 48 1.03247614E-10
7 84 7.85962000E-12 4863 5.59334862E-02 92 3.07710603E-09
8 149 3.03336161E-09 22230 2.74194244E-04 167 1.30555108E-08
9 303 4.30665449E-08 4770 8.23429153E-02 367 1.25260905E-08
10 597 1.27516694E-07 18948 2.71179222E-02 776 1.24895335E-07

For m =6 the relative error is 1.49539075E-13 for CGLS and for m =5 the relative error is
2.26265781E-11 for BICGSTAB and for m = 5 the relative error is 6.47774081E-13 for PCG
which is an estimate Good approximation,

Tables 1,2,3 show that the best accuracy for the approximate solutions are obtained form = 5
and this comes from the fact that we approximate a polynomial of degree 4 with a polynomial
of degree 4, so it is normal to obtain the best accuracy for m =5 and that the number of iterations

and the accuracy for CGLS and PCG are importantly less than BICGSTAB.
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Errors and comparison between the exact solution and the approximation obtained by CGLS,

BICGSTAB and PCG are shown in the figures below:
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Figure 4.c: Error by PCG

2. Non-Polynomial case
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Figure 4.d: Comparison of exact and

approximate solutions

We examine a Cauchy problem of the Helmholtz equation with a non-polynomial exact

solution.
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Example 2: Consider the Cauchy problem for a Helmholtz equation with exact solution

t(x,y) = e™**, defined by an ellipse form domain with a pear-shaped inner boundary,

i.e. pe= (0.5 * 0.4)/4/(0.25(cos(6) )% + 0.16(sin(6))2)and p; = 0.6 + 0.125 * cos(3 * 0)
el ={(x,y): =0.64+0.125 * cos(3 * 0)}.

It has the following Cauchy information. h = e,

! !

g =n(0)|cos (8) — %sin (6) l d,t +n(0) lsin @) — %cos (6) |0yt

where p changes at every 6. we investigate many values for a different physical parameter k =
For the numerical calculations, we take n; = 63,nr =5, so n, = 315, and m = 2,...,13
contrasting the approximate solutions produced by applying the CGLS, BICGSTAB and PCG

algorithms with tol = 10712, The obtained results are presented in tables 4,5,6.
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Figure 5: The Domain for Example 2
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Table 4: Results by CGLS, BICGSTAB and PCG for k = V15 with g = 2, different value of
mand Tol = 10712

m | lteration Relative error Iteration Relative error Iteration Relative error
cgls cgls bicgstab bicgstab pcy pcg

2 2 1.47463068E-01 15 1.47463068E-01 2 1.47463068E-01
3 5 3.31231238E-02 4.5 3.31231238E-02 5 3.31231238E-02
4 9 3.29642026E-02 9.5 3.29642026E-02 9 3.29642026E-02
5 18 3.22516777E-04 19 3.22516766E-04 18 3.22516777E-04
6 29 3.14273426E-04 77.5 3.14273141E-04 29 3.14273434E-04
7 49 1.22428076E-06 595.5 1.22357213E-06 55 1.22428307E-06
8 101 1.31388633E-06 29745 1.31395364E-06 104 1.31353407E-06
9 162 3.18028524E-08 7285 3.06213643E-07 183 3.25695581E-08
10 272 3.62244007E-08 4425 3.43652080E-07 288 3.67475545E-08
11 336 4.24446052E-08 6847 3.04400651E-07 387 4.21250819E-08
12 345 4.79378442E-08 12924 1.16325348E-07 400 4.75800336E-08
13 327 4.53077398E-08 5382 1.63413495E-07 382 4.47996853E-08

For m =9 the relative error is 3.18028524E-08 for CGLS and for m =12 the relative error is
1.16325348E-07 for BICGSTAB and for m = 9 the relative error is 3.25695581E-08 for PCG

which is a good approximation.

Errors and comparison between the exact solution and the approximation obtained by CGLS,
BICGSTAB and PCG are shown in the figures below:

Figure 6.a: Error by CGLS

Figure 6.a: Error by BICGSTAB
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Table 5: Results by CGLS, BICGSTAB and PCG for k = v/25.5 with g = 2, different value
of mand Tol = 10712

m iteration Relative Error iteration Relative Error iteration Relative Error
CGLS CGLS BICGSTAB BICGSTAB PCG PCG
2 2 9.93673625E-02 15 9.93673625E-02 2 9.93673625E-02
3 5 1.58060664E-02 4.5 1.58060664E-02 5 1.58060664E-02
4 9 1.57611485E-02 8.5 1.57611485E-02 9 1.57611485E-02
5 18 5.41541405E-04 35 5.41541394E-04 20 5.41541405E-04
6 29 5.31214676E-04 1415 5.31213317E-04 34 5.31214735E-04
7 58 2.31101958E-06 1613.5 2.31864467E-06 63 2.31072472E-06
8 96 1.75164694E-06 13378.5 1.74873071E-06 118 1.74910014E-06
9 186 2.30112876E-08 10879 5.76782156E-07 198 2.44621869E-08
10 206 3.81608613E-08 4445 5.70812873E-07 236 3.88050780E-08
11 327 6.44041262E-08 4812 6.18768096E-07 316 1.05660154E-07
12 322 7.17347975E-08 3409 6.22302027E-07 383 6.34466367E-08

For m =9 the relative error is 2.30112876E-08 for CGLS and for m =11 the relative error is
6.18768096E-07for BICGSTAB and for m = 9 the relative error is 2.44621869E-08

For PCG which is an estimate Good approximation, Errors and comparison between the exact
solution and the approximation obtained by CGLS, BICGSTAB and PCG are shown in the

figures below:
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Figure 7.c: Error by PCG Figure 7.d: Comparison of exact and

approximate solutions

Table 6: Results by CGLS, BICGSTAB and PCG for k = V52 with g = 2, different value of
mand Tol = 10712

m iteration Relative Error iteration Relative Error iteration Relative Error
CGLS CGLS BICGSTAB BICGSTAB PCG PCG
2 2 6.45718145E-02 15 6.45718145E-02 2 6.45718145E-02
3 5 5.12308178E-03 4.5 5.12308178E-03 5 5.12308178E-03
4 9 5.10957471E-03 8.5 5.10957471E-03 9 5.10957471E-03
5 19 4.59842835E-04 32.5 4.59846311E-04 20 4.59842835E-04
6 34 4.46434451E-04 379 4.46433914E-04 38 4.46434393E-04
7 71 9.56118239E-06 908 1.45930965E-04 81 9.56127017E-06
8 116 9.41077486E-06 4284 2.43564660E-05 132 9.41066435E-06
9 222 5.01094248E-08 3781 5.26420672E-05 266 4.36082067E-08
10 171 1.50441175E-06 4790 2.74399460E-05 273 2.03952743E-07
11 227 1.89687572E-07 2871 3.61826295E-05 268 1.84779849E-07
12 227 1.88584499E-07 2984 6.67681208E-05 271 1.76013413E-07
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For m =9 the relative error is 5.01094248E-08 for CGLS and for m =8 the relative error is
2.43564660E-05 for BICGSTAB and for m = 9 the relative error is 4.36082067E-08 for PCG

which is an estimate Good approximation.
Errors and comparison between the exact solution and the approximation obtained by CGLS,

BICGSTAB and PCG are shown in the figures below
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Figure 8.a: Error by CGLS Figure 8.a: Error by BICGSTAB
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Figure 8.c: Error by PCG Figure 8.d: Comparison of exact and

approximate solutions

Tables 4,5,6 show that the best accuracy for the approximate solutions are obtained form = 9
for CGLS and PCG while for BICGSTAB the best accuracy obtained for m=12,11, 8, for k =
V15,4/25.5,4/52 respectively, and that the number of iterations and the accuracy for CGLS
and PCG are importantly less than BICGSTAB.
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Stability and effect of a noise

The inverse problem is a type of problem caused by the gathered (measured) data, and as these

data are subject to measurement errors, they may contain errors. Therefore, it is crucial to

research how data noise affects the approximation of the solution. To do this, we apply noise

to the Cauchy data using the following:

h(0) = u,,(p,0) + o *ra

For some measurement error deviation o = 0.1,0.01, 0.05, 0.001 and rand for a Gaussian

error that is random

Table 7: effects of noise on Cauchy data, using example 1 with physical parameter k = V52,

n, = 63,n, = 315,, and Tol = 10712,

iteration Relative Error iteration Relative Error iteration Relative Error
CGLS CGLS BICGSTAB BICGSTAB PCG PCG
V\::g;;):t 21 4.35753252E-12 31 5.12507238E-11 20 4,11563815E-11
0=0.1 33 3.15452838E-02 61.5 3.15452846E-02 32 3.15452838E-02
0=0.05 33 4,91792781E-02 61.5 4,91792782E-02 33 4,91792782E-02
0=0.01 31 1.41685575E-03 575 1.41685573E-03 33 1.41685574E-03
0=0.001 33 6.12181025E-04 58 6.12181299E-04 33 6.12180972E-04
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Noise parameter = 0.1 Noise parameter = 0.05
249 P-1SSN: 2958-4612

Volume: 2, Issue: 3, July 2024
Manuscript Code: 776B

E-ISSN: 2959-5568




Academic Science Journal

Noise parameter = 0.01 Noise parameter = 0.001

We observe that even with a high level of noise 0.1 the approximate solution still have good accuracy
and have the same geometry of the exact solution, which confirm the stability of the proposed method.

Conclusion

We resolve the Helmholtz inverse Cauchy problem on an annular domain to retrieve the
unknown data on the border from the supplied data on the other accessible part. The polynomial
expansion of the solution, which implies to construct a linear system and solving this system
by (CGLYS),( BICGSTAB) and (PCG) is used to adapt the inverse Cauchy problem to solve a
direct problem. In order to demonstrate that the suggested technique may circumvent the inverse
Cauchy problem's ill-posedness, various cases are solved and the accuracy of (CGLS),(
BICGSTAB) and (PCG) are compared. By adding noise to the Cauchy data, the stability of the
approach is confirmed.
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