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Abstract 

In this work, an inverse Cauchy problem of the Helmholtz equation for thermal conductivity at 

the edge of the target was considered. In this paper, the temperature on the unknown boundary 

(the inner boundary) is determined by taking advantage of the Cauchy data that can be obtained 

from the known part, the part that can be reached (the outer boundary), This problem is solved 

numerically using the proposed method, and the stability of the approximate solution has been 

confirmed by adding noise to the Cauchy data. 

Key words: inverse Cauchy problem, modified Helmholtz equation, polynomial expansion, 

Conjugate Gradient Least Square Method (CGLS), Bi-Conjugate Gradients Stabilized Method 

(BICGSTAB), Preconditioned Conjugate Gradients Method (PCG).  

,الطرق العددية لحل مسألة كوشي العكسية لمعادلة هيلمهولتز باستخدام  𝑪𝑮𝑳𝑺 𝐁𝐈𝐂𝐆𝐒𝐓𝐀𝐁  و

𝐏𝐂𝐆 

 محمد عبود ةفاطمو  صلاح ابراهيم محمد

 جامعة ديالى -كلية العلوم  - قسم الرياضيات

 خلاصةال

في هذا العمل ، تم النظر في مشكلة كوشي العكسية لمعادلة هيلمهولتز للتوصيل الحراري عند حدود الهدف. في هذا البحث 

، سنحدد درجة الحرارة على الحدود غير المعروفة )الحد الداخلي( ، من خلال الاستفادة من بيانات كوشي التي يمكن 
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ليها من الجزء المعروف، الجزء الذي يمكن الوصول إليه )الحد الخارجي(. تم حل هذه المشكلة عدديًا باستخدام الحصول ع

 الطريقة المقترحة ، وتم التأكد من ثبات الحل التقريبي بإضافة ضوضاء لبيانات كوشي.

مشكلة كوشي العكسية ، معادلة هيلمهولتز المعدلة ، توسع متعدد الحدود ، طريقة التربيع الصغرى  الكلمات المفتاحية:

( ، طريقة التدرج المتقارن BICGSTAB( ، طريقة التدرجات المتقاربة المتقاربة )CGLSالمترافقة المتدرجة )

 (PCG)المشروطة مسبقًا 

Introduction 

Finding an unknown boundary and its resistive properties is one of the crucial applications in 

inverse problem design and optimization. This encourages us to solve an inverse Cauchy 

problem governed by a Helmholtz equation to determine the temperature on appear-shaped 

inner border inside an ellipse form domain. 

In this article, we take a look at the inverse problem, which entails estimating the temperature 

𝑡 on an inner border profiting from the given Cauchy data on the outer boundary (boundary 

temperature and heat flux). Assuming that the steady-state temperature 𝑡 satisfies the Helmholtz 

equation governing thermal conductivity at the target edge: 

 ∇2𝑡 + 𝑘2𝑡 = 0          Ω\𝐷 

Based on the knowledge of the Dirichlet temperature data 𝑡 and Neumann heat flux data 
𝜕𝑡

𝜕𝑛
 on 

the outer part of the boundary 𝜕Ω where 𝑛 is the outward unit normal at 𝜕Ω , and a boundary 

condition (Dirichlet, Neumann or Robin) on the boundary 𝜕D of D [18]. These kinds of 

problems are ill-posed. In reality, in Hadamard's view, a problem is well-posed if the existence, 

uniqueness, and stability of the solution are guaranteed [7]. Otherwise, the problem is ill-posed 

if the solution does not meet one of these requirements, in which case an inverse problem must 

be developed to address it. The inverse problem is typically thought to be more challenging to 

solve than the direct ones. 

In addition, the inverse problems are unstable [7], meaning that even a minor measurement 

mistake in the input data might result in a significant inaccuracy in the solution. Inverse 

Problems have recently been discussed in a number of scientific fields see Kubo, 1988 [16]. 

One of the inverse problem examples is the Cauchy problem. Chakib et al., 2018 [6], 
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Hernandez-Montero et al., 2019 [8], Isakov, 2017[12], Kabanikhin, 2012 [15], Lavrent'ev, 1986 

[17], Liu and Wang, 2018 [19], and Nachaoui et al., 2021 [21] are a few references to this. 

When it comes to these kinds of problems, the boundary conditions (Dirichlet, Neumann) are 

only known for a portion of the boundary (the accessible portion), while the other portion of 

the boundary lacks any available information, making it under-specified or inaccessible. 

To address this kind of problems, an appropriate method must be selected in order to lessen the 

ill-posedness of the studied problem. Numerous techniques have been developed during the 

past 20 years to solve the Cauchy problem for the Helmholtz equation. The truncation method 

Yang, 2019 [26], the conjugate gradient method Marin et al., 2003 [20], the meshless 

generalized finite difference method Hua et al., 2017 [9], and the fractional Tikhonov 

regularization method Qia and Feng, 2017[23] are a few of these methods that are used for this 

type of problems. 

In reality, the quality of approximation is significantly impacted by the reliance of the numerical 

solutions to the direct Helmholtz equation on the physical parameter; for additional information, 

see Ihlenburg and Babuka, 1995 and 1997 [10][12]. See [3], [4], [5], and [23] for several 

approaches that have been developed to solve the Cauchy Helmholtz equation for some large 

parameter. Jourhmane and Nachaoui, 1996 [13] suggested an alternating algorithm based on 

relaxation of alternating algorithms.  

According to Berdawood et al., 2021[2], an efficient relaxed alternating procedure proved the 

convergence for all values of wave numbers 𝑘 in the case of the Helmholtz equation and 

accelerated the convergence in the case of the modified Helmholtz equation. They also 

demonstrated that we can find an interval of relaxation parameter in which the convergence is 

guaranteed for any value wave number 𝑘. 

In order to approximate the solution of a Cauchy Problem for Helmholtz-type equation in a 

confined domain surrounded by a smooth boundary, the goal of this work is to investigate an 

approach based on polynomial expansion. In this study, a meshless method to approximate the 

temperature on the inaccessible inner boundary, following the method proposed by Rasheed et 

al. [24] in which they use it to solve an inverse Cauchy problem for Laplacian equation. This 

approach was also used by Jameel et al. in 2022 [14] and by Jameel [14]. The rest of this paper 
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is structured as follows. Section 2 reminds us of the inverse Cauchy problem for the Helmholtz 

equation. Section 3 of our paper provides our proposed approximation approach. In section 4, 

a few numerical techniques are examined and shown by using them for chosen cases.  

Inverse Cauchy problems for the Helmholtz equation  

The domain 𝛺 ⊂ ℝ2 with the boundary 𝛤 = 𝛤1 ∪ 𝛤2 

Γ1= {(r,𝜃)  ∶ 𝑟 = 𝜌𝑒(𝜃)    0 ≤  𝜃 ≤ 2𝜋} outer boundary 

and 

Γ2= {(r,𝜃)  ∶ 𝑟 = 𝜌𝑖(𝜃)    0 ≤  𝜃 ≤ 2𝜋 } inner boundary 

where 0 < 𝜌𝑒(𝜃) ≤ 1, 0 < 𝜌𝑖(𝜃) < 1. 

We take into account the inverse Cauchy problem for the Helmholtz equation, which is as 

follows 

∆𝑡(𝑥, 𝑦) + 𝑘2𝑡(𝑥, 𝑦) = 𝐹        Ω\𝐷        (1) 

𝑡(𝜌, 𝜃) = ℎ(𝜃)     𝑜𝑛 𝜕Ω =  Γ1           (2) 

𝜕𝑡

𝜕𝑛
(𝜌, 𝜃) = 𝑔(𝜃)       𝑜𝑛 𝜕Ω = Γ1        (3) 

Take note that 𝐹 is given on Ω\𝐷 and the accessible portion of the domain border contains the 

Cauchy data 𝑡(𝑥, 𝑦) and 𝜕𝑛𝑡(𝑥, 𝑦), Say ℎ(𝜃), 𝑔(𝜃) respectively. Two boundary criteria are 

stated for the part  Γ1. While no boundary condition is stated on Γ2. To ascertain the temperature 

𝑡 on the interior under-determined boundary, the inverse problem for the modified Helmholtz 

equation is formulated. Remembering that the following expression may be used to define the 

normal derivative of  , denoted by 𝜕𝑛𝑡 from [20] : 

𝜕𝑛𝑡(𝜌, 𝜃) = 𝜂(𝜃) [
𝜕𝑡(𝜌,𝜃)

𝜕𝜌
−

𝜌′

𝜌2

𝜕𝑡(𝜌,𝜃)

𝜕𝜃
]       (4) 
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𝜂(𝜃) =  
𝜌(𝜃)

√𝜌2(𝜃)+[𝜌′(𝜃)]2
         (5) 

The normal derivative 𝜕𝑛𝑡(𝑥, 𝑦) can be express𝑒𝑑  in terms of 𝜕𝑥𝑡 and 𝜕𝑦𝑡 by 

𝜕𝑛𝑡 = 𝜂(𝜃) [𝑐𝑜𝑠 (𝜃)  −
𝜌′

𝜌2
𝑠𝑖𝑛 (𝜃) ] 𝜕𝑥𝑡 + 𝜂(𝜃) [𝑠𝑖𝑛 (𝜃)  −

𝜌′

𝜌2
𝑐𝑜𝑠 (𝜃) ] 𝜕𝑦𝑡  (6) 

Approximation of Solution by a Polynomial Expansion 

The solution 𝑡(𝑥, 𝑦) is expressed as a polynomial expansion as follows: 

𝑡(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗 𝑥
𝑖−𝑗𝑦𝑗−1𝑖

𝑗=1
𝑚
𝑖=1         (7) 

To find 𝑡(𝑥, 𝑦), the coefficients 𝑐𝑖𝑗 must be determined the number of these coefficient is  

𝑛 =
𝑚(𝑚+1)

2
 , and the maximal order of above polynomial is 𝑚 − 1. Using equation (7) 

 we find 𝜕𝑥 𝑡(𝑥, 𝑦), 𝜕𝑦 𝑡(𝑥, 𝑦), and ∆𝑡 :    

𝜕𝑥 𝑡(𝑥, 𝑦) =  ∑ ∑ 𝑐𝑖𝑗 (𝑖 − 𝑗) 𝑥𝑖−𝑗−1𝑦𝑗−1𝑖
𝑗=1

𝑚
𝑖=1            (8) 

𝜕𝑦 𝑡(𝑥, 𝑦) =    ∑ ∑ 𝑐𝑖𝑗 (𝑗 − 1) 𝑥𝑖−𝑗𝑦𝑗−2𝑖
𝑗=1

𝑚
𝑖=1       (9) 

𝜕𝑥𝑥 𝑡 =   ∑ ∑ 𝑐𝑖𝑗 (𝑖 − 𝑗)(𝑖 − 𝑗 − 1) 𝑥𝑖−𝑗−2𝑦𝑗−1𝑖
𝑗=1

𝑚
𝑖=1      (10) 

𝜕𝑦𝑦 𝑡(𝑥, 𝑦) =   ∑ ∑ 𝑐𝑖𝑗 (𝑗 − 1)(𝑗 − 2)𝑥𝑖−𝑗𝑦𝑗−3𝑖
𝑗=1

𝑚
𝑖=1      (11) 

∆𝑡(𝑥, 𝑦) + 𝑘2𝑢(𝑥, 𝑦) = ∑ ∑ [𝑐𝑖𝑗(𝑖 − 𝑗)(𝑖 − 𝑗 − 1)𝑖
𝑗=1

𝑚
𝑖=1 𝑥𝑖−𝑗−2𝑦𝑗−1 +  

(𝑗 − 1) (𝑗 − 2)𝑥𝑖−𝑗𝑦𝑗−3] + 𝑘2𝑥𝑖−𝑗𝑦𝑗−1       (12) 

The coefficient 𝑐𝑖𝑗 in equation (7) is shown as an 𝑛-dimensional vector 𝑐 with component 𝑐𝑘 

where k=1,...,n. In reality, the coefficients 𝑐𝑖𝑗 are reordered taking into account that 𝑖 =

1, … ,𝑚 , 𝑗 = 1,… , 𝑖 for each index 𝑖, 𝑗. Assuming the formula 𝑘 =
𝑖(𝑖−1)

2
+ 𝑗 to correspond to 

one index 𝑘. The vector 𝑡 is given by the inner product of  𝑎𝑇 with 𝑐.  
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𝑡(𝑥, 𝑦) = [1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2  𝑥3𝑥2𝑦  𝑥𝑦2  𝑦3  … ]

[
 
 
 
 
 
𝑐1

𝑐2

𝑐3

.

.
𝑐𝑛]

 
 
 
 
 

= 𝑎𝑇     (13) 

replace(8) and (9) in to (6) gives us an expression of 𝜕𝑛𝑡 . Similarly, for each point on the 

accessible part of the boundary  Γ1 the normal derivative 𝜕𝑛𝑡 can be expressed as an inner 

product of a vector 𝑒 with 𝑐, such that the component 𝚤 − 𝑡ℎ of 𝑒 is given by: 

 𝑒𝑙 = 𝜂(𝜃) [(𝑖 − 𝑗)𝑥𝑖−𝑗−1𝑦𝑗−1 (cos(𝜃) −
𝜌′

𝜌2 sin(𝜃)) + (𝑗 − 1)𝑥𝑖−𝑗𝑦𝑗−2 (sin(𝜃) −
𝜌′

𝜌2 cos(𝜃))]   (14) 

For 𝚤 =1, …, 𝑛 and by keeping the same indices 𝑖, 𝑗  of the coefficients for those used to calculate 

𝑒𝚤from 𝑐𝑖𝑗. Now for each point in the domain the term ∆𝑢(𝑥, 𝑦) − 𝑘2𝑢(𝑥, 𝑦) can be expressed 

from (12) as an inner product of a vector 𝑑 with 𝑐, where the 𝚤 − 𝑡ℎ component 𝑑𝚤, 𝚤=1, …,𝑛 

and is given by:  

𝑑𝚤 = (𝑖 − 𝑗)(𝑖 − 𝑗 − 1)𝑥𝑖−𝑗−2𝑦𝑗−1 + (𝑗 − 1)(𝑗 − 2)𝑥𝑖−𝑗𝑦𝑗−3 − 𝑘2𝑥𝑖−𝑗𝑦𝑗−1           (15) 

Choosing 𝑛1 points on boundary  Γ1 , say (𝑥𝑖,𝑦𝑖) = (cos(𝜃𝑖) , sin(𝜃𝑖)), 𝑖 = 1,2, … 𝑛1 to verify 

the boundary condition (2)-(3) and also we take 𝑛2 points in the domain  Ω\𝐷, say (𝑥𝑗,𝑦𝑗) 𝑗 =

1,2, … 𝑛2 , to satisfy the equation (1), So we obtain the a linear system 

𝐴𝑐 = 𝑏                                         (16)     

The vector 𝑏 is of longer (2𝑛1 + 𝑛2) and 𝐴 is ((2𝑛1 + 𝑛2) ×
𝑚(𝑚+1)

2
 ) matrix given 

respectively by: 

A = [𝑎1
𝑇 ⋯𝑎𝑛1 

𝑇 𝑒1
𝑇 ⋯𝑒𝑛1

𝑇  𝑑1
𝑇 . . 𝑑𝑛2

𝑇 ], 𝑏 = [ℎ(𝜃1) ⋯ℎ(𝜃𝑛1)𝑔(𝜃1)⋯𝑔(𝜃𝑛1) 𝐹1 ⋯𝐹𝑛2
 ]    (17) 

Solving the linear System 

To solve the linear system 𝐴𝑐 = 𝑏, we use the well-known Conjugate Gradient least square 

method (CGLS) [1], Bi-conjugate Gradients Stabilized method (BICGSTAB) [25] and 

Preconditioned Conjugate Gradients Method (PCG)[1].  
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Stopping criterion 

The condition under which the algorithm can stop is crucial for any numerical approach, thus 

we selected the following stopping criteria 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 < 𝑇𝑜𝑙         (18) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 < 𝑇𝑜𝑙         (19) 

Additionally, we must specify the beginning data for the algorithms CGLS, BICGSTAB and 

PCG. To do this, we provide an educated approximation for 𝑡 on the under –specified boundary 

 Γ2 and in the initial iteration, the zero vector was used as an initial guess.  

Numerical Results and Discussion 

In this part, we examine a few cases and numerically resolve them to demonstrate the 

effectiveness of our suggested approach. Considering two cases of exact solution (polynomial 

and non-polynomial), this exact solution is used to calculate the function 𝐹, its trace ℎ and its 

normal derivative 𝑔 on  Γ1. Utilizing the precise supplied data on the accessible portion of the 

boundary Γ1, zero beginning data for solving the linear system using CGLS, BICGSTAB and 

PCG like-methods mentioned in sections 6.1 and 6.2, with appropriate tolerance and stopping 

criteria. 

1. Polynomial case  

In the following we study a Cauchy problem of Helmholtz equation with some polynomial 

exact solution. 

Example 1: Consider the Cauchy problem for a Helmholtz equation with exact 

solution𝑡(𝑥, 𝑦) = 6𝑥2𝑦2 − 𝑥4 − 𝑦4, defined by an ellipse form domain with a pear-shaped 

inner boundary  𝜌𝑒=(0.5 ∗ 0.4)/𝑠𝑞𝑟𝑡(0.25 ∗ (cos(𝜃))2 + 0.16 ∗ (sin(𝜃))2) and 𝜌𝑖 = 0.6 +

0.125 ∗ cos(3 ∗ 𝜃) i.e 𝛤1 = {(𝑥, 𝑦) : = 0.6 + 0.125 ∗ cos (3 ∗ 𝜃)}. With the following Cauchy 

data: ℎ = 6𝑥2𝑦2 − 𝑥4 − 𝑦4, 

𝑔 = 𝜂(𝜃) [𝑐𝑜𝑠 (𝜃)  −
𝜌′

𝜌2
𝑠𝑖𝑛 (𝜃) ] 𝜕𝑥𝑡 + 𝜂(𝜃) [𝑠𝑖𝑛 (𝜃)  −

𝜌′

𝜌2
𝑐𝑜𝑠 (𝜃) ] 𝜕𝑦𝑡 
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where 𝜌 changes at every 𝜃. We investigate many values for a different physical parameter. 

𝑘 = √15, √25.5, √52 . For the numerical calculations, we take: 

𝑛1 = 63, 𝑛𝑟 = 5, so 𝑛2 = 315, and 𝑚 = 2,… ,10 

contrasting the approximate solution produced by applying the CGLS, BICGSTAB and PCG 

algorithms with 𝑡𝑜𝑙 = 10−12. The obtained results are presented in tables 1,2,3 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Domain for Example 1 

 

Table 1: Results by CGLS, BICGSTAB and PCG for 𝑘 = √15 with 𝛽 = 2, different value of 

m and 𝑇𝑜𝑙 = 10−12 

𝒎 Iteration 

cgls 

Relative error 

cgls 

Iteration 

bicgstab 

Relative error 

bicgstab 

Iteration 

pcg 

Relative error 

pcg 

2 2 9.69532919E-01 1.5 9.69532919E-01 2 9.69532919E-01 

3 5 3.39222809E+00 4.5 3.39222809E+00 5 3.39222809E+00 

4 9 9.10773081E+00 10.5 9.10773081E+00 9 9.10773081E+00 

5 18 9.85279080E-13 25.5 3.35070376E-11 18 1.95296785E-11 

6 30 2.81320132E-11 90.5 1.53611473E-10 30 2.29419799E-10 

7 60 3.67254071E-12 406.5 6.14751311E-10 63 1.92803179E-09 

8 108 5.46202437E-10 2527.5 6.21897883E-10 121 4.99766518E-10 

9 273 1.18365009E-12 24335 1.92979054E-02 284 3.56822472E-10 

10 592 3.86602847E-10 8874 4.37307360E-04 651 7.77403825E-10 

 

For m=5 the relative error is equal 9.85279080E-13for CGLS, 3.35070376E-11 for 

BICGSTAB and 1.95296785E-11for PCG that is a good approximation .The mistakes and 
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comparison between the precise solution and the approximation obtained by CGLS, 

BICGSTAB, and PCG are shown in the figures below. 

 

  

Figure 2.a: Error by CGLS Figure 2.b: Error by BICGSTAB 

  

Figure 2.c: Error by PCG Figure 2.d: Comparison of exact and 

approximate solutions 

 

Now, we give the results for 𝑘 = √25.5 : 
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Table 2: Results by CGLS , BICGSTAB and PCG for 𝑘 = √25.5 with 𝛽 = 2, different value 

of 𝑚 and 𝑇𝑜𝑙 = 10−12 

𝒎 
iteration 

CGLS 

Relative Error 

CGLS 

iteration 

BICGSTAB 

Relative Error 

BICGSTAB 

iteration 

PCG 

Relative Error 

PCG 

2 2 9.69420047E-01 1.5 9.69420047E-01 2 9.69420047E-01 

3 5 1.33340696E+00 4.5 1.33340696E+00 5 1.33340696E+00 

4 9 6.90992732E+00 9 6.90992732E+00 9 6.90992732E+00 

5 20 1.49603744E-13 31 1.96529893E-10 20 4.00257780E-12 

6 39 1.30796757E-12 173 1.05715939E-09 38 7.94199652E-10 

7 65 2.70963175E-10 731.5 1.51869797E-10 77 1.75857159E-11 

8 125 1.10574178E-09 7383 2.68053074E-08 145 3.32221169E-09 

9 274 2.91417943E-09 11057 6.52970915E-04 306 3.35635603E-09 

10 683 1.00323558E-09 3018 6.28593345E-03 744 8.68182686E-10 

 

For m=5 the relative error is equal 1.49603744E-13 for CGLS, 1.96529893E-10 for BICGSTAB 

and 4.00257780E-12 for PCG that is a good approximation .The errors and comparison between 

the precise solution and the approximation obtained by CGLS, BICGSTAB, and PCG are 

shown in the figures below. 

 

 
 

Figure 3.a: Error by CGLS Figure 3.b: Error by BICGSTAB 
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Figure 3.c: Error by PCG Figure 3.d: Comparison of exact and 

approximate solutions 

Now, we give the results for 𝑘 = √52 : 

Table 3: Results by CGLS, BICGSTAB and PCG for 𝑘 = √52 with 𝛽 = 2, different value of 

m and 𝑇𝑜𝑙 = 10−12 

𝒎 
iteration 

CGLS 

Relative Error 

CGLS 

iteration 

BICGSTAB 

Relative Error 

BICGSTAB 

iteration 

PCG 

Relative Error 

PCG 

2 2 9.69379643E-01 1.5 9.69379643E-01 2 9.69379643E-01 

3 5 1.38826578E+00 5.5 1.38826578E+00 5 1.38826578E+00 

4 11 4.23033843E+00 9 4.23033843E+00 9 4.23033843E+00 

5 21 4.35753252E-12 31 5.12507238E-11 20 4.11563815E-11 

6 44 3.26990410E-11 333 5.95615615E-09 48 1.03247614E-10 

7 84 7.85962000E-12 4863 5.59334862E-02 92 3.07710603E-09 

8 149 3.03336161E-09 22230 2.74194244E-04 167 1.30555108E-08 

9 303 4.30665449E-08 4770 8.23429153E-02 367 1.25260905E-08 

10 597 1.27516694E-07 18948 2.71179222E-02 776 1.24895335E-07 

For m =6 the relative error is 1.49539075E-13 for CGLS and for m =5 the relative error is 

2.26265781E-11 for BICGSTAB and for m = 5 the relative error is 6.47774081E-13 for PCG 

which is an estimate Good approximation,  

Tables 1,2,3 show that the best accuracy for the approximate solutions are obtained for m =  5 

and this comes from the fact that we approximate a polynomial of degree 4 with a polynomial 

of degree 4, so it is normal to obtain the best accuracy for m = 5 and that the number of iterations 

and the accuracy for CGLS and PCG are importantly less than BiCGSTAB. 
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 Errors and comparison between the exact solution and the approximation obtained by CGLS, 

BICGSTAB and PCG are shown in the figures below: 

 

  

Figure 4.c: Error by BICGSTAB Figure 4.c: Error by CGLS 

  

Figure 4.d: Comparison of exact and 

approximate solutions 

Figure 4.c: Error by PCG 

2. Non-Polynomial case 

We examine a Cauchy problem of the Helmholtz equation with a non-polynomial exact 

solution. 
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Example 2: Consider the Cauchy problem for a Helmholtz equation with exact solution 

𝑡(𝑥, 𝑦) = e−𝑥2
, defined by an ellipse form domain with a pear-shaped inner boundary, 

i.e. 𝜌𝑒=(0.5 ∗ 0.4)/√(0.25(𝑐𝑜𝑠 (𝜃) )2 + 0.16(𝑠𝑖𝑛 (𝜃))2)and 𝜌𝑖 = 0.6 + 0.125 ∗ cos (3 ∗ 𝜃) 

i.e 𝛤1 = {(𝑥, 𝑦) : = 0.6 + 0.125 ∗ cos (3 ∗ 𝜃)}.  

It has the following Cauchy information. ℎ =  e−𝑥2
, 

𝑔 = 𝜂(𝜃) [𝑐𝑜𝑠 (𝜃)  −
𝜌′

𝜌2
𝑠𝑖𝑛 (𝜃) ] 𝜕𝑥𝑡 + 𝜂(𝜃) [𝑠𝑖𝑛 (𝜃)  −

𝜌′

𝜌2
𝑐𝑜𝑠 (𝜃) ] 𝜕𝑦𝑡 

where 𝜌 changes at every 𝜃. we investigate many values for a different physical parameter 𝑘 =

√15, √25.5, √52 . 

For the numerical calculations, we take 𝑛1 = 63, 𝑛𝑟 = 5, so 𝑛2 = 315, and 𝑚 = 2,… ,13 

contrasting the approximate solutions produced by applying the CGLS, BICGSTAB and PCG 

algorithms with 𝑡𝑜𝑙 = 10−12. The obtained results are presented in tables 4,5,6. 

 

 

 

 

 

 

 

 

 

Figure 5: The Domain for Example 2 
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Table 4: Results by CGLS, BICGSTAB and PCG for 𝑘 = √15 with 𝛽 = 2, different value of 

m and 𝑇𝑜𝑙 = 10−12 

𝒎 Iteration 

cgls 

Relative error 

cgls 

Iteration 

bicgstab 

Relative error 

bicgstab 

Iteration 

pcg 

Relative error 

pcg 

2 2 1.47463068E-01 1.5 1.47463068E-01 2 1.47463068E-01 

3 5 3.31231238E-02 4.5 3.31231238E-02 5 3.31231238E-02 

4 9 3.29642026E-02 9.5 3.29642026E-02 9 3.29642026E-02 

5 18 3.22516777E-04 19 3.22516766E-04 18 3.22516777E-04 

6 29 3.14273426E-04 77.5 3.14273141E-04 29 3.14273434E-04 

7 49 1.22428076E-06 595.5 1.22357213E-06 55 1.22428307E-06 

8 101 1.31388633E-06 2974.5 1.31395364E-06 104 1.31353407E-06 

9 162 3.18028524E-08 7285 3.06213643E-07 183 3.25695581E-08 

10 272 3.62244007E-08 4425 3.43652080E-07 288 3.67475545E-08 

11 336 4.24446052E-08 6847 3.04400651E-07 387 4.21250819E-08 

12 345 4.79378442E-08 12924 1.16325348E-07 400 4.75800336E-08 

13 327 4.53077398E-08 5382 1.63413495E-07 382 4.47996853E-08 
 

For m =9 the relative error is 3.18028524E-08 for CGLS and for m =12 the relative error is 

1.16325348E-07 for BICGSTAB and for m = 9 the relative error is 3.25695581E-08 for PCG 

which is a good approximation.  

 

Errors and comparison between the exact solution and the approximation obtained by CGLS, 

BICGSTAB and PCG are shown in the figures below: 

  

Figure 6.a: Error by CGLS Figure 6.a: Error by BICGSTAB 
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Figure 6.a: Error by PCG Figure 6.d: Comparison of exact and 

approximate solutions 

 

Table 5: Results by CGLS, BICGSTAB and PCG for 𝑘 = √25.5 with 𝛽 = 2, different value 

of m and 𝑇𝑜𝑙 = 10−12 

𝒎 
iteration 

CGLS 

Relative Error 

CGLS 

iteration 

BICGSTAB 

Relative Error 

BICGSTAB 

iteration 

PCG 

Relative Error 

PCG 

2 2 9.93673625E-02 1.5 9.93673625E-02 2 9.93673625E-02 

3 5 1.58060664E-02 4.5 1.58060664E-02 5 1.58060664E-02 

4 9 1.57611485E-02 8.5 1.57611485E-02 9 1.57611485E-02 

5 18 5.41541405E-04 35 5.41541394E-04 20 5.41541405E-04 

6 29 5.31214676E-04 141.5 5.31213317E-04 34 5.31214735E-04 

7 58 2.31101958E-06 1613.5 2.31864467E-06 63 2.31072472E-06 

8 96 1.75164694E-06 13378.5 1.74873071E-06 118 1.74910014E-06 

9 186 2.30112876E-08 10879 5.76782156E-07 198 2.44621869E-08 

10 206 3.81608613E-08 4445 5.70812873E-07 236 3.88050780E-08 

11 327 6.44041262E-08 4812 6.18768096E-07 316 1.05660154E-07 

12 322 7.17347975E-08 3409 6.22302027E-07 383 6.34466367E-08 
 

For m =9 the relative error is 2.30112876E-08 for CGLS and for m =11 the relative error is 

6.18768096E-07for BICGSTAB and for m = 9 the relative error is 2.44621869E-08 

For PCG which is an estimate Good approximation, Errors and comparison between the exact 

solution and the approximation obtained by CGLS, BICGSTAB and PCG are shown in the 

figures below: 
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Figure 7.a: Error by CGLS Figure 7.a: Error by BICGSTAB 

  

Figure 7.c: Error by PCG Figure 7.d: Comparison of exact and 

approximate solutions 

Table 6: Results by CGLS, BICGSTAB and PCG for 𝑘 = √52 with 𝛽 = 2, different value of 

m and 𝑇𝑜𝑙 = 10−12 

𝒎 
iteration 

CGLS 

Relative Error 

CGLS 

iteration 

BICGSTAB 

Relative Error 

BICGSTAB 

iteration 

PCG 

Relative Error 

PCG 

2 2 6.45718145E-02 1.5 6.45718145E-02 2 6.45718145E-02 

3 5 5.12308178E-03 4.5 5.12308178E-03 5 5.12308178E-03 

4 9 5.10957471E-03 8.5 5.10957471E-03 9 5.10957471E-03 

5 19 4.59842835E-04 32.5 4.59846311E-04 20 4.59842835E-04 

6 34 4.46434451E-04 379 4.46433914E-04 38 4.46434393E-04 

7 71 9.56118239E-06 908 1.45930965E-04 81 9.56127017E-06 

8 116 9.41077486E-06 4284 2.43564660E-05 132 9.41066435E-06 

9 222 5.01094248E-08 3781 5.26420672E-05 266 4.36082067E-08 

10 171 1.50441175E-06 4790 2.74399460E-05 273 2.03952743E-07 

11 227 1.89687572E-07 2871 3.61826295E-05 268 1.84779849E-07 

12 227 1.88584499E-07 2984 6.67681208E-05 271 1.76013413E-07 



  

 

248 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 3, July 2024 

Manuscript Code: 776B 

 

For m =9 the relative error is 5.01094248E-08 for CGLS and for m =8 the relative error is 

2.43564660E-05 for BICGSTAB and for m = 9 the relative error is 4.36082067E-08 for PCG 

which is an estimate Good approximation. 

Errors and comparison between the exact solution and the approximation obtained by CGLS, 

BICGSTAB and PCG are shown in the figures below 

 

  
Figure 8.a: Error by BICGSTAB Figure 8.a: Error by CGLS 

  
Figure 8.d: Comparison of exact and 

approximate solutions 

Figure 8.c: Error by PCG 

 

Tables 4,5,6 show that the best accuracy for the approximate solutions are obtained for m =  9 

for CGLS and PCG while for BiCGSTAB the best accuracy obtained for m=12,11, 8, for k =

√15 , √25.5 , √52  respectively, and that the number of iterations and the accuracy for CGLS 

and PCG are importantly less than BiCGSTAB. 
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Stability and effect of a noise  

The inverse problem is a type of problem caused by the gathered (measured) data, and as these 

data are subject to measurement errors, they may contain errors. Therefore, it is crucial to 

research how data noise affects the approximation of the solution. To do this, we apply noise 

to the Cauchy data using the following:  

ℎ(𝜃) = 𝑢𝑒𝑥(𝜌, 𝜃) + 𝜎 ∗ 𝑟𝑎 

For some measurement error deviation 𝜎 = 0.1, 0.01, 0.05, 0.001 and 𝑟𝑎𝑛𝑑 for a Gaussian 

error that is random 

Table 7: effects of noise on Cauchy data, using example 1 with physical parameter k = √52 , 

𝑛1 = 63, 𝑛2 = 315,, and Tol = 10−12. 

 
iteration 

CGLS 

Relative Error 

CGLS 

iteration 

BICGSTAB 

Relative Error 

BICGSTAB 

iteration 

PCG 

Relative Error 

PCG 

without 

noise 
21 4.35753252E-12 31 5.12507238E-11 20 4.11563815E-11 

 𝜎=0.1 33 3.15452838E-02 61.5 3.15452846E-02 32 3.15452838E-02 

 𝜎=0.05 33 4.91792781E-02 61.5 4.91792782E-02 33 4.91792782E-02 

 𝜎=0.01 31 1.41685575E-03 57.5 1.41685573E-03 33 1.41685574E-03 

 𝜎=0.001 33 6.12181025E-04 58 6.12181299E-04 33 6.12180972E-04 

  

  
Noise parameter = 0.05 Noise parameter = 0.1 
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Noise parameter = 0.001 Noise parameter = 0.01 

 

We observe that even with a high level of noise 0.1 the approximate solution still have good accuracy 

and have the same geometry of the exact solution, which confirm the stability of the proposed method. 

Conclusion  

We resolve the Helmholtz inverse Cauchy problem on an annular domain to retrieve the 

unknown data on the border from the supplied data on the other accessible part. The polynomial 

expansion of the solution, which implies to construct a linear system and solving this system 

by (CGLS),( BICGSTAB) and (PCG) is used to adapt the inverse Cauchy problem to solve a 

direct problem. In order to demonstrate that the suggested technique may circumvent the inverse 

Cauchy problem's ill-posedness, various cases are solved and the accuracy of (CGLS),( 

BICGSTAB) and (PCG) are compared. By adding noise to the Cauchy data, the stability of the 

approach is confirmed. 
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