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Abstract 

In this study, heat conduction in fin-related inverse problem of the modified Helmholtz equation 

was taken into consideration. The purpose of this study is to estimate the temperature on an 

under-specified boundary (a part of the outer border of a given domain) by using the Cauchy 

data, on a portion of the boundary that is accessible (boundary temperature and heat flux). The 

suggested meshless approach is used to numerically solve this problem. By injecting a noise to 

Cauchy data, the stability is verified. 

Key words: Inverse Cauchy Problem (ICP), Modified Helmholtz Equation (MHE), Polynomial 

Expansion, Preconditioned Conjugate Gradient Method (PCG), and Conjugate Gradient Least 

Square Method (CGLS). 

 

Introduction 

Finding an unknown obstacle and its resistive properties is one of the crucial applications in 

inverse problem design and optimization. This encourages us to solve an inverse Cauchy 

problem governed by a modified Helmholtz equation to determine the temperature on the 

inner boundary of an annular region. 

In this paper, we examine the inverse problem, which involves estimating the temperature u at 

the inner boundary of an annular domain from Cauchy data on the outer boundary (boundary 
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temperature and heat flux), assuming that the steady state temperature u satisfies the modified 

Helmholtz equation governing the heat conduction in a fin. 

∇2𝑢 − 𝑘2𝑢 = 0 ,    𝛺 𝐷⁄  

When the domain 𝛺 𝐷⁄  is a subset of 𝑅2, 𝛺 is an annular subset ,𝐷 is a defect which is also an 

anular subset of 𝑅2. 

Based on the knowledge of the boundary conditions5 on the boundary 𝜕𝐷  of 𝐷  and the 

knowledge of the Dirichlet temperature data  
𝜕𝑢

𝜕𝑛
  and Neumann heat flux data on the outer half 

of the boundary 𝜕𝛺  of Ω , where 
𝜕𝑢

𝜕𝑛
 is outward unit normal at [Lesnic & Bin-Mohsin, 

2004,[20]]. These kinds of problems are ill-posed. In reality, a problem is well-posed in the 

sense of Hadamard if a unique, stable solution exists. If the solution does not satisfy one of 

these characteristics, the problem is ill-posed, and an inverse problem must be formulated to 

solve it. In contrast to direct problems, the inverse problem is typically known to be more 

challenging to solve. 

When m increases, the error decreases up to the optimal m and then increases as it moves away 

from the optimal solution. 

In addition, the inverse problems are unstable, Hadamard, 1923, [10], meaning that even a 

minor measurement error in the input data might result in a significant inaccuracy in the 

solution. Inverse problems have recently been considered in a number of scientific fields [18]. 

One of the inverse problem examples is the inverse Cauchy problem [25], [Hernandez 

[11]],[Lavrent'ev, 1986,[19], [21], and [Nachaoui et al., 2021[25]] are some references to this. 

In this type of problems, the boundary conditions (Dirichlet, Neumann) are only known for a 

portion of the boundary (the accessible portion), while the remaining portion of the boundary 

has no information, which makes it under-specified or inaccessible. 

In order to avoid the ill-posedness of this kind of problem, a suitable algorithm must be selected 

for these problems. The Cauchy problem of the Helmholtz equation has been solved using a 

variety of techniques over the past 20 years. We will now briefly review a few of these 

techniques, including the truncation method [28], the conjugate gradient method (Marin et al., 

2003,[24]), the meshless generalized finite difference method (Hua et al., 2017,[12]), the 
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Landweber method (Yang et al., 2017,[28]), and the fractional Tikhonov regularization method 

(Qian & Feng, 2017,[26]). 

In fact, the quality of approximation is significantly impacted by the direct Helmholtz equation 

numerical solutions' dependency on the physical parameter𝑘; for additional information, see 

[Ihlenburg & Babuska, 1995,[15].  [Berntsson et al., 2014, 2017, 2018,[5]], and [Qian & Feng, 

2017,[26]] for some approaches that have been suggested to solve the Cauchy Helmholtz 

equation for some large parameters k. [Jourhmane & Nachaoui, 1996] suggested an alternating 

algorithm based on the relaxation of alternating algorithms. In [Berdawood et al., 2021[3]], the 

authors demonstrated that an efficient relaxed alternating approach proved the convergence for 

all values of wave number k in the case of the Helmholtz equation and accelerated the 

convergence in the case of the modified Helmholtz equation. 

In order to approximate the solution of a Cauchy problem for a modified Helmholtz-type 

equation in a bounded domain surrounded by a smooth boundary, the goal of this work is to 

investigate an approach based on polynomial expansion. In this work, the meshless method 

suggested by Rasheed et al. [Rasheed et al. 2021,[27]] is used to approximate the temperature 

on the inaccessible inner boundary. This approach was well considered by Rasheed et al. in 

2021,[27], to solve an inverse Cauchy problem and by Jameel et al. in 2022,[16], to solve a 

Cauchy problem Helmholtz equation. 

The paper proceeds as follows. Section 2 presents basic definitions of the inverse Cauchy 

problem for the modified Helmholtz equation. Section 3 provides our proposed approximation 

method. In section 4, we solving two different examples numerically by using CGLS and PCG 

to solve the linear system. 

Inverse Cauchy problem for the modified Helmholtz equation 

Consider the domain with 𝛺 𝐷⁄  ⊂ 𝑅2 where 

Ω={(r,𝜃): 0≤ 𝑟 < 1,     0 ≤ 𝜃 ≤ 2𝜋} 

𝐷={(r,𝜃): 0≤ 𝑟 < 𝛽,     0 ≤ 𝛽 < 1, 0 ≤ 𝜃 ≤ 2𝜋}  

The domain 𝛺 ⊂ R2 has as boundary ∂Ω = Ґ𝟏 ∪ Ґ𝟐 with 

Ґ1 = {(𝑟, 𝜃)    ∶ 𝑟 = 𝜌𝑒(𝜃)       0 ≤ 𝜃 ≤ 2𝜋} outer boundary 

Ґ2 = {(𝑟, 𝜃)    ∶ 𝑟 = 𝜌𝑖(𝜃)       0 ≤ 𝜃 ≤ 2𝜋} inner boundary 
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We consider the inverse Cauchy problem for the modified Helmholtz equation given in the 

following 

∆𝑢(𝑥, 𝑦) − 𝑘2𝑢(𝑥, 𝑦) = 𝐹               𝛺 𝐷⁄                                                                             (1) 

 𝑢(𝜌, 𝜃) = ℎ(𝜃)                     𝑜𝑛 𝜕𝛺 = Ґ1                                                                              (2) 

𝜕𝜇

𝜕𝑛
(𝜌, 𝜃) = 𝑔(𝜃)               𝑜𝑛 𝜕𝛺 = Ґ1                                                                                   (3) 

When the domain 𝛺 𝐷⁄  is a subset of 𝑅2, 𝛺 is an annular subset ,𝐷 is a defect which is also an 

anular subset of 𝑅2. 

Note On the portion of the domain boundary that is available, Cauchy data 𝑢(𝑥, 𝑦)  and 

𝜕𝑛𝑢(𝑥, 𝑦) are provided. where the functions h(𝜃) and g(𝜃) are given  

The part Ґ2 of the boundary is underdetermined, component Ґ1 is (overdetermined) and has two 

boundary conditions (no boundary condition is specified). To establish the temperature 𝑢 on 

the inner boundary with an underdetermined value of Ґ2 , the inverse problem for the modified 

Helmholtz equation is formulated. 

Remembering that Rasheed et al. (2021) and Liu and Kuo (2016) provide the following 

expressions for the normal derivative of u, denoted by 𝜕𝑛𝑢: 

𝜕𝑛𝑢(𝜌, 𝜃) = ƞ(𝜃)[
𝜕𝑢(𝜌,𝜃)

𝜕𝜌
−

𝜌′

𝜌2

𝜕𝑢(𝜌,𝜃)

𝜕𝜃
]                                                                                 (4)                                                                                                    

ƞ(𝜃) =
𝜌(𝜃)

√𝜌2(𝜃)+[𝜌′(𝜃)]2
                                                                                                           (5)                                                                                                                                    

We may also express the normal derivative 𝜕𝑛𝑢(𝑥, 𝑦) by 𝜕𝑛𝑢 in terms of 𝜕𝑥𝑢 and 𝜕𝑦𝑢. 

𝜕𝑛𝑢 = ƞ(𝜃)[cos cos(𝜃) −
𝜌′

𝜌2 sin sin(𝜃)] 𝜕𝑥𝑢 + ƞ(𝜃)[sin sin(𝜃) −
𝜌′

𝜌2 cos cos(𝜃)]𝜕𝑦𝑢      (6) 

 

Approximation of the solution by polynomial expansion 

The solution 𝑢(𝑥, 𝑦) can be expressed as a polynomial expansion 

𝑢(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖−𝑗
𝑖

𝑗=1

𝑚

𝑖=1
𝑦𝑗−1 

(7) 

                                                                                                     

The coefficients 𝑢(𝑥, 𝑦) must be established in order to find 𝑐𝑖𝑗. The total number of these 

coefficients is 𝑛 =
𝑚(𝑚−1)

2
, while the aforementioned polynomial's highest order is 𝑚 − 1.    
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Equation (8) allows us to determine 𝜕𝑥𝑢(𝑥, 𝑦), 𝜕𝑦𝑢(𝑥, 𝑦), 𝑎𝑛𝑑 ∆𝑢 

 𝜕𝑥𝑢(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗(𝑖 − 𝑗)𝑥𝑖−𝑗−1𝑖
𝑗=1

𝑚
𝑖=1 𝑦𝑗−1                                                                      (8)                                                                                     

𝜕𝑦𝑢(𝑥, 𝑦)  =∑ ∑ 𝑐𝑖𝑗(𝑗 − 1)𝑥𝑖−𝑗𝑖
𝑗=1

𝑚
𝑖=1 𝑦𝑗−2                                                                           (9)                                                                                                   

∆𝑢(𝑥, 𝑦) − 𝑘2𝑢(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗[(𝑖 − 𝑗)(𝑖 − 𝑗 − 1)𝑥𝑖−𝑗−2𝑖
𝑗=1

𝑚
𝑖=1 𝑦𝑗−1 + (𝑗 − 1)(𝑗 −

2)𝑥𝑖−𝑗𝑦𝑗−3 − 𝑘2(𝑥𝑖−𝑗𝑦𝑗−1)                                                                                                (10)                                                                                                                                                      

Initially, the coefficients in (8) 𝑐𝑖𝑗  can be written as an n-dimensional vector 𝑐  with the 

components 𝑐𝑘,𝑘=1,…….𝑛 . The coefficients 𝑐𝑖𝑗 are really rearranged by taking 𝑖 = 1, … . 𝑚 and 

𝑗 = 1, … . , 𝑖  into account, with each index 𝑖𝑗  corresponding to one index 𝑘  by taking 𝑘 =

𝑖(𝑖−1)

2
+ 𝑗. The vector 𝑎𝑇 with inner product can be used to express the phrase 𝑢(𝑥, 𝑦). 

 𝑢(𝑥, 𝑦) = [1 𝑥  𝑦  𝑥2 𝑥𝑦  𝑦2  𝑥3𝑥2𝑦  𝑥𝑦2  𝑦3 … 𝑦𝑚−1][c1c2  … c𝑛 ]𝑇 = 𝑎𝑇𝑐                     (11) 

When we substitute (8) and (9) into (6), we get an expression for 𝜕𝑛𝑢. The normal derivative 

𝜕𝑛𝑢 can also be represented for each point on the accessible portion of the boundary Ґ1 as the 

inner product of a vector e with c, where the 𝑙 − 𝑡ℎ component of e is given by: 

𝑒𝑙 = ƞ(𝜃)[(𝑖 − 𝑗)𝑥𝑖−𝑗−1𝑦𝑗−1(cos 𝜃) −
𝜌′

𝜌2 sin(𝜃)) + (𝑗 − 1)𝑥𝑖−𝑗𝑦𝑗−2 (sin 𝜃) −
𝜌′

𝜌2 cos(𝜃))]                

(12) 

Keeping the same coefficients 𝑖, 𝑗 for those who used 𝑐𝑖 𝑗 to derive 𝑒𝑙 for 𝑙 = 1, . . . , 𝑛. Now, 

from (10)  the term ∆𝑢(𝑥, 𝑦) − 𝑘2𝑢(𝑥, 𝑦) can be stated for each point in the domain as the inner 

product of a vector d with c, where the 𝑙 − 𝑡ℎ component, 𝑙=1,...,n, is given by 

𝑑𝑘 = (𝑖 − 𝑗)(𝑖 − 𝑗 − 1)𝑥𝑖−𝑗−2𝑦𝑗−1 + (𝑗 − 1)(𝑗 − 2)𝑥𝑖−𝑗𝑦𝑗−3 − 𝑘2(𝑥𝑖−𝑗𝑦𝑗−1)            (13)                               

The boundary condition (2)–(3) is verified by selecting n1 points on boundary Ґ1, say (𝑥𝑖, 𝑦𝑗) =

(r cos(𝜃𝑖), r sin(𝜃𝑖)), 𝑎𝑛𝑑 𝑖 = 1,2, … . . 𝑛1   . We also select 𝑛2 points in the domain 𝛺 𝐷⁄ , say 

(𝑥𝑗,𝑦𝑗) and 𝑗 = 1, … . . , 𝑛2 (to meet the equation) (1), 

As a result, we have the linear system 𝐴𝑐 = 𝑏                                                                 (14)                                                                                        

The vector 𝒃 is hence longer (2𝑛1 + 𝑛2) × 1  and 𝑨 is  (2𝑛1 + 𝑛2) ×
𝑚(𝑚+1)

2
   matrix provided 

in each case by: 

        𝑨 = [𝑎1 … 𝑎𝑛1𝑒1. . 𝑒𝑛1𝑑1. . 𝑑𝑛2]𝑇 
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        𝒃 = [ℎ(𝜃1) … ℎ(𝜃𝑛1)𝑔(𝜃1) … 𝑔(𝜃𝑛1) … , 𝐹(θ𝑛1)]𝑇 
                                      (15) 

Solving the linear system 

In order to solve the linear system 𝐴𝑐 = 𝑏 , we employ the widely used Preconditioned 

Conjugate Gradient Method (PCG) and the Conjugate Gradient least square method (CGLS). 

1. Algorithms of the Preconditioned Conjugate Gradient method (PCG) and the 

Conjugate Gradient least square method (CGLS)   

Preconditioned Conjugate Gradient method will at first be described as an iterative method to 

solve a linear system of equations Ax=b , A ∈  𝑅𝑛,𝑛 symmetric and positive definite . 

Preconditioned Conjugate Gradient method (PCG) 

 

Conjugate Gradient least square method (CGLS) 

 

Algorithm 1: Preconditioned Conjugate Gradient 

method (PCG) 

1. let 𝛼𝑘+1 = 𝑟𝑘
𝑇𝑧𝑘 (𝑝𝑘+1

𝑇 𝑤)⁄  

2. let 𝒙𝒌+𝟏 = 𝒙𝒌 + 𝜶𝒌+𝟏𝒑𝒌+𝟏  

3. let 𝒓𝒌+𝟏 = 𝒓𝒌 − 𝜶𝒌+𝟏𝒘 

4. let 𝒑𝒌+𝟏 = 𝒛𝒌 + 𝜷𝒌𝒑𝒌 

5. let 𝜷𝒌 = 𝒓𝒌
𝑻𝒛𝒌 (𝒓𝒌−𝟏

𝑻 𝒛𝒌−𝟏)⁄  

6. let 𝒌 = 𝒌 + 𝟏 

7. repeat the prior actions until convergence 

Algorithm 2: Conjugate Gradient least Square 

Method (CGLS)  

1. let  𝛼𝑘 =
ǁ𝑟𝑘ǁ2

2

(𝑝𝑘
𝑇𝐴𝑇)(𝐴𝑝𝑘)

 

2. let  𝒙𝒌+𝟏 = 𝒙𝒌 + 𝜶𝒌𝒑𝒌𝛁 

3. let 𝒓𝒌+𝟏 = 𝑨𝑻𝒔𝒌+𝟏 

4. 𝒑𝒌 = −𝒓𝒌 + 𝜷𝒌−𝟏𝒑𝒌−𝟏 

5. let 𝜷𝒌 =
ǁ𝒓𝒌+𝟏ǁ𝟐

𝟐

ǁ𝒓𝒌ǁ𝟐
𝟐  

6. let 𝒌 = 𝒌 + 𝟏 

7. repeat the prior actions until convergence 

 

 

2. Stopping criterion and Initial guess 

The condition under which the algorithm can stop is crucial for any numerical approach, so we 

selected the following halting criteria: 

                                                                         ǁ𝑟𝑖ǁ < 𝑇𝑜𝑙                                                    (16) 

                                                                         
ǁ𝑟𝑖ǁ

ǁ𝑏ǁ
< 𝑇𝑜𝑙                                                     (17) 

Polynomials exact solution.  

Here, we examine a Cauchy problem with a modified Helmholtz equation and an exact 

polynomial solution. 
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Example (1) 

We consider the Cauchy problem for a modified Helmholtz equation with exact solution 

𝑢(𝑥, 𝑦) = 6𝑥2𝑦2 − 𝑥4 − 𝑦4 , defined in an annular domain with constant radius 𝜌𝑒 =

1 𝑎𝑛𝑑 𝛽 = 0.5. This problem is over –specified on the following cases of the outer boundary 

Case 1:  Ґ1 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 = 0.5}  

Case 2: Ґ2 = {(𝑟, 𝜃):r(𝜃) =0.6+0.125cos(3𝜃)} 

for which we have the following Cauchy data ℎ = 6𝑥2𝑦2 − 𝑥4 − 𝑦4, 𝑔 =  (12𝑥𝑦2 −

4𝑥3) cos(𝜃) + ( 12𝑥2𝑦 − 3𝑦2) sin( 𝜃) . We study different cases for a different physical 

parameter 𝑘. For the numerical computations, we take 𝑛1 = 100, 𝑛𝑟 = 5  , 𝑛2 = 500 and so 

we take 𝑚 =2,……,10 .we compare the results obtained by using the both algorithms CGLS 

and PCG with 𝑡𝑜𝑙 = 10−10. 

Tables 1 and 2 show the results for the first case of the boundary for the cases 𝑘 =√15, 𝑘 =√52. 

Table 1: 𝑘 = √15 

𝑚 No. of 

iteration 

Error BY CGLS No. of 

iteration 

Error BY PCG 

2 3 1.00007397E+00 3 1.00007397E+00 

3 7 1.00324586E+00 7 1.00324586E+00 

4 14 1.04196701E+00 14 1.04196701E+00 

5 28 2.95804831E-11 29 2.25815537E-12 

6 58 6.08808211E-12 60 3.45335585E-10 

7 131 3.44553652E-10 147 1.41125096E-10 

8 296 4.64675328E-09 361 6.26365606E-08 

9 694 9.08278950E-06 983 8.78152914E-06 

10 1647 2.85148476E-03 3497 2.10013063E-05 

 

In table.1, we note that the best accuracy is obtained for 𝑚 = 5  ,for both CGLS and PCG. 
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a)The domain of the problem b) Error with CGLS 

  
c) Error with PCG d) Exact and Approximate solutions 

Figure 1: The domain, the errors with CGLS and PCG and a comparision between the 

exact and approximate solutions for Example (1) with : 𝑘 = √15 for (case 1). 

 

In the following table the results corresponding the case k=√52: 

Table 2: k=√52 

𝑚 No. of 

iteration 

Error BY CGLS No. of 

iteration 

Error BY PCG 

2 3 1.00001827E+00 3 1.00001827E+00 

3 7 1.00001827E+00 6 1.00001827E+00 

4 13 1.00752609E+00 13 1.00752609E+00 

5 25 1.42355190E-13 25 8.19791073E-14 

6 53 1.64180877E-10 54 3.49139718E-13 

7 110 9.22068630E-13 111 2.84713698E-11 

8 244 5.55458255E-10 240 1.12013124E-08 

9 573 5.43878795E-08 681 5.14157750E-09 

10 1225 1.35007689E-04 1574 1.28703861E-06 

For table 2, we note the same remark as table 1. In the following the figures in which we present, 

the domain, a comparison between the exact solution and the approximate solution with CGLS 

and PCG and the error for these two methods.  
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In the following figures in which we present, the domain, a comparison between the exact 

solution and the approximate solution with CGLS and PCG and the error for these two methods.  

  

a)The domain of the problem b) Error with CGLS 

  

c) Error with PCG d) Exact and Approximate solutions 

Figure 2: The domain, the errors with CGLS and PCG and a comparision between the 

exact and approximate solutions for Example (1) with : 𝑘 = √52 for (case 1). 

 

Tables 3 and 4 show the results for case 2 of the boundary for the 𝑘 =√52, 𝑘 =√100. 
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Table 3: 𝑘 =√52 

Error BY PCG No. of iteration Error BY CGLS No. of iteration      𝑚 

2 3 9.39589272E-01 3 9.39589272E-01 

3 7 9.38570919E-01 6 9.38570919E-01 

4 14 9.31686911E-01 13 9.31686911E-01 

5 26 8.74862082E-11 26 1.02796244E-10 

6 48 1.60024323E-10 49 1.75617533E-09 

7 100 1.84545729E-09 102 2.94427577E-09 

8 212 4.49414480E-10 213 3.50778640E-09 

9 487 1.04670877E-08 509 7.15219700E-09 

10 907 1.09639801E-04 1006 1.09259481E-04 

In table.3, we note that the best accuracy is obtained for 𝑚 = 5  ,for both CGLS and PCG. In 

the following the figures for this case: 

   
a)The domain of the problem b) Error with CGLS 

  
c) Error with PCG d) Exact and Approximate solutions 

Figure 3: The domain, the errors with CGLS and PCG and a comparision between the 

exact and approximate solutions for Example (1) with : 𝑘 = √52 for (case 2). 
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Now, we present the table and the figures for 𝑘=√100: 

Table 4:   𝑘=√100 

𝒎 No. of 

iteration 

Error BY CGLS No. of 

iteration 

Error BY PCG 

2 3 9.41288071E-01 3 9.41288071E-01 

3 7 9.41484415E-01 6 9.41484415E-01 

4 14 8.19169114E-01 14 8.19169114E-01 

5 26 2.64346704E-10 27 1.90613455E-13 

6 55 3.23110272E-10 56 3.86034711E-12 

7 110 4.10298918E-09 107 1.19666373E-08 

8 232 7.07434255E-09 227 3.03141158E-09 

9 522 2.21902176E-05 491 2.19547762E-05 

10 737 1. 32608351E-03 727 1.32643012E-03 

 

For table 4, we note the same remark as table 3. In the following the figures in which we present, 

the domain, a comparison between the exact solution and the approximate solution with CGLS 

and PCG and the error for these two methods. 

    

a)The domain of the problem b) Error with CGLS 
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c) Error with PCG d) Exact and Approximate solutions 

Figure 4: The domain, the errors with CGLS and PCG and a comparision between the 

exact and approximate solutions for Example (1) with : 𝑘 = √100 for (case 2). 

 

We note that the tables (1,2,3,4) and the figures (1,2,3,4) show that the approximate solutions 

for the different case of the domain are obtained with high accuracy for the polynomial exact 

solution. 

Non-Polynomial exact solution 

Here, we examine a Cauchy problem with a non-polynomial exact solution arising from a 

modified Helmholtz equation. 

Example (2): The Cauchy issue for a modified Helmholtz equation with an exact solution is 

taken into consideration 𝑢(𝑥) = 𝑒𝑥𝑝(−𝑥2) defined in an annular domain with the constant 

radius 𝑝𝑒 = 1and 𝛽 = 0.5. This problem is over –specified on the following cases of the outer 

boundary 

Case 1:  Ґ1 = {(x, y): x2 + y2 = 0.5} 

Case 2: Ґ2 = {(r, θ):r(θ) =0.6+0.125cos(3θ)} 

we have the following Cauchy data ℎ = exp (−𝑥2) , 𝑔 = −2𝑥 exp(−𝑥2) cos(𝜃)  . we study 

different cases for a different physical parameter 𝑘 . For the numerical computations, we take 
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𝑛1 = 100 , 𝑛𝑟 = 5 , 𝑎𝑛𝑑 𝑠𝑜 𝑛2 = 500  and we take m = 2,3,4,………,15 we compare the 

results obtained by using the both algorithms CGLS and PCG with 𝑡𝑜𝑙 = 10−12 

Tables 9 and 10 show the results for the first case of the boundary for the cases 𝑘 =√15, 𝑘 

=√25.5 . 

Table 5:𝑘 =√15 

𝑚 No. of iteration ERROR BY CGLS No. of iteration ERROR BY PCG 

2 3 2.40310943E-01 3 2.40310943E-01 

3 7 1.00911166E-01 7 1.00911166E-01 

4 13 1.30569379E-01 13 1.30569379E-01 

5 26 4.87765441E-03 28 4.87765441E-03 

6 57 9.01933329E-02 57 9.01933306E-02 

7 120 1.44893838E-03 135 1.44877010E-03 

8 204 7.58319767E-03 283 7.63147619E-03 

9 284 1.22165895E-03 337 1.22131928E-03 

10 341 1.22446828E-03 447 1.22422863E-03 

11 281 1.76430500E-03 320 1.76414944E-03 

12 259 1.76654578E-03 322 1.76643371E-03 

13 360 1.39214603E-03 457 1.39128816E-03 

14 364 1.39264445E-03 315 1.77214197E-03 

15 309 1.62019373E-03 327 1.77287526E-03 

 

In table.5, we note that the best accuracy is obtained for 𝑚 = 9  ,for both CGLS and PCG. 

    

a)The domain of the problem b) Error with CGLS 
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Table 6:  𝑘= √25.5 

𝑚 No. of iteration Error BY CGLS No. of iteration Error BY PCG 

2 3 1.89728008E-01 3 1.89728008E-01 

3 7 5.27236034E-02 7 5.27236034E-02 

4 14 5.85511176E-02 13 5.85511176E-02 

5 27 5.64799730E-03 27 5.64799730E-03 

6 57 3.61758072E-02 57 3.61758073E-02 

7 121 5.12477470E-04 125 5.12476647E-04 

8 218 8.92226699E-03 246 8.92228208E-03 

9 206 4.00790493E-04 220 4.00872462E-04 

10 220 4.26889835E-04 247 4.26884065E-04 

11 266 4.91682224E-04 358 4.56434414E-04 

12 296 4.57337142E-04 354 4.57312958E-04 

13 255 5.02553139E-04 294 5.02525230E-04 

14 257 5.02798818E-04 292 5.02773686E-04 

15 289 4.56410238E-04 290 5.02733660E-04 

 

For table 6, we note the same remark as table 5. In the following figures in which we present, 

the domain, a comparison between the exact solution and the approximate solution with CGLS 

and PCG and the error for these two methods.  

In the following figures in which we present, the domain, a comparison between the exact 

solution and the approximate solution with CGLS and PCG and the error for these two methods.  

  

c) Error with PCG d) Exact and Approximate solutions 

Figure 5: The domain, the errors with CGLS and PCG and a comparision between the exact 

and approximate solutions for Example (2) with : 𝑘 = √15 for (case 1). 
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a)The domain of the problem b) Error with CGLS 

  

c) Error with PCG d) Exact and Approximate solutions 

 

Figure 6: The domain, the errors with CGLS and PCG and a comparision between the 

exact and approximate solutions for Example (2) with : 𝑘 = √25.5 for (case 1). 

 

 

Tables 7 and 18 show the results for case 2 of the boundary for the cases 𝑘 =√52, 𝑘 =√100 . 

 

 

 



  

 

239 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 1, January 2025 

 
 
 
 

Table 7: 𝑘=√52 

𝑚 No. of iteration Error BY CGLS No. of iteration Error BY PCG 

2 3 2.15970724E-01 3 2.15970724E-01 

3 7 3.96251795E-02 7 3.96251795E-02 

4 14 4.37382993E-02 13 4.37382993E-02 

5 26 7.75588663E-03 26 7.75588662E-03 

6 54 1.44125730E-02 51 1.44125730E-02 

7 113 2.43931965E-03 108 2.43931965E-03 

8 225 5.50117327E-03 223 5.50117162E-03 

9 325 9.12283326E-04 340 9.12337376E-04 

10 398 1.44548332E-03 464 1.44595826E-03 

11 350 9.05008495E-04 389 8.82823297E-04 

12 400 7.09539684E-04 443 7.09208938E-04 

13 396 7.61892186E-04 395 7.79435433E-04 

14 392 8.15189756E-04 411 8.15160645E-04 

15 395 8.12714219E-04 403 8.12738599E-04 

 

In table. 7, we note that the best accuracy is obtained for 𝑚 = 12  ,for both CGLS and PCG. 

 

    

a)The domain of the problem b) Error with CGLS 
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c) Error with PCG d) Exact and Approximate solutions 

Figure 7: The domain, the errors with CGLS and PCG and a comparision between the 

exact and approximate solutions for Example (2) with : 𝑘 = √52 for (case 2). 

 

Table 8: 𝑘=√100 

𝑚 No. of iteration Error by CGLS No. of iteration Error by PCG 

2 3 2.00972037E-01 3 2.00972037E-01 

3 7 2.75673714E-02 7 2.75673714E-02 

4 13 2.87995425E-02 13 2.87995425E-02 

5 26 4.40271831E-03 26 4.40271830E-03 

6 55 5.19194429E-03 51 5.19194301E-03 

7 112 5.22628870E-04 107 5.22623594E-04 

8 235 1.32910153E-03 226 1.32909980E-03 

9 292 1.79000941E-04 287 1.78948136E-04 

10 414 2.13705172E-04 408 2.13566766E-04 

11 361 1.85345408E-04 345 1.85398457E-04 

12 426 4.38836717E-05 302 9.44224662E-05 

13 427 6.52202274E-05 416 6.52283017E-05 

14 418 6.06519942E-05 414 6.06716409E-05 

15 426 5.35099023E-05 416 5.35081220E-05 

 

For table 8, we note the same remark as table 7. In the following the figures in which we present, 

the domain, a comparison between the exact solution and the approximate solution with CGLS 

and PCG and the error for these two methods.  

In the following the figures in which we present, the domain, a comparison between the exact 

solution and the approximate solution with CGLS and PCG and the error for these two methods.  
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a)The domain of the problem b) Error with CGLS 

 
 

c) Error with PCG d) Exact and Approximate solutions 

Figure 8: The domain, the errors with CGLS and PCG and a comparision between the 

exact and approximate solutions for Example (2) with : 𝑘 = √100 for (case 2). 

 

We note that the tables (5,6,7,8) and the figures (5,6,7,8) show that the approximate solutions 

for the different case of the domain are obtained with high accuracy for the non-polynomial 

exact solution. 
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Stability and effect of a noise 

The inverse problem is a type of issue caused by the collected (measured) data, and as these 

data may contain errors as a result of measurement mistake. The impact of a data noise on the 

approximation of the answer must therefore be studied. For this, we apply noise using the 

following form to the Cauchy data: 

ℎ(𝜃) = 𝑢𝑒𝑥(𝜌, 𝜃) + 𝜎 ∗ 𝑟𝑎𝑛𝑑 

In general, in practical life matters, readings are taken using measuring instruments, and 

sometimes errors occur in the reading, so data is given with noise, an increase or decrease from 

the exact value of the measurement. Therefore, stability is tested by applying noise (an increase 

or decrease) randomly to the given data. (on the function or on the derivative). 

 

For some measurement error deviation,𝜎 = 0.1,0.05,0.01,0.001 and for a Gaussian random 

error rand. We study the perturbation of Cauchy data by a noise for example 1, for a physical 

parameter √15 ,𝑛1 = 100 , 𝑛2 = 500  with 𝑇𝑜𝑙 = 10−10 𝑎𝑛𝑑 Ґ1 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 = 0.5} . 

 

Table 9: Error and number of iteration for different level of noise for example (1) 

𝜎 No. of Iteration for CGLS Error with CGLS No. of Iteration for PCG Error with PCG 

Without noise 28 2.95804831E-11 29 2.25815537E-12 

0.1 27 5.18931534E-02 28 5.18931534E-02 

0.05 27 8.22181676E-03 27 8.22181674E-03 

0.01 28 2.65948335E-03 29 2.65948335E-03 

0.001 27  1.11790842E-03 27 1.11790843E-03 

 

Now we present the figures show a comparison of the exact and approximate solution with the 

different noise level: 



  

 

243 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 1, January 2025 

 
 
 
 

  
Noise parameter 𝜎 = 0.1 Noise parameter 𝜎 = 0.05 

  
Noise parameter 𝜎 = 0.01 Noise parameter 𝜎 = 0.001 

Figure 9: All noise level for Example 1 

 

We note that for the different level of noise, the obtained approximate solution still approach 

the exact one with a good accuracy. 

Conclusion 

In order to find some unknown data on a portion of the boundary from supplied data on a 

different accessible portion, we solve the inverse Cauchy problem of the modified Helmholtz 

equation. The expression of the solution as a polynomial expansion, implies constructing a 
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linear system, is used to transform the inverse Cauchy problem into a direct problem, which is 

then solved by (PCG) and (CGLS). By resolving some examples and contrasting the precision 

of (PCG) and (CGLS), the proposed method is confirmed to be effective in overcoming the ill-

posed-ness of the inverse Cauchy Problem. Applying a noise to the Cauchy data allows for the 

investigation of the method's stability. 
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