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Abstract

The main objective of this paper is to study the dynamic behavior of the hepatitis C virus to
control the spread of this disease. The study was conducted by creating a new stochastic
mathematical model. Three equilibriums specific to this system are discussed, namely, disease-
free equilibrium, equilibrium in the absence of an antibody response, and equilibrium when
immune response CTLs are zero. We also showed conditions that must be met for the injured
person to recover by searching for the basic reproduction number. If R, < 1 it means that the
liver will get rid of the virus and heal the infected person. While if R, > 1 in this case, the
infection grows and the disease can invade all liver cells. These results have also been
demonstrated by computer simulations.

Keywords: Mathematical modeling of HCV, Basic reproduction number, Hepatitis C virus,
Disease-free equilibrium.
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Introduction

Hepatitis is an irritation of the liver. This disease may be caused by excessive alcohol
consumption, autoimmune diseases, medications, viruses, and bacteria. There are five types of
viral hepatitis, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus
(HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In this manuscript, we will focus
our study on hepatitis C because of the huge global health burden caused by this disease.
Worldwide, an estimated 58 million people have chronic HCV infection, with approximately
1.5 million new infections annually. It is estimated that 3.2 million adolescents and children
suffer from chronic hepatitis C infection. The World Health Organization estimates that in
2019, approximately 290,000 people died from hepatitis C, mostly from cirrhosis and
hepatocellular carcinoma[1]. Mathematical models were developed to understand the dynamics
of HCV because it helps to interpret the experimental result and to understand the underlying
biological mechanism involved in the spreading of the epidemic [2-4]. The vast amount of
scientific research that has been done on modeling the interaction of the hepatitis C virus with
human hepatocytes has been largely limited to ordinary differential equations (ODEs)[ 5-10].
In recent years, attention has been paid to stochastic differential equations, and they have been
used in modeling various diseases caused by viruses, for example, Coronavirus disease, AIDS,
as well as viral hepatitis[11-15].In our paper, we will use a stochastic differential equations
model for the interaction of HCV virus with hepatocytes in the presence of immunity. There
are many reasons that lead us to use stochastic differential equation models instead of
deterministic ordinary differential equations models. Real life is stochastic rather than
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deterministic, especially when modeling viral hepatitis outbreak phenomena such as hepatitis
C virus dynamics. This is because virus particles that interact with target liver cells are in the
same environmental conditions but produce different products. This paper presents the effect
of introducing randomness on a deterministic ordinary differential equation model. The new
method of mathematical modeling presents more clear results than the deterministic ordinary
differential equation models because of using the random differential equations model several
times can lead to the expected distribution of the results. For example the total number of cells
infected with the HCV virus at time t, while the deterministic differential equations model will
give us one expected value. This article is organized as follows. In section 2, We created a new
mathematical model that shows the spread of (HCV) disease inside liver cells in the presence
of immunity also, a table of all the parameters used during our work is presented. Section 3
describes the basic reproduction number and equilibriums for the new stochastic differential
equation model. In section 4, we establish the conditions for which the equilibrium points will
be stable or unstable. The main results are presented in Section5. Finally, Section 6 is devoted

to the conclusion part and some recommendations.

Formulation of the Model

To understand the behavior of the causative virus (HCV) and how it interacts with liver cells,
several mathematical models have been developed, the most important of which is the model
developed by [8]. The behavior of the virus was studied in the presence of the treatment, since
in this model it was assumed that infected hepatocytes and uninfected T cells proliferate, and
we agree with this model because the liver is an organ that regenerates due to the population
homeostasis system in the human liver [16]. Thus, any loss of hepatocytes can be compensated

for by the proliferation of existing hepatocytes and the mathematical model provided by [8] is

as follows:
dT T+I1
!{E =G +nT(1 - max) — bT — (1 — wWWCT
dl T+I1
— = (1 —=wwCT +nl (1 - Tmax) — sl 1)
dc
== A —wal—aC
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We note that the mathematical model (1) ignores the immune system responses, which are the
most important factor in stimulating therapeutic cells. While, it was proposed by the researchers
in the source [9]a mathematical model that deals with the interaction between the virus that

causes the disease (HCV) and the immune responses in the host, and it is as follows:

T _ G — bT — wCT

dat
di
E—WCT—sl—ﬁlY
%: ql — aC — kcZ (@)
X — mly — dY
dt
L _1cZ-hzZ
dt

In this paper, we introduce a new mathematical model that describes the interaction of viruses
with hepatocytes by integrating the mathematical model (1) with the mathematical model (2),
and because the process of virus multiplication inside the human body through its entry into
liver cells is subject to many complex biological factors, as well as the effectiveness of
treatment is variable from one person to another. All these reasons prompted us to introduce

random parameters in the new proposed model, which is as follows:

(4T = (G 4T (1 _ I ) —bT — (1 - ul)WCT) dt + o,u, wCTdAW, (t) (3)
T+I
dl = ((1 — u )WCT +nl (1 - ) — sl — ,81Y> dt — oyuwCTdW,(t) (4)
) dC = ((1 = up)ql — aC — kCZ)dt — o, qIdWy () )
day
L =mly —dy (6)
Z =1z~ hz (7)

All parameters used in the mathematical model (1) and (2) as well as in the new mathematical

model (3-7) are mentioned and illustrated in Table 1
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Table 1: Model States and Model parameters

Parameter Description

Tonax The maximum size of the liver growth.
I(t) Represents the infected cells.

C(t) Represent virus particles.

G It represents the production rate of uninfected cells per unit time.

n The highest proliferation rate of infected (1) cells and uninfected (T) cells.
b It represents the rate of removal of healthy cells per unit time.

w It represents the rate of transmission of virus particles into liver cells.
S

B

q

Represents the rate of removal of infected cells.

Represent rate at which CTLs (Y) kills infected cells.

It is the maximum amount of infectious virus particles produced from infected
cells in the case of a weak or ineffective vaccine.

a It represents the rate of removal of virus particles per unit of time.

k Represent rate at which antibody (Z) neutralized the virus particles(c).

m Expand the rate of CTLs (YY) in response to virus antigen.

d The removal rate of CTLs (YY) in the absence of antigenic.

T The growth rate of antibody (Z) in response to virus particles(c).

h Natural decay rate of antibody (Z).

1-wuy) Represents the potential for a vaccine that blocks the interaction between
infectious virus particles and healthy target cells (T).

(1—uy) It represents a treatment that prevents virus particles from gathering properly and
this results in a weakened virus that is unable to replicate.

0, &0, Are parameters used to model the stochastic in the evolution.

W, (t) &W,(t) It represents independent standard Brownian motions.

The Basic Reproduction Number (R,) and equilibriums

To understand the behavior of the virus that causes HCV, and whether the human liver can heal
and get rid of HCV, we will use the basic reproduction number, which is indicated by the
symbol R, which is the number of secondary infections produced by a single infected cell in a
hepatocyte population. If R, < 1, this means that any virus-carrying cell will transmit viruses
to less than one cell and this means the liver will get rid of the virus and heal the infected person.
Unlike that if R, > 1 so, each infected cell produces on average more than one new infected
cell and in this case, the infection grows and the disease can invade all liver cells. The basic

reproduction number (R,) for the new mathematical model will be as:

_1 _To (1-uqs—o1u)(1-upz—0u)wThq
Ry=2(n(1-7)+ - ) (8)
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To determine the stability of the new model (3 —7), we evaluate the steady states or the
equilibrium points of this model. Similar to models (1) and (2), the new model has an
equilibrium point called disease- free equilibrium. This represents the nonappearance of virus
(i.e.,Co, = 0). So when solving the equations (3)-( 7) , we obtain disease- free equilibrium

which is as follows:

T, 4nG
(To, 1o, Co, Yo, Zo) = | =—=|n—b + J(n —b)? + ,0,0,0,0

Zn max

When the virus particles (C; # 0) and the antibody response (Z; = 0) the second

equilibrium point will found as follows,

solving equation (6) to get
d
Il = ;, (9)

Then, substitute equations (9) and (Z; = 0) in equation (5) to get

C, = (1—u2)—02u2qd’ (10)

ma

Then from equation (3) obtain

T
T, nl;
= 7271:? n— T —b—(1—-u)wC; + oyuwC,
nl 2 -n
Tmax Tmax
when substitute equation (9)and (10) in equation (11) obtain
Volume: 2, Issue: 4, July 2024 246 P-1SSN: 2958-4612

Manuscript Code: 794B E-ISSN: 2959-5568



Academic Science Journal

nd 1—-u,) —oyu,qd 1—-u,) —ou,qd
—b—(l—ul)w( 2) 2Uzq +01u1w( 2) 2U2q
MTax ma ma

3
|

\i\/(n— nd —b—(l—ul)w(l_uz)—_azw+glulw(1—uz)——gzuzqd>2_4(—n)G/

MTax ma ma Tonax

so T, = T’”;‘L" (HFVH2+0), (12)

nd (1—uy)—0o,u,qd (1-u,)—oyu,qd
—b— (1 —uy)w—2 220 | 5 gy, w2 T224E
1 141
MTmax mao ma

Where H =n —

and U = 22¢

max

when substitute ((Ty, I;& C;) in equation (4) to get

(1 — ul)Wcl T1 +n 11 (1 - %) - SIl — O-1u1WC1 T1
Y, = 81, (13)

So, the new model converge to the second equilibrium point which is as follows

(Tl' 11' Cl! Yl! Zl)

T,
(=0

T, +1
— d (1—-uy)—o,uyqd A-upwC Ty +nly (1 T ) —sly — oquwC T
+VH?+U),—, , max 0
) m ma Bl

The third infected equilibrium state observed, when CTLs response equal to zero (i.e., Y, =
0),

solving equation (7) to get
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C, = h (14
2= )
Then, substitute equation (14) in equation (5) to get
« h+ khZ,
((1 —U; — Uzuz)qT)
When substitute equation (14) and (15) in equation (5) to get
(1 —up — 0ux)ql,—x G,
Z, = 1
2 i, (16)
When using equation (11) obtain
T, nl,
T2 = ;n:lx n— Tmax - b - (1 - ul)WCZ + 61u1WC2
nl, z n
i (Tl - - b - (1 - ul)WCZ + O-1u1WC2) + 4‘( )G
Tmax Tmax
this implies that
T, = [max (FFVF2+0) (17)
17 2n ’
Where
F: n— nIZ - b - (1 - ul)WCZ + O-1u1WCZ and U: (:nG)
So, model (3-7) converge to third equilibrium point which is
T, _ < h+ khZ h
n (FFVF2+0), 2 __ -,
2n ((1 —uy — oyuy)qr) ' T
(Ty, I, Gy, Y5, Z5) =
0 (1 —up — opuz)ql,—x G,
’ kC,
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Stability of Equilibriums

In this section, we establish the conditions for which the equilibrium points will be stable or
unstable. For this purpose first, we will investigate stability analysis of the disease-free

equilibrium. The Jacobin matrix of the new model (3-7) is given as follows:

J(T,1,CY,2)=
r 2T +1 —nT ]
n (1 - ) —b—(1—-u)wC + quwC , , —(A-u)wl +ouwl, 0, 0
Tmax Tnax
nl T+ 21
(1 —u)wC — —oguwC, n (1 - ) —s—=pBY, (1-u)wTl —ouwTl,—pI, 0
0, (1 —uy; — oyuy)q, —x —kZ, 0, —KC
0, mY, 0, ml —d, 0
0 ) 0 ) 0 ) 0 ) C—h
The Jacobin matrix of the uninfected steady state will be as,
Jo(T,,0,0,0,0) =
ZTO _nTO T
n (1 - ) —b, ,—(1 —u)wT, + oyuwT,, 0, 0
Tmax Tmax
T
0, n (1 -0 ) -s, (A—-u)wT, — ou,wT,, 0, 0
Tmax
0, (1 —uy; —oyuy)q, —, 0, 0
0, 0, 0, —d, 0
L0, 0, 0, 0, —h

—nT,

,—(1 —u)wT, + o,u,wTy, 0,0

Tmax

) —-s—21, (1—-u)wTy, —o,u;wT,, 0,0

T,
0, n(l— 9

max

0, (1 —uy, —oyuy)q, —x—4, 0, 0
0, 0, 0, —d— 4, 0
0, 0, 0, 0, —h—-21

Clearly, the roots of the characteristic equation or the eigenvalue are A, = —h, A, =

—b+n[1-22]

amx

—-d, Az3= and the other two eigenvalues are determined by the

quadratic equation.
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A2+ a1+ a, =0,

Where a; = — (n -

Tmax

nTy

and a, = —x (n—

max

nTo

-

- S) = (1 —uy — ou) (1 — up — oyux)wTig.

(18)

Obviously, a; > 0 and a; > 0 ifandonly if R, < 1Hence all the eigenvalue have negative

real parts if and only if Ry < 1. So J,(Ty, 0,0,0,0) is locally asymptotically stable for R, <

1land unstable for Ry, > 1

Main Results

In this section, we carried out some numerical simulations to support our analytical results by

using computer simulations. We found from analytical results

and C(t) are

exponentially stable, and %im I(t) =0,& %.im C(t) =0,ifRy, < 1.While I(t) and C(t) are

unstable if Ry > 1. For this purpose, we will present two examples that illustrate the role of

immune responses, active therapy, and stochastic parameters in stabilizing the system.

Example (1): Let us choose the parameter values as follows:

PARAMETER THE VALUE
Trnax 1.0 x 107 cells ml™!

G 1.0 * 105cells mi~*day !
n 0.1 day™?!
b 1.0 x10"? day~!

w 4 x 1077 mlday ‘virions™!
s 0.1 day™?*
B 6.4 10 %day?!
q 4.0 * 10° virions cells 'day~?
a 5.0 * 10° day?!
k 2.0 x 1day?!

m 4.4 %107 "day?!
d 1.0 x 10~%day !
T 1.0 * 10~ °day~?!
h 0.01day™?!

(uy) 0.9 unit less

(u,) 0.9 unit less

01 0.01

0, 0.01
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We first calculate the basic reproduction number, It must be less than 1, and find it as follows:

Since

R — l n (1 _ Ty ) n (1 —uy — o1 (1 — up — oux)wloq
o Tmax X

S

So when you compensate the parameters in the R, We will find

10%\  (0.091)(0.091) = 4 + 10~710° 4
Ro=10{01({1-—)+ :

So R, = 0.9264992 < 1.

If we take the equation (4)

T+1
dl = ((1 — u)WCT +nl (1 - ) — sl — BIY) dt — o, wCTdW, (£)

max
So by using Ito's formula[11] and substitution the parameter values ,we have the solution of
equation (4) as I(t) = 10 (00498t gq the infected cells I(t)tend to zero exponentially in 70
days . The computer simulation programs Fig. 1, by using MATLAB, support these results

clearly.

Stachastic Modal

=

(Theinfec

"\

Figure 1: The infected cells goes to zero exponentially in 70 days when R, < 1,
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If we take the equation (5)
dC = (1 —uy)ql — aC — kCZ)dt — oyu,qldW,(¢)
Also by using Ito's formula[11] and substitution the parameter values in equation (5) ,we have

3
the solution of equation (5) as C(t) = 106e"(5)t. So the virus particles C(t) tend to zero

exponentially in 70 days.

The computer simulation programs Fig. 2, by using MATLAB, support these results clearly.

L0
* 10

. v
| Stochastic Modal |

R — —t e el - - -l . - —J
10 20 20 <10 50 [&]u] 70
Pl (cdays)

Figure 2: The virus particles goes to zero exponentially in 70 days when R, < 1,

While if we take the equation (3)

T+I

dT = (G +nT (1 - ) —bT—(1-— ul)WCT) dt + o,u,wCTdW, (t)

max

So when we solve equation (3) after substituting the parameters, we find the general solution
of the stochastic differential equation is T(t) = 10°e°999%t . We note from this result that
healthy cells T(t) did not go to zero exponentially when t — co. We will obtain these results

by computer simulation as in Figure. 3.
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L L L
(] 10 20 a0 A0 S0 50 70
Thme (clays)

Figure 3: The uninfected cells did not go to zero exponentially in 70 days when R, < 1,
Example (2). In this example, we will discuss the patient's condition when the efficacy of
treatment is poor, the immunity represented by lymphocytes (CTLs) is weak, as well as the

stochastic variance (o;) and (o) are not big sufficiently. So the parameters will be as follows:

PARAMETER THE VALUE
Tonax 1.0 * 107 cells ml™?!
G 1.0 * 10%cells ml 'day !
n 0.1 day™?*
b 1.0« 1072 day~?!
w 5% 1077 mlday 'virions™!
s 0.1 day™?!
B 6.4 x 10~ %day?!
q 5.0 * 10° virions cells~*day !
a 4.0 x10° day?!
k 2.0 * 1day~!
m 4.4 %10 "day~?!
d 1.0 x 10~2day !
T 1.0 x 10~ 5day !
h 0.01day~?!
(uy) 0.1 unit less
(u,) 0.2 unit less
7, 0.001
a, 0.001

When finding the basic reproduction number by substituting the values of the parameters in
equation (8), we find that R, = 5.3983 > 1. This result means that the disease will turn into a

chronic disease, and to clarify this result we take equation (4)
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T+1
dl = ((1 —u)wCT + nl (1 — ) — sl — 31y> dt — oyu;wCTdW, (t)

max
So by using Ito's formula and substitution the parameter values, we have the solution of equation
(4) is I(t) = 10%e(3-59982)t Sg the infected cells I(t) do not tend to zero exponentially when

t — oo,Will support these result by computer simulation as in Figure. 4.

35 T T T T T

Stochastic Model

L%
T
1

ey
h
T
|

k2
T
|

—_
n
T
|

—_
T
|

{The Infected cells in the absence of immunity

=
in
T
|

1 1 1 L
0] 10 20 a0 40 a0 G0 Fi
Time {days)

Figure 4: The infected cells not tend to zero exponentially in 70 days when R, > 1,

Also, when solving equation (5), we find that C(t) = 10°e1996¢, So the virus particles C (t)

do not tend to zero exponentially as t — oo. To illustrate the result, we take Figure. (5).
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\
Stachastic Modeal

[¥irus particles in the absence of immunity)
a

i i i i i i
(8] s i u] 20 =10 =18] (=18 ] fo
Tirme (days)

Figure 5: Computer simulation programs virus particles not tend to zero exponentially in 70

days when Ry > 1,

Conclusions

The novelty of our article can be resumed as follows: the behavior of the hepatitis C virus
(HCV) is studied by mixing two deterministic systems and introducing environmental
stochasticity into them. Through this mathematical model, we proved that if the body has high
immunity and the availability of appropriate treatment, and also the stochastic variance ¢, and
g, are big sufficient. This gives Ry, < 1. When R, is less than one, this means any infected cell
will transmission of infected to less than one cell and this means the liver will get rid of the
virus and heal the infected person as in Figures 1, 2, and 3. On the contrary, when the immunity
is weak, the treatment is ineffective, and the stochastic variance o; and o, are small, this gives
R, > 1, and in this case, each infected cell transmits the infection to more than one healthy
cell, This means that the virus will invade all liver cells and the infected person will not recover,
as shown in Figures 4 and 5. Because immunity plays an essential role in maintaining the
integrity of the liver from viruses. For this reason, immunity must be maintained by avoiding
drug use, avoiding drinking alcohol, as well as not drinking and eating foods that have a high

sugar content.
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