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Abstract 

The main objective of this paper is to study the dynamic behavior of the hepatitis C virus to 

control the spread of this disease. The study was conducted by creating a new stochastic 

mathematical model. Three equilibriums specific to this system are discussed, namely, disease- 

free equilibrium, equilibrium in the absence of an antibody response, and equilibrium when 

immune response CTLs are zero. We also showed conditions that must be met for the injured 

person to recover by searching for the basic reproduction number. If  𝑅0 < 1 it means that the 

liver will get rid of the virus and heal the infected person. While if  𝑅0 > 1  in this case, the 

infection grows and the disease can invade all liver cells. These results have also been 

demonstrated by computer simulations. 

Keywords: Mathematical modeling of HCV, Basic reproduction number, Hepatitis C virus, 

Disease-free equilibrium. 

 مع خلايا الكبد HCVنموذج المعادلات التفاضلية التصادفية لتفاعل 
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 الخلاصة

الهدف الرئيسي من هذا البحث, هو دراسة السلوك الديناميكي لفيروس التهاب الكبد سي  من اجل السيطرة على انتشار هذا 

المرض. اجريت الدراسة من خلال انشاء نموذج رياضي تصادفي  جديد. تمت مناقشة ثلاث توازنات خاصة بهذا النظام, 

mailto:*a.murshed@yahoo.com


  

 

242 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 4, July 2024 

Manuscript Code: 794B 

 

ياب استجابة الجسم المضاد, والتوازن عندما تكون الاستجابة المناعية وهي التوازن الخالي من الأمراض, والتوازن في غ

الشروط التي يجب توافرها حتى يتعافى المصاب من خلال انشاء رقم التكاثر الاساسي . اذا كان رقم التكاثر  إظهار تمصفر. 

اثر بالعكس اذا كان رقم التكالاساسي اقل من واحد, فهذا يعني أن الكبد سيتخلص من الفيروس ويشفى الشخص المصاب, و

الاساسي اكبر من واحد في هذه الحالة تنمو العدوى ويمكن للمرض ان يغزو جميع خلايا الكبد. كما تم توضيح هذه النتائج من 

 خلال المحاكاة الحاسوبية. 

النمذجة الرياضية لفيروس التهاب الكبد سي, عدد التكاثر الاساسي, فيروس التهاب الكبد سي, التوازن  :الكلمات المفتاحية

  الخالي من الأمراض. 

Introduction 

Hepatitis is an irritation of the liver. This disease may be caused by excessive alcohol 

consumption, autoimmune diseases, medications, viruses, and bacteria. There are five types of 

viral hepatitis, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus 

(HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In this manuscript, we will focus 

our study on hepatitis C because of the huge global health burden caused by this disease. 

Worldwide, an estimated 58 million people have chronic HCV infection, with approximately 

1.5 million new infections annually. It is estimated that 3.2 million adolescents and children 

suffer from chronic hepatitis C infection. The World Health Organization estimates that in 

2019, approximately 290,000 people died from hepatitis C, mostly from cirrhosis and 

hepatocellular carcinoma[1]. Mathematical models were developed to understand the dynamics 

of HCV because it helps to interpret the experimental result and to understand the underlying 

biological mechanism involved in the spreading of the epidemic [2-4]. The vast amount of 

scientific research that has been done on modeling the interaction of the hepatitis C virus with 

human hepatocytes has been largely limited to ordinary differential equations (ODEs)[ 5–10]. 

In recent years, attention has been paid to stochastic differential equations, and they have been 

used in modeling various diseases caused by viruses, for example, Coronavirus disease, AIDS, 

as well as viral hepatitis[11-15].In our paper, we will use  a stochastic differential equations 

model for the interaction of HCV virus with hepatocytes in the presence of immunity. There 

are many reasons that lead us to use stochastic differential equation models instead of 

deterministic ordinary differential equations models. Real life is stochastic rather than 
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deterministic, especially when modeling viral hepatitis outbreak phenomena such as hepatitis 

C virus dynamics. This is because virus particles that interact with target liver cells are in the 

same environmental conditions but produce different products. This paper presents the effect 

of introducing randomness on a deterministic ordinary differential equation model. The new 

method of mathematical modeling presents more clear results than the deterministic ordinary 

differential equation models because of using the random differential equations model several 

times can lead to the expected distribution of the results. For example the total number of cells 

infected with the HCV virus at time t, while the deterministic differential equations model will 

give us one expected value. This article is organized as follows. In section 2, We created a new 

mathematical model that shows the spread of (HCV) disease inside liver cells in the presence 

of immunity also, a table of all the parameters used during our work is presented. Section 3 

describes the basic reproduction number and equilibriums for the new stochastic differential 

equation model. In section 4, we establish the conditions for which the equilibrium points will 

be stable or unstable. The main results are presented in Section5. Finally, Section 6 is devoted 

to the conclusion part and some recommendations. 

Formulation of the Model  

To understand the behavior of the causative virus (HCV) and how it interacts with liver cells, 

several mathematical models have been developed, the most important of which is the model 

developed by [8]. The behavior of the virus was studied in the presence of the treatment, since 

in this model it was assumed that infected hepatocytes and uninfected T cells proliferate, and 

we agree with this model because the liver is an organ that regenerates due to the population 

homeostasis system in the human liver [16]. Thus, any loss of hepatocytes can be compensated 

for by the proliferation of existing hepatocytes and the mathematical model provided by [8] is 

as follows: 

{
 
 

 
 
𝑑𝑇

𝑑𝑡
= 𝐺 + 𝑛𝑇 (1 −

𝑇+𝐼

𝑇𝑚𝑎𝑥
) − 𝑏𝑇 − (1 − 𝑢)𝑤𝐶𝑇

𝑑𝐼

𝑑𝑡
= (1 − 𝑢)𝑤𝐶𝑇 + 𝑛𝐼 (1 −

𝑇+𝐼

𝑇𝑚𝑎𝑥
) − 𝑠𝐼

𝑑𝑐

𝑑𝑡
= (1 − µ)𝑞𝐼 − 𝛼𝐶

                                                                      (1) 
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We note that the mathematical model (1) ignores the immune system responses, which are the 

most important factor in stimulating therapeutic cells. While, it was proposed by the researchers 

in the source [9]a mathematical model that deals with the interaction between the virus that 

causes the disease (HCV) and the immune responses in the host, and it is as follows: 

𝑑𝑇

𝑑𝑡
= 𝐺 − 𝑏𝑇 − 𝑤𝐶𝑇                                                                                   

𝑑𝐼

𝑑𝑡
= 𝑤𝐶𝑇 − 𝑠𝐼 − 𝛽𝐼𝑌                                                                                  

𝑑𝐶

𝑑𝑡
= 𝑞𝐼 − 𝛼𝐶 − 𝑘𝑐𝑍                                                                            

𝑑𝑌

𝑑𝑡
= 𝑚𝐼𝑌 − 𝑑𝑌                                                                                             

𝑑𝑍

𝑑𝑡
= 𝜏𝐶𝑍 − ℎ𝑍                                                                                            

                                      (2) 

In this paper, we introduce a new mathematical model that describes the interaction of viruses 

with hepatocytes by integrating the mathematical model (1) with the mathematical model (2), 

and because the process of virus multiplication inside the human body through its entry into 

liver cells is subject to many complex biological factors, as well as the effectiveness of 

treatment is variable from one person to another. All these reasons prompted us to introduce 

random parameters in the new proposed model, which is as follows: 

{
 
 
 
 

 
 
 
 𝑑𝑇 = (𝐺 + 𝑛𝑇 (1 −

𝑇+𝐼

𝑇𝑚𝑎𝑥
) − 𝑏𝑇 − (1 − 𝑢1)𝑤𝐶𝑇)𝑑𝑡 + 𝜎1𝑢1𝑤𝐶𝑇𝑑𝑊1(𝑡)                      (3) 

𝑑𝐼 = ((1 − 𝑢1)𝑤𝐶𝑇 + 𝑛𝐼 (1 −
𝑇+𝐼

𝑇𝑚𝑎𝑥
) − 𝑠𝐼 − 𝛽𝐼𝑌) 𝑑𝑡 − 𝜎1𝑢1𝑤𝐶𝑇𝑑𝑊1(𝑡)                     (4) 

𝑑𝐶 = ((1 − 𝑢2)𝑞𝐼 − 𝛼𝐶 − 𝑘𝐶𝑍)𝑑𝑡 − 𝜎2𝑢2𝑞𝐼𝑑𝑊2(𝑡)                                                           (5)  
𝑑𝑌

𝑑𝑡
= 𝑚𝐼𝑌 − 𝑑𝑌                                                                                                                                  (6)   

𝑑𝑍

𝑑𝑡
= 𝜏𝐶𝑍 − ℎ𝑍                                                                                                                                   (7)   

 

All parameters used in the mathematical model (1) and (2) as well as in the new mathematical 

model (3-7) are mentioned and illustrated in Table 1 
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Table 1: Model States and Model parameters 

Parameter Description 

𝑇𝑚𝑎𝑥  The maximum size of the liver growth. 

   𝐼(𝑡) Represents the infected cells.  

𝐶(𝑡) Represent virus particles. 

G It represents the production rate of uninfected cells per unit time. 

n The highest proliferation rate of infected (I) cells and uninfected (T) cells. 

b It represents the rate of removal of healthy cells per unit time. 

w It represents the rate of transmission of virus particles into liver cells. 

s Represents the rate of removal of infected cells. 

𝛽   Represent rate at which CTLs (Y) kills infected cells.  

q It is the maximum amount of infectious virus particles produced from infected 

cells in the case of a weak or ineffective vaccine. 

𝛼  It represents the rate of removal of virus particles per unit of time. 

k Represent rate at which antibody (Z) neutralized the virus particles(c).  

m Expand the rate of CTLs (Y) in response to virus antigen.  

d The removal rate of CTLs (Y) in the absence   of antigenic. 

τ The growth rate of antibody (Z) in response to virus particles(c). 

h Natural decay rate of antibody (Z). 

(1 − 𝑢1)   Represents the potential for a vaccine that blocks the interaction between 

infectious virus particles and healthy target cells (T). 

(1 − 𝑢2)  It represents a treatment that prevents virus particles from gathering properly and 

this results in a weakened virus that is unable to replicate. 

𝜎1 & 𝜎2  Are parameters used to model the stochastic in the evolution. 

𝑊1(𝑡) &𝑊2(𝑡)    It represents independent standard Brownian motions. 
 

The Basic Reproduction Number (𝑹𝟎) and equilibriums  

To understand the behavior of the virus that causes HCV, and whether the human liver can heal 

and get rid of HCV, we will use the basic reproduction number, which is indicated by the 

symbol R0 which is the number of secondary infections produced by a single infected cell in a 

hepatocyte population. If R0 < 1,   this means that any virus-carrying cell will transmit viruses 

to less than one cell and this means the liver will get rid of the virus and heal the infected person. 

Unlike that if  R0   > 1  so,  each infected cell produces on average more than one new infected 

cell and in this case, the infection grows and the disease can invade all liver cells. The basic 

reproduction number (R0)  for the new mathematical model will be as:  

𝑅0 = 
1

𝑠
(𝑛 (1 −

𝑇0

𝑇𝑚𝑎𝑥
) +

(1−𝑢1−𝜎1𝑢1)(1−𝑢2−𝜎2𝑢2)𝑤𝑇0𝑞

∝
)                                                                  (8) 
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To determine the stability of the new model (3 –7), we evaluate the steady states or the 

equilibrium points of this model. Similar to models (1) and (2), the new model has an 

equilibrium point called disease- free equilibrium. This represents the nonappearance of virus 

(i.e.,𝐶0 = 0). So when solving  the equations  (3)-( 7)  , we obtain disease- free equilibrium 

which is as follows:  

(𝑇0, 𝐼0, 𝐶0, 𝑌0, 𝑍0) =  (
𝑇𝑚𝑎𝑥
2𝑛

[𝑛 − 𝑏 ± √(𝑛 − 𝑏)2 +
4𝑛𝐺

𝑇𝑚𝑎𝑥
] , 0,0,0,0) 

When   the virus particles (𝐶1 ≠ 0 ) and the antibody response (𝑍1 = 0) the  second  

equilibrium point will found as follows, 

solving equation (6) to get  

𝐼1 =
𝑑

𝑚
,                                                                                                                                                         (9) 

Then, substitute equations (9) and  (𝑍1 = 0)  in equation (5) to get   

𝐶1 =
(1−𝑢2)−𝜎2𝑢2𝑞𝑑

𝑚𝛼
,                                                                                                                              (10)  

Then from equation        (3) obtain  

𝑇1

=   
𝑇𝑚𝑎𝑥
2𝑛

(𝑛 −
𝑛𝐼1
𝑇𝑚𝑎𝑥

− 𝑏 − (1 − 𝑢1)𝑤𝐶1 + 𝜎1𝑢1𝑤𝐶1

±√(𝑛 −
𝑛𝐼1
𝑇𝑚𝑎𝑥

− 𝑏 − (1 − 𝑢1)𝑤𝐶1 + 𝜎1𝑢1𝑤𝐶1)
2

−      4 (
−𝑛

𝑇𝑚𝑎𝑥
)𝐺              )              (11) 

when substitute equation  (9)and (10) in equation (11) obtain  
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𝑇1 =   
𝑇𝑚𝑎𝑥
2𝑛

(

 
 
 
 
 
 

𝑛 −
𝑛𝑑

𝑚𝑇𝑚𝑎𝑥
− 𝑏 − (1 − 𝑢1)𝑤

(1 − 𝑢2) − 𝜎2𝑢2𝑞𝑑

𝑚𝛼
+ 𝜎1𝑢1𝑤

(1 − 𝑢2) − 𝜎2𝑢2𝑞𝑑

𝑚𝛼

±√(𝑛 −
𝑛𝑑

𝑚𝑇𝑚𝑎𝑥
− 𝑏 − (1 − 𝑢1)𝑤

(1 − 𝑢2) − 𝜎2𝑢2𝑞𝑑

𝑚𝛼
+ 𝜎1𝑢1𝑤

(1 − 𝑢2) − 𝜎2𝑢2𝑞𝑑

𝑚𝛼
)

2

− 4 (
−𝑛

𝑇𝑚𝑎𝑥
)𝐺   

)

 
 
 
 
 
 

 

 

so  𝑇1 =
𝑇𝑚𝑎𝑥
2𝑛

(𝐻 ∓ √𝐻2 + 𝑈),                                                                                                     (12) 

 

Where 𝐻 = 𝑛 −
𝑛𝑑

𝑚𝑇𝑚𝑎𝑥
− 𝑏 − (1 − 𝑢1)𝑤

(1−𝑢2)−𝜎2𝑢2𝑞𝑑

𝑚𝛼
+ 𝜎1𝑢1𝑤

(1−𝑢2)−𝜎2𝑢2𝑞𝑑

𝑚𝛼
, 

and 𝑈 =
4𝑛𝐺

𝑇𝑚𝑎𝑥
 

when substitute ((𝑇1, 𝐼1& 𝐶1) in equation (4) to get        

𝑌1 =
(1 − 𝑢1)𝑤𝐶1 𝑇1 + 𝑛 𝐼1 (1 −

𝑇1 + 𝐼1 
𝑇𝑚𝑎𝑥

) − 𝑠𝐼1 − 𝜎1𝑢1𝑤𝐶1 𝑇1

𝛽𝐼1
                                    (13) 

So, the new model converge to the second equilibrium point which is as follows  

(𝑇1, 𝐼1, 𝐶1, 𝑌1, 𝑍1)

= (  
𝑇𝑚𝑎𝑥
2𝑛

(𝐻

∓ √𝐻2 + 𝑈) ,
𝑑

𝑚
,
(1 − 𝑢2) − 𝜎2𝑢2𝑞𝑑

𝑚𝛼
,
(1 − 𝑢1)𝑤𝐶1 𝑇1 + 𝑛 𝐼1 (1 −

𝑇1 + 𝐼1 
𝑇𝑚𝑎𝑥

) − 𝑠𝐼1 − 𝜎1𝑢1𝑤𝐶1 𝑇1

𝛽𝐼1
, 0) 

The third infected equilibrium state observed,  when  CTLs response equal to zero (i.e., 𝑌2 =

0),  

solving equation (7) to get  
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𝐶2 =
ℎ

𝜏
                                                                                                                                                     (14) 

Then, substitute equation (14) in equation (5) to get  

𝐼2 =
∝ ℎ + 𝑘ℎ𝑍2

((1 − 𝑢2 − 𝜎2𝑢2)𝑞𝜏)
                                                                                                             (15) 

When substitute equation (14) and (15) in equation (5) to get  

𝑍2 = 
(1 − 𝑢2 − 𝜎2𝑢2)𝑞𝐼2−∝ 𝐶2

𝑘𝐶2
                                                                                                    (16) 

When using equation (11) obtain  

𝑇2 =   
𝑇𝑚𝑎𝑥
2𝑛

(𝑛 −
𝑛𝐼2
𝑇𝑚𝑎𝑥

− 𝑏 − (1 − 𝑢1)𝑤𝐶2 + 𝜎1𝑢1𝑤𝐶2

±√(𝑛 −
𝑛𝐼2
𝑇𝑚𝑎𝑥

− 𝑏 − (1 − 𝑢1)𝑤𝐶2 + 𝜎1𝑢1𝑤𝐶2)
2

+      4 (
𝑛

𝑇𝑚𝑎𝑥
)𝐺              )  

this implies that 

 𝑇1 =
𝑇𝑚𝑎𝑥
2𝑛

(𝐹 ∓ √𝐹2 + 𝑈),                                                                                                       (17)  

Where  

F= 𝑛 −
𝑛𝐼2

𝑇𝑚𝑎𝑥
− 𝑏 − (1 − 𝑢1)𝑤𝐶2 + 𝜎1𝑢1𝑤𝐶2 and U= (

4𝑛𝐺

𝑇𝑚𝑎𝑥
)               

So, model (3-7) converge to third equilibrium point which is  

(𝑇2, 𝐼2, 𝐶2, 𝑌2, 𝑍2) =  

(

 
 

𝑇𝑚𝑎𝑥
2𝑛

(𝐹 ∓ √𝐹2 + 𝑈) ,
∝ ℎ + 𝑘ℎ𝑍2

((1 − 𝑢2 − 𝜎2𝑢2)𝑞𝜏)
,
ℎ

𝜏
 ,

0,
(1 − 𝑢2 − 𝜎2𝑢2)𝑞𝐼2−∝ 𝐶2

𝑘𝐶2
  

)
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Stability of Equilibriums    

In this section, we establish the conditions for which the equilibrium points will be stable or 

unstable. For this purpose first, we will investigate stability analysis of the disease-free 

equilibrium.  The Jacobin matrix of the new model (3-7) is given as follows: 

J(T,I,C,Y,Z)= 

[
 
 
 
 
 
 
 
 𝑛 (1 −

2𝑇 + 𝐼

𝑇𝑚𝑎𝑥
) − 𝑏 − (1 − 𝑢1)𝑤𝐶 + 𝜎1𝑢1𝑤𝐶  ,                   

−𝑛𝑇

𝑇𝑚𝑎𝑥
  ,      − (1 − 𝑢1)𝑤𝑇 + 𝜎1𝑢1𝑤𝑇,         0 ,       0

(1 − 𝑢1)𝑤𝐶 −
𝑛𝐼

𝑇𝑚𝑎𝑥
− 𝜎1𝑢1𝑤𝐶,        𝑛 (1 −

𝑇 + 2𝐼

𝑇𝑚𝑎𝑥
) − 𝑠 − 𝛽𝑌,     (1 − 𝑢1)𝑤𝑇 − 𝜎1𝑢1𝑤𝑇 ,−𝛽𝐼 , 0 

0  ,                       (1 − 𝑢2 − 𝜎2𝑢2)𝑞 ,                       −∝ −𝑘𝑍,                             0,                                   − 𝐾𝐶
0,                                       𝑚𝑌,                                  0,                                       𝑚𝐼 − 𝑑,                                         0
0  ,                                       0 ,                                  0 ,                                       0  ,                                         𝜏𝐶 − ℎ

 ]
 
 
 
 
 
 
 
 

 

The Jacobin matrix of the uninfected steady state will be as, 

𝐽0(𝑇0, 0,0,0,0) = 

[
 
 
 
 
 
 
 𝑛 (1 −

2𝑇0
𝑇𝑚𝑎𝑥

) − 𝑏,    
−𝑛𝑇0
𝑇𝑚𝑎𝑥

, −(1 − 𝑢1)𝑤𝑇0 + 𝜎1𝑢1𝑤𝑇0,     0,           0

0,        𝑛 (1 −
𝑇0
𝑇𝑚𝑎𝑥

) − 𝑠  ,     (1 − 𝑢1)𝑤𝑇0 − 𝜎1𝑢1𝑤𝑇0, 0,         0

0,             (1 − 𝑢2 − 𝜎2𝑢2)𝑞,             −∝ ,                   0,                        0  
0,                                       0,                                 0,              − 𝑑,                   0
0,                                  0,                          0,                 0,                          − ℎ ]

 
 
 
 
 
 
 

 

The characteristic equation about 𝐽0(𝑇0, 0,0,0,0) is |𝐽0(𝑇0, 0,0,0,0) − 𝜆𝐼| = 0 

|

|
𝑛 (1 −

2𝑇0
𝑇𝑚𝑎𝑥

) − 𝑏 − 𝜆,    
−𝑛𝑇0
𝑇𝑚𝑎𝑥

, −(1 − 𝑢1)𝑤𝑇0 + 𝜎1𝑢1𝑤𝑇0, 0,0

0, 𝑛 (1 −
𝑇0
𝑇𝑚𝑎𝑥

) − 𝑠 − 𝜆  ,     (1 − 𝑢1)𝑤𝑇0 − 𝜎1𝑢1𝑤𝑇0, 0,0

0,             (1 − 𝑢2 − 𝜎2𝑢2)𝑞,            −∝ −𝜆,       0,           0  
0,                0,                     0,          − 𝑑 − 𝜆,                          0
0,               0,                              0,                 0,           − ℎ − 𝜆

|

|

= 0 

 Clearly, the roots of the characteristic equation or the eigenvalue are  𝜆1 = −ℎ,     𝜆2 =

−𝑑  ,    𝜆3 =  −𝑏 + 𝑛[1 −
2𝑇0

𝑇𝑎𝑚𝑥
]    ,  and the other two eigenvalues are determined by the 

quadratic equation. 
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𝜆2 + 𝑎1𝜆 + 𝑎2 =0,                                                                                                                (18)   

Where 𝑎1 = −(𝑛 −
𝑛𝑇0

𝑇𝑚𝑎𝑥
− 𝑠−∝)  

and 𝑎2 = −∝ (𝑛 −
𝑛𝑇0

𝑇𝑚𝑎𝑥
− 𝑠) − (1 − 𝑢1 − 𝜎1𝑢1)(1 − 𝑢2 − 𝜎2𝑢2)𝑤𝑇0q. 

Obviously, 𝑎1 > 0   and 𝑎1 > 0   if and only if 𝑅0 < 1Hence all the eigenvalue have negative 

real parts if and only if 𝑅0 < 1. So 𝐽0(𝑇0, 0,0,0,0) is locally asymptotically stable for  𝑅0 <

1and unstable for 𝑅0 > 1. 

Main Results  

In this section, we carried out some numerical simulations to support our analytical results by 

using computer simulations. We found from analytical results  𝐼(𝑡)  and   𝐶(𝑡)  are 

exponentially stable, and Lim
𝑡→∞

𝐼(𝑡) = 0, & Lim
𝑡→∞

𝐶(𝑡) = 0, if 𝑅0 < 1. While 𝐼(𝑡)  and   𝐶(𝑡)   are 

unstable if 𝑅0 > 1. For this purpose, we will present two examples that illustrate the role of 

immune responses, active therapy, and stochastic parameters in stabilizing the system. 

Example (1): Let us choose the parameter values as follows: 

PARAMETER THE VALUE 

𝑇𝑚𝑎𝑥  1.0 ∗ 107 𝑐𝑒𝑙𝑙𝑠  𝑚𝑙−1 

G 1.0 ∗ 105𝑐𝑒𝑙𝑙𝑠 𝑚𝑙−1𝑑𝑎𝑦−1 

n 0.1  𝑑𝑎𝑦−1 

b 1.0 ∗ 10−2 𝑑𝑎𝑦−1 

w 4 ∗ 10−7 𝑚𝑙𝑑𝑎𝑦−1𝑣𝑖𝑟𝑖𝑜𝑛𝑠−1 

s 0.1  𝑑𝑎𝑦−1 

𝛽   6.4 ∗ 10−2𝑑𝑎𝑦−1 

q 4.0 ∗ 100 𝑣𝑖𝑟𝑖𝑜𝑛𝑠 𝑐𝑒𝑙𝑙𝑠−1𝑑𝑎𝑦−1 

𝛼  5.0 ∗ 100 𝑑𝑎𝑦−1 

k 2.0 ∗ 1𝑑𝑎𝑦−1 

m 4.4 ∗ 10−7𝑑𝑎𝑦−1  

d 1.0 ∗ 10−2𝑑𝑎𝑦−1 

τ 1.0 ∗ 10−5𝑑𝑎𝑦−1 

h 0.01𝑑𝑎𝑦−1 

(𝑢1)   0.9 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

(𝑢2)  0.9 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝜎1  0.01 

𝜎2  0.01 
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We first calculate the basic reproduction number, It must be less than 1, and find it as follows: 

Since  

𝑅0 = 
1

𝑠
(𝑛 (1 −

𝑇0
𝑇𝑚𝑎𝑥

) +
(1 − 𝑢1 − 𝜎1𝑢1)(1 − 𝑢2 − 𝜎2𝑢2)𝑤𝑇0𝑞

∝
) 

So when you compensate the parameters in the 𝑅0 We will find  

𝑅0 = 10(0.1(1 −
106

107
) +

(0.091)(0.091) ∗ 4 ∗ 10−7106 ∗ 4

5
) 

 So  𝑅0 = 0.9264992 < 1. 

If we take the equation (4) 

𝑑𝐼 = ((1 − 𝑢1)𝑤𝐶𝑇 + 𝑛𝐼 (1 −
𝑇 + 𝐼

𝑇𝑚𝑎𝑥
) − 𝑠𝐼 − 𝛽𝐼𝑌)𝑑𝑡 − 𝜎1𝑢1𝑤𝐶𝑇𝑑𝑊1(𝑡) 

So by using Ito's formula[11] and substitution the parameter values ,we have the solution of 

equation (4) as 𝐼(𝑡) = 106𝑒−(0.0498)𝑡. So the infected cells 𝐼(𝑡)tend to zero exponentially in 70 

days . The computer simulation programs Fig. 1, by using MATLAB, support these results 

clearly.  

 

Figure 1: The infected cells goes to zero exponentially in 70 days when 𝑅0 < 1, 
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If we take the equation (5) 

𝑑𝐶 = ((1 − 𝑢2)𝑞𝐼 − 𝛼𝐶 − 𝑘𝐶𝑍)𝑑𝑡 − 𝜎2𝑢2𝑞𝐼𝑑𝑊2(𝑡)                                             

Also by using Ito's formula[11] and substitution the parameter values in equation (5) ,we have 

the solution of equation (5) as 𝐶(𝑡) = 106𝑒−(
3

2
)𝑡

.   So the virus particles 𝐶(𝑡) tend to zero 

exponentially in 70 days.  

The computer simulation programs Fig. 2, by using MATLAB, support these results clearly. 

 

Figure 2: The virus particles goes to zero exponentially in 70 days when 𝑅0 < 1, 

 While if we take the equation (3) 

 𝑑𝑇 = (𝐺 + 𝑛𝑇 (1 −
𝑇+𝐼

𝑇𝑚𝑎𝑥
) − 𝑏𝑇 − (1 − 𝑢1)𝑤𝐶𝑇)𝑑𝑡 + 𝜎1𝑢1𝑤𝐶𝑇𝑑𝑊1(𝑡) 

So when we solve equation (3) after substituting the parameters, we find the general solution 

of the stochastic differential equation is 𝑇(𝑡) = 106𝑒9999.9𝑡 . We note from this result that 

healthy cells 𝑇(𝑡) did not go to zero exponentially when  𝑡 → ∞. We will obtain these results 

by computer simulation as in Figure. 3. 
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Figure 3: The uninfected cells did not go to zero exponentially in 70 days when 𝑅0 < 1, 

Example (2). In this example, we will discuss the patient's condition when the efficacy of 

treatment is poor, the immunity represented by lymphocytes (CTLs) is weak, as well as the 

stochastic variance (𝜎1) and (𝜎2) are not big sufficiently. So the parameters will be as follows: 

PARAMETER THE VALUE 

𝑇𝑚𝑎𝑥  1.0 ∗ 107 𝑐𝑒𝑙𝑙𝑠  𝑚𝑙−1 

G 1.0 ∗ 105𝑐𝑒𝑙𝑙𝑠 𝑚𝑙−1𝑑𝑎𝑦−1 

n 0.1  𝑑𝑎𝑦−1 

b 1.0 ∗ 10−2 𝑑𝑎𝑦−1 

w 5 ∗ 10−7 𝑚𝑙𝑑𝑎𝑦−1𝑣𝑖𝑟𝑖𝑜𝑛𝑠−1 

s 0.1  𝑑𝑎𝑦−1 

𝛽 6.4 ∗ 10−2𝑑𝑎𝑦−1 

q 5.0 ∗ 100 𝑣𝑖𝑟𝑖𝑜𝑛𝑠 𝑐𝑒𝑙𝑙𝑠−1𝑑𝑎𝑦−1 

𝛼 4.0 ∗ 100 𝑑𝑎𝑦−1 

k 2.0 ∗ 1𝑑𝑎𝑦−1 

m 4.4 ∗ 10−7𝑑𝑎𝑦−1 

d 1.0 ∗ 10−2𝑑𝑎𝑦−1 

τ 1.0 ∗ 10−5𝑑𝑎𝑦−1 

h 0.01𝑑𝑎𝑦−1 

(𝑢1) 0.1 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

(𝑢2) 0.2 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝜎1 0.001 

𝜎2  0.001 

 

When finding the basic reproduction number by substituting the values of the parameters in 

equation (8), we find that 𝑅0 = 5.3983 > 1. This result means that the disease will turn into a 

chronic disease, and to clarify this result we take equation (4) 
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𝑑𝐼 = ((1 − 𝑢1)𝑤𝐶𝑇 + 𝑛𝐼 (1 −
𝑇 + 𝐼

𝑇𝑚𝑎𝑥
) − 𝑠𝐼 − 𝛽𝐼𝑌)𝑑𝑡 − 𝜎1𝑢1𝑤𝐶𝑇𝑑𝑊1(𝑡) 

So by using Ito's formula and substitution the parameter values, we have the solution of equation 

(4) is 𝐼(𝑡) = 106𝑒(3.59982)𝑡. So the infected cells 𝐼(𝑡) do not tend to zero exponentially when  

𝑡 → ∞.Will support these result by computer simulation as  in Figure. 4. 

 

Figure 4: The infected cells not tend to zero exponentially in 70 days when 𝑅0 > 1, 

Also, when solving equation (5), we find that 𝐶(𝑡) = 106𝑒1996𝑡. So the virus particles 𝐶(𝑡) 

do not tend to zero exponentially as 𝑡 → ∞. To illustrate the result, we take Figure. (5). 



  

 

255 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 4, July 2024 

Manuscript Code: 794B 

 

 

Figure 5: Computer simulation programs virus particles not tend to zero exponentially in 70 

days when 𝑅0 > 1, 

Conclusions 

The novelty of our article can be resumed as follows: the behavior of the hepatitis C virus 

(HCV) is studied by mixing two deterministic systems and introducing environmental 

stochasticity into them. Through this mathematical model, we proved that if the body has high 

immunity and the availability of appropriate treatment, and also the stochastic variance  𝜎1 and 

𝜎2 are big sufficient. This gives 𝑅0 < 1. When 𝑅0 is less than one, this means any infected cell 

will transmission of infected to less than one cell and this means the liver will get rid of the 

virus and heal the infected person as in Figures 1, 2, and 3. On the contrary, when the immunity 

is weak, the treatment is ineffective, and the stochastic variance  𝜎1 and 𝜎2 are small, this gives 

𝑅0 > 1,  and in this case, each infected cell transmits the infection to more than one healthy 

cell, This means that the virus will invade all liver cells and the infected person will not recover, 

as shown in Figures 4 and 5. Because immunity plays an essential role in maintaining the 

integrity of the liver from viruses. For this reason, immunity must be maintained by avoiding 

drug use, avoiding drinking alcohol, as well as not drinking and eating foods that have a high 

sugar content.  
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