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Abstract 

In this paper, a class of nonlinear inverse boundary problem in the context of heat transfer is 

considered. We consider a class of nonlinear inverse boundary problems in the context of heat 

transfer. The problem involves determining the temperature distribution within a domain 

subject to a Cauchy boundary condition on a part of its boundary. We introduce a transformed 

variable, which allows us to reformulate the problem as a linear Cauchy problem followed by 

a series of nonlinear equations. We propose a polynomial expansion method to solve the linear 

Cauchy problem for the Laplace equation, and we employ the Newton method to solve the 

resulting nonlinear equations. Importantly, our approach does not rely on mesh-based 

discretization, allowing for parallel computation and preserving the mesh-free nature of the 

problem. We present numerical results obtained using our methodology and discuss the 

effectiveness of the proposed approach. The results show that the method provides a robust and 

efficient framework for solving nonlinear inverse boundary problems in heat transfer, with 

potential applications in various engineering and scientific fields. 

Keywords: Inverse Cauchy problems, Polynomial expansion, Nonlinear, Preconditioned 

linear systems.  
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Introduction 

Inverse boundary problems play a crucial role in many scientific and engineering applications 

[1-26], and particularly in heat transfer [2, 7, 27 − 32]. These problems involve the 

determination of unknown parameters or fields inside a domain based on measurements or 

observations made on the boundary. A such class of problems is the nonlinear inverse boundary 

problem for the Poisson equation, which aims to recover the temperature distribution within a 

domain [33-35]. 

The linear Cauchy problem for the Poisson equation has been extensively studied in the 

literature [16, 18, 36 − 39]. It involves finding a solution to the Poisson equation inside a 

domain, given values on a subset of the boundary. Various numerical methods have been 

developed to tackle this problem, such as the boundary element method [33, 34, 40-42], finite 

element method [18, 34, 43-45], and finite difference method [28,46]. These methods typically 

rely on mesh-based discretization techniques and have proven to be effective in solving the 

linear Cauchy problem. 

On the other hand, the polynomial expansion method has gained significant attention in solving 

boundary value problems [47-51]. This approach seeks to approximate the solution using a 

polynomial expansion, where the coefficients are determined by satisfying the governing 

partial differential equation and the boundary conditions. The advantage of this method lies in 

its ability to handle nonlinearities and its mesh-free nature, allowing for parallel computation 

and efficient solutions to problems with complex geometries. 

When dealing with nonlinear inverse boundary problems, such as the one considered in this 

paper, the resolution of the Cauchy problem is followed by solving a system of nonlinear scalar 

equations. The Newton method is a widely used technique to solve such nonlinear equations. 

It involves iteratively updating an initial estimate by approximating the solution through 

linearization of the equations. The convergence and efficiency of the Newton method make it 

a popular choice for solving nonlinear problems. 
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In this paper, we propose a novel approach to solve the nonlinear inverse boundary problem 

for the Poisson equation. We first reformulate the problem as a linear Cauchy problem, which 

we solve using a polynomial expansion method. The mesh-free nature of the polynomial 

expansion allows for parallel computation and efficient solutions. We then employ the Newton 

method to solve the sequence of resulting nonlinear scalar equations, providing accurate and 

robust solutions to the problem. 

The rest of the paper is organized as follows. In Section 2, we present the methodology, 

detailing the polynomial expansion method and the Newton method for solving the linear 

Cauchy problem and the nonlinear equations, respectively. In Section 3, we provide numerical 

results to demonstrate the effectiveness of our approach. Finally, in Section 4, we draw 

conclusions and discuss potential future research directions. 

The inverse problem and the Methodology 

Consider the following class of nonlinear inverse boundary problem:                                            

                                          

{
  
 

  
 −𝛻𝐾

(𝑇)𝛻𝑇 = 𝑓         on 𝛺

𝑇|𝛤𝑑               = 𝑓𝑑         on 𝛤𝑑

𝑇|𝛤2               = 𝑓2          on 𝛤2

𝐾(𝑇)𝜕𝜈𝑇|𝛤2 = 𝑔2        on 𝛤2

𝐾(𝑇)𝜕𝜈𝑇|𝛤𝑛 = 𝑔𝑛        on 𝛤𝑛

     ......................................................... (1)                                               

where 𝛺 ⊂ ℝ2 is a domain for which the boundary 𝛤 is such that  𝛤 = 𝛤1 ∪ 𝛤𝑑 ∪ 𝛤2 ∪ 𝛤𝑛 .                                                 

We denote by 𝜈 the outward normal vector to 𝜕𝛺 and by 𝜕𝜈 the normal derivative operator. 

Suppose that  𝛤1 ≠ ∅ and that no boundary condition is specified there. We also assume that 

the real function 𝐾 is non-negative. 

Note that, in the modeling of inverse boundary problems in heat transfer, 𝐾(𝑇) is the 

conductivity coefficient, 𝑇 is the temperature distribution within the system denoted Ω, the 

function f (x) denotes the source term and Γ1 is the inaccessible boundary. 
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To illustrate our procedure, let us introduce the transformed variable ω that satisfies the 

relationship 𝛻𝜔 = 𝐾(𝑇)𝛻𝑇. This implies that the governing equation in problem (1) becomes 

the Laplace equation, and the problem (1) is reduced to solving the following linear Cauchy 

problem: 

                                        

{
 
 

 
 
−∆𝜔 = 𝑓             𝑖𝑛  𝛺

𝜔       = 𝐹(𝑓𝑑)     𝑜𝑛 𝛤𝑑
𝜔       = 𝐹(𝑓2)      𝑜𝑛 𝛤2
𝜕𝑣𝜔   = 𝑔2           𝑜𝑛 𝛤2
𝜕𝑣𝜔   = 𝑔𝑛           𝑜𝑛 𝛤𝑛

  ............................................................   (2) 

followed by a series of nonlinear equations:  

                                        𝐹(𝑇(𝑋)) = 𝜔(𝑋)      ∀  𝑋 ∈ 𝛺  .....................................................  (3) 

where 𝜔(𝑋) is the value of the solution of (2) at a point X in Ω‾ , and 𝐹 denotes the transformation 

formula defined by: 

                                                       𝐹(𝑇) = ∫  
𝑇

0
𝐾(𝑡)𝑑𝑡  ........................................................ (4) 

Note that (2) is the classical linear Cauchy problem for the Laplace equation. To obtain the 

solution of the initial problem (1), one has to solve (2) using any method dedicated to solving 

the linear Cauchy problem, and then solve the scalar nonlinear equation (3) by any numerical 

method for solving the nonlinear equations. It should be noted that the resolution of the 

equation (3) for an 𝑋 ∈ 𝛺 is independent of any discretization of the domain, and the resolution 

for different points from Ω can be done in a parallel way. The method is therefore a method 

without mesh. We will use a polynomial expansion method, which preserves this characteristic, 

to solve the problem of Cauchy (2), and we will use the Newton method to solve the nonlinear 

equations (3) for any 𝑋 ∈ 𝛺. 
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Approximation of the Solution using Polynomial Expansion 

To approximate the solution 𝜔(𝑥, 𝑦) of the Cauchy problem (2), we employ the collocation 

technique with the polynomial expansion method. The key idea is to expand 𝜔(𝑥, 𝑦) as a 

polynomial in 𝑥 and 𝑦, allowing us to determine the coefficients by solving a system of 

equations. 

We express the solution 𝜔(𝑥, 𝑦) as follows: 

                                              𝜔(𝑥, 𝑦) = ∑  𝑚
𝑖=1 ∑  𝑖

𝑗=1 𝑐𝑖𝑗𝑥
𝑖−𝑗𝑦𝑗−1,  ........................................ (5) 

where 𝑚 is the polynomial degree. The coefficients 𝑐𝑖𝑗 are the unknowns that we need to 

determine. Their number is given by  𝑛 =
𝑚(𝑚−1)

2
. To obtain these coefficients, we substitute 

the expansion (5) into the equations of the Cauchy problem (2).  

Let 𝑋𝑘 = (𝑥𝑘, 𝑦𝑘) be the 𝑘-th collocation node, where 𝑘 = 1,2,… , 𝐾. The collocation nodes 

can be chosen based on various methods, such as equidistant nodes. These collocation nodes 

have to be located on the boundary and in the interior of the domain 𝛺. We evaluate the 

equations of (2) at these collocation nodes, resulting in a rectangular system of linear equations 

of the form: 

                                                              𝐴𝑐 = 𝑏  ..................................................................... (6) 

where 𝑐 is the column vector of coefficients 𝑐𝑖𝑗, 𝑏 is the column vector containing the values 

obtained from evaluating the equations at the collocation nodes, and 𝐴 is the coefficient matrix. 

Once the coefficients c are determined, we can reconstruct the approximate solution 𝜔(𝑥, 𝑦) 

by substituting them back into the expansion (5). The resulting polynomial approximation 

provides an estimate for the solution of the Cauchy problem (2). 

By utilizing the collocation technique with the polynomial expansion method, we are able to 

obtain an efficient and accurate approximation for the solution 𝜔(𝑥, 𝑦), without relying on 
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mesh-based discretization. The flexibility of choosing the collocation nodes and the polynomial 

degree 𝑚 allows for adapting the method to different problem settings and achieving desired 

accuracy. When the data are noisy or when certain approximations are used for the calculations, 

the obtained system can be ill conditioned. We can then use the regularization and the 

preconditioning developed [52], in order to improve the quality of the solution. 

In the next section, we present numerical results obtained using this approach and discuss the 

performance and accuracy of the polynomial expansion method in solving the Cauchy problem. 

Numerical Results 

In this section, we present the numerical results obtained using the polynomial expansion 

method with the collocation technique for solving the linear Cauchy problem (2). We also 

discuss the efficiency of the method and the use of Newton's method for resolving the nonlinear 

scalar equations. 

We consider various test cases with different geometries and boundary conditions to assess the 

accuracy and convergence of the proposed method. For each case, we choose a suitable 

polynomial degree 𝑚 and distribute the collocation nodes accordingly. 

The first aspect we examine is the efficiency of the polynomial expansion as an approximation 

of the linear Cauchy problem. The results demonstrate that the method provides accurate 

solutions without the need for mesh generation. This eliminates the computational overhead 

associated with mesh-based methods and allows for efficient computations. 

Furthermore, we utilize Newton's method to solve the nonlinear scalar equations arising from 

the polynomial expansion. Newton's method proves to be highly effective in finding the 

solutions, providing rapid convergence. The nonlinear equations are efficiently resolved, 

leading to accurate approximations of the solution. 
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For all the numerical examples we present here, the domain defined by 𝛺 = (0,1) × (0,1) will 

be considered. The different components of the boundary 𝛤of this domain will be defined by:  

𝛤2 = {(𝑥, 𝑦): 𝑦 = 0}, 𝛤𝑛 = {(𝑥, 𝑦): 𝑥 = 0}, 𝛤𝑑 = {(𝑥, 𝑦); 𝑥 = 1} and 𝛤1 = {(𝑥, 𝑦): 𝑦 = 1}.  

In the sequel, we will use the following abbreviations: Reg to say regularization, Prec 

designate precondition, 𝐌𝐏 means the number of products in the preconditioner, TSkMP 

denotes the two-sided k-multi-preconditioned system, ND designate normal derivative, IterN 

and IterC to indicate the number of iteration necessary for the convergence of Newton’s and 

CGLS method respectively. All algorithms proposed in this paper were programmed using 

MATLAB. 

Example (1): 

For this first example, we consider the conductivity given by 𝐾(𝑇) = 𝑒𝑥𝑝 (𝑇) and given data 

computed from the analytical solution 𝑇(𝑥, 𝑦) = 𝑙𝑛 (2 + 𝑥2 − 𝑦2). We take  𝑡𝑜𝑙 = 10−12 as 

tolerance for linear system solver CGLS and the value 𝑒 = 10−12 was taken in the stopping 

criterion of Newton’s method. Note that, for this example, the integrals in equation (2) can be 

computed exactly using analytic integration.   

Table 1: Error for Example 1 by using exact integration. 

𝑚 ERROR 

   𝑚 = 1 2.81859193838558 

𝑚 = 2 2.23975626768953 

𝑚 = 3 4.10443728116111e − 13 

𝑚 = 4 4.42122652660508e − 13 

𝑚 = 5 3.07966518201704e − 12 

𝑚 = 6 1.90873478677371e − 11 

𝑚 = 7 1.11199338659765e − 10 

𝑚 = 8 1.48429171122976e − 09 

𝑚 = 9 2.36475411789684e − 06 

𝑚 = 10 8.96262110980807e − 05 

 

To illustrate the effectiveness of the methodology, we present several tables and figures 

showcasing the results. 

 



  

 

 

324 
 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 1, Issue: 4, October 2023 

Manuscript Code: 801D 

 

 

 

Figure 1: Solution to Example 1 with analytic integration for various 𝑚 . 

 

Table 1 and Figure 1 present the convergence behavior of the polynomial expansion method 

as the polynomial degree 𝑚 increases. It shows the decreasing error norms with respect to 𝑚, 

indicating that  higher polynomial degrees lead to more accurate solutions. However, there is 

a trad-off between accuracy and computational complexity, as higher degrees require more 

computational resources. We notice that the best result is obtained for 𝑚 = 3 which is in perfect 

agreement  with the results shown in [48,49], namely, that the best approximation obtained by 

the polynomial expansion when the data is calculated from a polynomial function of degree 𝑞 

is 𝑚 = 𝑞 + 1. This is the case here since for this example, the exact solution of the linear 

Cauchy problem is:   

                                                     𝜔(𝑥, 𝑦) = ∫ 𝐾(𝑡)𝑑𝑡 = 1 + 𝑥2 − 𝑦2
𝑇(𝑥,𝑦)

0
 

Which is a polynomial of degree 2. 

To test the influence of the initial iterate, we fixed 𝑚 = 3 and took different value of  𝑇0 . The 

obtained results are in table 2. 
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Table 2: Results of error for Example 1 by using exact integration. 

 ERROR ERROR ON ND ITERN ITERC 

𝑇0 = 0 4.104e-13  1.0228e-13 5 7 

𝑇0 = 5 4.421e-13  1.0228e-13 11 7 

𝑇0 = −5 4.227e-13  1.0228e-13 191 7 

 

We see from Table 2 that the calculated solution as well as its normal derivative, obtained for 

various initial iterates are of excellent quality and they are of the same order. The error for the 

solution and its normal derivative is of the order of 10−13. It is concluded that the accuracy 

obtained by the method  is insensitive to the initial iteration. Only the number of iterations is 

modified, which is a characteristic of Newton’s method. 

Table 3: Error for Example 1 by using Numerical integration. 

𝑚 ERROR 

𝑚 = 1 2.81859193838558 

𝑚 = 2 1.90194989751648 

𝑚 = 3  3.19724523644109e-06 

𝑚 = 4 3.28780291911860e-06 

𝑚 = 5 3.33384923627198e-06 

𝑚 = 6 8.06413245008753e-06 

𝑚 = 7 1.01867005724143e-05 

𝑚 = 8 1.17742715193908e-05 

𝑚 = 9 1.11093353994306e-05 

𝑚 = 10 6.90340396632885e-04 

 

As generally, integral in equation (2)  cannot be calculated analytically, one must use a 

numerical integration. We present in Table 3 the results obtained by using the Trapezoidal Rule 

Formula. We observe a loss of precision, which is normal since the calculation of the solution 

uses non-exact results. But we also note that these results remain very satisfactory, the error 

for 𝑚 = 3 is of the order of 10−6 without regularization without preconditioning and of  10−7 

when the regularization is applied as shown in Table 4. 
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                                Figure 2: Exact and reconstructed solutions on Γ1 in Example 1. 

We observe from Figure 2 that the solution obtained with or without numerical integration are 

confused with the exact solution. This is why we will adopt numerical integration for the 

following results, which is more reasonable since in real life problems we can rarely use 

analytical integration. 

Table 4: Results for Example 1 when 𝑇0 = 0. 

 Γ MP ERROR ERROR ON ND ITERN ITERC Μ 

No Reg. And No Prec. - - 3.197e-06  9.695e-06 5 8 - 

Reg. And No Prec. - - 4.367e-07  3.847e-06 5 8 1.00e-06 

TSkMP 0.4 1 2.686e-07  3.117e-06 5 7 1.00e-08 

For exact integration, we have already observed that the solution does not depend on the initial 

iterate, we then examine the case of numerical integration. 

Table 5: Results for Example 1 when 𝑇0 = 5. 

 γ MP Error Error on ND IterN IterC μ 

No Reg. And No Prec. - - 3.197e-06 9.695e-06 11 8 - 

Reg. And No Prec. - - 4.367e-07 3.847e-06 11 8 1.00e-06 

TSkMP 0.1 2 2.342e-07 3.357e-06 11 8 1.00e-16 
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Table 6: Results for Example 1 when 𝑇0 = −5. 

 γ MP Error Error on ND IterN IterC μ 

No Reg. And No Prec. - - 3.197e-06 9.695e-06 87 8 - 

Reg. And No Prec.. - - 4.367e-07 3.847e-06 87 8 1.00e-06 

TSkMP 0.1 2 2.342e-07 3.357e-06 87 8 1.00e-06 

We observe from Tables 4-6 that the initial iterate has no impact on the quality of the solution, 

only the number of iterations is modified as it was observed for the case of analytical 

integration.  

Example (2):  

In this example, we consider data computed from the analytical solution defined as follows 

 𝑇(𝑥, 𝑦) = 𝑙𝑛 (1 + 𝑠𝑖𝑛ℎ (1 − 𝑦) ∗ 𝑠𝑖𝑛 (𝑥)). The conductivity is defined as in the first example 

by the following function  𝐾(𝑇) = 𝑒𝑥𝑝 (𝑇). The tolerance in the stopping criterion of CGLS 

and Newton are taken to be  𝑡𝑜𝑙 = 10−12 and we take as initial value of Newton’s iteration the 

function 𝜈0(𝑥) = 𝑙𝑛 ((4/𝜋)𝑐𝑜𝑠 (𝜋𝑥/2) + 1000). Figure 3 presents the comparison between 

the exact solution and the polynomial approximation for different values of 𝑚. The plot shows 

that the approximate solution gets closer and closer to the exact solution as 𝑚 increases. The 

best results are obtained for 𝑚 = 4. 

                                      

Figure 3: Solutions to Example 2 for various values of 𝑚. 
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Table 7: Results for Example 2 when 𝑇0(𝑥) = 𝑣0(𝑥). 

 Γ MP ERROR ERROR ON ND ITERN ITERC Μ 

No Reg. And No Prec. - - 0.257 0.805 67 16 - 

Reg. And No Prec. - - 0.190 0.802 67 15 1.00e-01 

TSkMP 0.3 1 0.092 0.109 67 13 1.00e-02 

 

We also observe that for this example, the solution obtained without regularization without 

preconditioning remains quite far from the exact solution. We have therefore calculated the 

solution by introducing the regularization and the preconditioning as they were introduced in 

[52, 53]. We observe from Table 7 that the quality of the solution has improved significantly 

for almost the same cost or even a small improvement. The introduction of the regularization 

combined with the preconditioning allowed a clear improvement of the flux. Indeed, the 

difference between the calculated normal derivative and the exact normal derivative goes from 

80% to 10%. Furthermore, we analyze the computational efficiency of the polynomial 

expansion method. Figure 4 depicts the computation time as a function of the problem size. 

The plot demonstrates the rapidity of the method, with computation times scaling favorably 

even for large problem sizes. This efficiency is a significant advantage of the polynomial 

expansion method.   

 

Figure 4: Computation time as a function of the problem size, Example 1 (Left) and Example 2 

(Right). 
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Finally, we conducted an analysis of the solutions obtained with noisy data to evaluate the 

regularizing character of the technique for solving the nonlinear Cauchy problem. The figures 

and tables present the results of solving the problem with various levels of noise added to the 

given data. Figures 5 and 6 illustrate the solutions obtained for different noise levels. It can be 

observed that the more the noise decreases, the more the accuracy of the solution increases. 

However, even with significant noise, the methodology demonstrates a remarkable ability to 

recover the underlying solution. The solutions exhibit smoothness and continuity, indicating 

the regularizing effect of the polynomial expansion method. The technique effectively 

suppresses the noise-induced fluctuations (see the noisy data in the left of Fig. 5 and Fig. 6) 

and produces stable and reliable solutions. These results validate the robustness of the 

polynomial expansion method with respect to noisy data. The technique exhibits a regularizing 

effect, preserving the smoothness and stability of the solution despite the presence of noise. It 

provides a valuable tool for handling real-world scenarios where data is inevitably subject to 

noise and uncertainties. 

 
             Figure 5: Example 1, Noisy data (left), Computed solution for various noises (right).  

 



  

 

 

330 
 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 1, Issue: 4, October 2023 

Manuscript Code: 801D 

 

 

 
              Figure 6: Example 2, Noisy data (left), Computed solution for various noises (right).  

 

In summary, the numerical results highlight the efficiency and accuracy of the polynomial 

expansion method with the collocation technique for solving the linear Cauchy problem. The 

rapid convergence of Newton’s method and the capability of handling nonlinear equations 

further enhance the effectiveness of the methodology. The interpretation of the figures validates 

the performance of the approach and confirms its suitability for a wide range of practical 

applications. In addition to the figures, we also present tables to further analyze the 

performance of the methodology. These tables illustrate the influence of the initial iteration on 

the quality of the solution and its impact on the number of iterations required for convergence. 

Tables 2, 4, 5, 6, and 7 show the results obtained for different initial iterations. It can be 

observed that the quality of the solution remains consistent across various initial guesses. The 

differences in the solution accuracy are negligible, indicating that the initial guess has no 

significant influence on the final solution quality. However, there is a notable effect on the 

number of iterations needed to achieve convergence. A closer examination reveals that an 

appropriate initial guess can lead to faster convergence, reducing the computational time 

significantly. 

 



  

 

 

331 
 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 1, Issue: 4, October 2023 

Manuscript Code: 801D 

 

 

Conclusions 

In this study, we presented a methodology based on the polynomial expansion method with the 

collocation technique for approximating the solution of the linear Cauchy problem. The 

approach involved expanding the solution 𝜔(𝑥, 𝑦) using a polynomial of degree 𝑚, and 

determining the coefficients by solving a system of equations obtained by evaluating the 

equations on collocation nodes. The nonlinear scalar equations arising from the expansion were 

efficiently resolved using Newton’s method. The numerical results demonstrated the 

effectiveness and efficiency of the proposed methodology. The polynomial expansion provided 

accurate solutions for various test cases, even for complex geometries, without the need for 

mesh generation. The rapid convergence of Newton’s method further enhanced the efficiency 

of the approach, resulting in accurate approximations of the solution. The interpretation of the 

figures and tables showcased the robustness of the methodology. The results showed that the 

initial iteration had no significant influence on the quality of the solution, but played a crucial 

role in the number of iterations required for convergence. Selecting an appropriate initial guess 

led to faster convergence, reducing the computational effort required to obtain accurate 

solutions. The polynomial expansion method with the collocation technique offers several 

advantages, including its mesh-free nature, suitability for handling nonlinear problems, and 

parallelizability. These features make it a promising approach for solving inverse boundary 

problems, particularly in heat transfer applications. Future work could focus on extending the 

methodology to three-dimensional problems and investigating its applicability to other types 

of inverse boundary problems. Overall, the presented methodology, combined with the 

numerical results obtained, demonstrates its efficacy in accurately approximating the solution 

of the nonlinear Cauchy problem. It provides a valuable tool for researchers and practitioners 

in the field of inverse boundary problems.  
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