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Abstract

An inverse Cauchy problem on an under-specified portion of the boundary of a two-
dimensional domain occupied by a material satisfying Helmholtz-type equations from
additional Cauchy data on the remaining accessible portion of the boundary has been
considered. The solution is approached using a polynomial expansion to obtain a linear system;
this linear system has been solved by conjugate gradient based-method. The efficiency of the
proposed method has been confirmed by applying it for different examples and by comparing

the obtained results by using three different numerical methods.

Keywords: Inverse Cauchy problems, Helmholtz equation, polynomial expansion, conjugate
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Introduction

Direct boundary value problems for Helmholtz equations have been widely studied in the last
century. It is a kind of elliptic Partial Differential Equation (PDE) with time-independent
solutions of the wave equation. Helmholtz-type equations can be appear naturally in physical
applications related to wave propagation, vibration phenomena, and heat transfer [8], in the

acoustic cavity problem [13], the radiation wave [15], and the heat conduction in fins [26].

A problem is well-posed in the sense of Hadamard, in case the existence, uniqueness, and
stability of the solution is A guaranty, [14], otherwise if one of these conditions is not satisfied
by the solution then the problem is ill-posed, and hence an inverse problem is formulated to be
able to solve the problem. The inverse problems are more difficult to be solved than the direct
problems. It is well known that inverse problems are in general unstable, [14], i.e. a small error
of measurement in the input data may imply to an important error in the solution. In recent
years, inverse problems have been extensively treated in several branches of science, [27]. The
Cauchy problem is one of the examples of inverse problem [7], [12], [16], [21], [28], [29] and
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[34]. For this kind of problems, the boundary conditions (Dirichlet, Neumann) are given just
on some part of the boundary, and on the rest part there is no information, and this part is known
as the un-accessible part of the boundary. Unfortunately, the ill-posed ness of Cauchy problem

for the Helmholtz equation is known to be very severe in the sense of Hadamard [14].

For all these reasons, the choice of a suitable algorithm must be taken in consideration to reduce
the ill-posedness of this kind of problem. In the last two decades, several methods have been
proposed for solving the Cauchy problem for the Helmholtz equation. In the following we recall
some of these methods, the truncation method [37], the conjugate gradient method [33], the

meshless generalized finite difference method [17], the Landweber method [37].

In fact, the approximation of numerical solutions of direct Helmholtz equation depends on k
and this physical parameter has an important effect on the quality of approximation, to have an
idea about the dependence of the quality of the numerical solution on the wave number k see
[19-20]. Some authors have proposed some methods to solve Cauchy Helmholtz equation for
the big value of k [9-11]. A new efficient alternating algorithm based on the relaxation of
alternating algorithms has proposed by Jourhmane&Nachaoui [23]. An effective relaxed
alternating procedure proved the convergence for all values of wave number k in the case of
Helmholtz equation and accelerate the convergence in the case of modified Helmholtz equation
by Berdawood et. al. [4-6], the authors proved that for any value wave number k we find an

interval of relaxation parameter in which the convergence is assured.

This paper has as aim the exploration of a method to solve a Cauchy problem for a Helmholtz-
type equation in a bounded domain enclosed by a smooth boundary by using an approximation
of the solution by a polynomial. This method was proposed in Rasheed et. al [35] to solve an
inverse Cauchy problem. This paper consists of 5 sections. In Section 2, we recall Inverse
Cauchy problems for the Helmholtz equation. In section 3, we present the approximation of the
solution by a polynomial expansion. The linear system and numerical method are given in the

fourth Section. To conclude, we present numerical results and discussion in Section 5.

Inverse Cauchy problems for the Helmholtz equation
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In our study, we consider the domain

N ={(x,y) ER*/x* +y2<r?}

with its boundary
L= {0):r=p0),0 <6 <pnr}
and
L= {(r0):r = p0),fn < 6 < 21,0<p <2}
The inverse Cauchy problem for the Helmholtz equation is given by:

Find the unknown function T (x, y) such that, given T(x, y) and 3, T (x,y) , on I'1

(A EDT =0 (2,7) E QL oottt ettt es sttt n s (1)
T(P,0) = T(B) 0 S 0 < BT oottt ettt 2)
0,T(0,0) = D(p,0) = P(0) 0 < B < BT oot (3)

We start by noting, that the normal derivative equals Z—: = VT.n which can be expressed in the
following form:

aT(p,0) " 9T(p,0)
a,T(p,8) =1(6) [a—‘; — BTG 4)
_ p(6)
n(e) = O T O (5)

Also, 0,,T (x,y) can be expressed in terms of oxT and dyT by
8, = 1(8) [cos(8) - %sin(ﬁ)] 0,T +1(8) [sin(8) — & TC)] 2% (6)
Polynomial expansion

The solution T(x, y) is expanded by

T(x,y) =22 Zji=1 Cij X TYITh e (7
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m(m+1)

We note that the number of the coefficients c;; is equal to n = and these coefficients

must be determined. The maximum order of the polynomial given in (7) ism — 1.

Using equation (7), we find 9, T, 0, T and AT

0xT(x,y) = B/ By ¢ (0= D710 s (8)
0, T(x,y) =%/ ]-izl (= Dt TyIm2 s 9)
SO

AT(x,y) + K2T(x,y) = Xy Xhoy [ — NG —j — D72y 4+ (- 1D -
2)x YT K2 T 1T TI)] et (10)

The coefficients c;; in equation (7) can be formulated as a vector of dimension n, say ¢ where
ci are the components of c, by the formula % +j.

T (x,y) has the following form as an inner product of a vector of variables a with a vector of

coefficients c,

(1
Tx,y)=[1 x y x2 xy y% x% x%y xy? y3 ...]IC3I
lc, |

AT Gttt (11)

Noting that the dimensions of the vectors a, c are taken to be able to do the product.

Including (8) and (9) into (6) gives us an expression of d,T. (Normal derivative)
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e, = n(0) [(i — jxtmimtyi1 (cos(ﬁ) - Z—;Sin(e)) + (j — Dxiiyi=2 (sin(H) -
z—;cos(H))] ......................................................................................................................... (12)

For the indices of the coefficients and the variables of T(x, y).

Now, for some internal points of the domain , the Laplacian AT (x, y) can be given as an inner
product of a vector d with component d, of the following form:

dy=G—)DGE—j— DxT 2y 1+ (- 1) — Dx Ty =2 + K2(xXTy™1) v, (13)

withc, forl=1, ..., na.

We begin by choosing n,, points (x,,y,),f =1,....,n;, On T'1 for which the boundary
conditions (2 — 3) are satisfied. Also, for some points (xj,yj),j =1,---,n, in the domain Q to
satisfy the differential equation given in (1). The obtained equations form a system of linear by
solving it, the n coefficients c;; are obtained. Now, this klinear system is as follows

AC T D oot (14)
With a vector b of order 2n,, + n, and A a 2n,, + n, X @ matrix given respectively by
ai
7(91) :
/ ~(e;na)\ Unia
| a0 | el
b= | B(0a1) | PAS | (15)
0 €nia
Vs
0 :
dn

Thus, to solve our inverse Cauchy problem is equivalent to solve the linear system given in
(14).

Numerical Methods to Solve the linear system

1- Numerical methods (BiCG), ((BiICGSTAB) and (PCG)
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In the following, we recall some of the conjugate gradient-based methods (see [3]), which are

well-known iterative method for solving linear system Ax = b,

e The bi-conjugate gradients (BiCG) is an algorithm, that was developed for generalizing

the conjugate gradient (CG) method for solving the non-symmetric linear systems.

e The bi-conjugate gradients stabilized (BiICGSTAB) is an algorithm that was developed
for improving the BiCG algorithm

e The preconditioned conjugate gradients method (PCG) is an algorithm that was

developed to exploit the structure of symmetric positive definite matrices.

The PCG is used to be able to accelerate the iterative method, in fact, for this method we
introduce the so-called pre-conditioner , say P, to the linear system Ax = b. This is used in case
that the matrix A is ill-conditioned (with a big condition number of k(A)), so we choose some
pre-conditioner P, which implies that the condition number of PA or AP will satisfy cond(PA)
<< cond(A) or cond(AP) << cond(A). Therefore ,we solve PAx = Pb or APx = Pb by iterative
method instead of Ax = b. The Preconditioned Conjugate Gradient (PCG) method is one of

these kinds methods.
2- Stopping criterion and initial guess

The simplest and most common stopping criteria are stated by

1S A OO (16)
Il
16l LT OL ottt bbb e e nbe b e nnee s a7

where Tol is a user-provided error tolerance. For the initial guess, is chosen to be the zero vector

at the initial iteration.
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Numerical results and discussion

In this section, we present the numerical results for the inverse Cauchy problem for Helmholtz

equation stated in (1-3)

Example 1: We solve the problem (1-3) at the domain bounded by p(6) = 1 and T} is defined
taking # = 1 with an exact solution is T (x,y) = x* + y*. To discretize the boundary, we take
Ny = 100, ny, = 100, and the number of internal domain points is n, = 2000 . The linear
system is solved by varying m = 1, ...,12 and by using the algorithms, BiCG, BiCGSTAB, PCG
with Tol = 1072, In the following the numerical results for different cases of the physical

parameter k.

Table 1: k = V15
Iter of Error of Iter of Error Iter of
M1 Bice BICG BICGSTAB | BICGSTAB PCG Error of PCG
2 3 0.529096876 15 0.529096876 3 0.529096876
3 7 0.358686915 5 0.358686915 7 0.358686915
4 11 0.360590266 11 0.360590266 11 0.360590266
5 22 9.69725200E-11 27 1.60840098E-13 23 3.59471523E-14
6 41 1.22004838E-09 89.5 2.20783540E-12 42 1.44287085E-12
7 88 3.05841475E-09 351.5 1.15074272E-10 85 1.75652567E-11
8 164 2.51138316E-09 940.5 8.70072295E-12 159 8.94092322E-12
9 340 2.39243441E-08 3037.5 6.59980432E-10 304 8.68077326E-11
10 832 3.13441769E-07 11921.5 7.28863188E-10 548 1.39322307E-10
11 1202 0.006475063 6135 3.99616891E-09 976 4.19081426E-09
12 4599 0.006976981 21782 1.09717714E-08 2207 4.64071953E-08

In table (1), from m = 5, a good approximation is obtained for all the methods with roughly a
same number of iterations, which is coherent with the given data. In fact, the exact solution is
a polynomial function of degree 4 and it is logic to obtain the best accuracy by approximating
a polynomial of degree 4 by a polynomial of degree 4. We also observe that the PCG method
is more accurate than the BiCG, BiCGSTAB and that for a big value of m, the PCG is faster for

the same accuracy.
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Table2: k =+/25.5

M g‘f[:%f Error of BICG BICItérSEI)'tAB Error BICGSTAB 'fégf Error of PCG
2 2 0.653007484 1.5 0.653007484 2 0.653007484
3 7 0.256190455 4.5 0.256190455 7 0.256190455
4 11 0.255888263 11 0.255888263 11 0.255888263
5 21 1.21995356E-12 30.5 2.43228119E-14 21 8.24990586E-14
6 38 1.88529541E-10 54.5 1.31041973E-10 36 1.42904524E-10
7 82 3.14522081E-10 288.5 9.01315759E-12 76 2.90224296E-12
8 165 | 2.99339594E-08 950.5 9.73327222E-12 162 | 6.53785676E-12
9 320 | 6.27882455E-08 7627.5 1.03926826E-07 334 | 4.09496706E-11
10| 734 0.000199628 8020 1.67332700E-09 662 | 9.10602603E-09
11 | 1809 0.004934644 3801 1.27763794E-09 1336 | 1.01629112E-09
12 | 4719 0.003778616 8755 1.66952969E-08 2578 | 2.30932110E-08
For table 2, we note that the same remark as table 1.
Table 3: k = /52

M g?ég Error of BICG Bl Clt(grS(')I'tAB Error BICGSTAB Itségf Error of PCG

2 2 0.74597044 15 0.74597044 2 0.74597044

3 7 0.238066269 4 0.238066269 7 0.238066269

4 10 0.23825077 8 0.23825077 10 0.23825077

5 20 | 1.01523784E-11 29 2.30310135E-14 20 | 1.26432210E-14

6 34 | 2.38414631E-11 49 | 6.58263536E-12 34 | 6.55124581E-12

7 61 | 5.43136554E-10 248.5 8.28453558E-10 68 | 1.29824124E-12

8 | 107 | 9.24083016E-10 465.5 1.28247892E-10 | 102 | 4.28143446E-11

9 | 259 | 5.08284184E-09 3894.5 1.56914567E-09 | 239 | 1.55116778E-09

10 | 709 | 1.52873300E-06 31829 5.01934527E-09 | 541 | 6.13902432E-09

11 | 3400 0.000633603 3201 3.49565595E-08 | 1558 | 2.17668824E-08

12 | 6531 0.000812414 1641 5.78665717E-07 | 2962 | 6.92160375E-07

For table 3, we note the same remark as table 1,2, but with more accuracy.

Table 4:k = 100
M| ot o of BICG lterof  erorgicesTaB | €M7 | Erorof PCG
BICG BICGSTAB PCG
2 2 0.789484743 15 0.789484743 2 0.789484743
3 4 0.281152413 3 0.281152413 4 0.281152413
4 9 0.281355523 8 0.281355523 9 0.281355523
5 | 21 | 3.96850485E-12 245 3.07236822E-15 | 20 | 4.37785145E-15
6 | 31 | 3.71444631E-11 475 3.61250702E-11 | 31 | 2.52186990E-11
7 | 71 | 7.51976440E-11 232 1.79198865E-12 | 65 | 6.95681632E-14
8 | 100 @ 6.82114551E-11 | 3845 3.24250143E-11 | 99 | 3.34686584E-11
O | 224 | 1.44371905E-03 | 5530 5.86962665E-10 | 209 | 5.92917781E-10
10| 513  8.56975337E-08 | 3832 8.20657989E-11 | 406 | 5.09891896E-09
11| 1145 291160113E-04 | 1401 4.05298672E-08 | 947 | 4.05118186E-08
12| 3387  3.90553496E-05 | 8666 1.27338810E-07 | 1758 | 1.62936379E-07
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For table 4, we note the same remark as tables (1-3), with more accuracy. In fact, we note that
when k be bigger the accuracy be better.
Exact solution T, = x* + y* with the approximate solutions by CGM and CGLS with g = 1,

onTI,
Appraceets wd sac ssane In henatiom of
E a9
;
Zor
A: The exact and the approximate solution calculated B: The error between the exact solution and the
by BIiCG, BIiCGSTAB, PCG approximate one calculated by BiCG
a5
‘] s 4 &
C: The error between the exact and the approximate one D: The error between the exact and the
calculated by BiCGSTAB approximate one calculated by PCG

Figure 1: Results for the case of exact solution T(x,y) = x* + y*, g =1, with n;, = 100,n,, =
100 n, = 2000 . Approximate solutions calculated by the algorithms, BiCG, BiCGSTAB, PCG with
Tol = 10712,
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In the following, we study a non-polynomial example

Example 2: We solve the problem (1-3) at the domain bounded by p(8) = 1 and I} is
defined taking g = 1 with an exact solution is T(x,y) = exp(x) cos(y). To discretize the
boundary, we take n,, = 200,n,;, = 200, and the number of internal domain points is n, =
4000. The linear system is solved by varying m = 1, ...,10 and by using te algorithms, BiCG,
BiCGSTAB, PCG with Tol = 10712,

Table 5: k = V15
Iter of Iter of Error Iter of
M gicg = EMOrofBICG | 5iccsTAB | BICGSTAB | pcg | EMforofPCG
2 3 0.289689244 2 0.289689244 3 0.289689244
3| 7 0.094099455 6 0.094099455 7 0.094099455
4 11 0.02333162 155 0.02333162 11 0.02333162
5 23 0.004676945 325 0.004676945 22 0.004676945
6 43 0.000794595 92 0.000794595 43 0.000794595
7 90 0.000123725 2735 0.000123724 86 0.000123724
8 | 162 | 1.89417243E-05 8655  1.89296535E-05 159 | 1.89296540E-05
9 | 326 | 6.67042416E-06 22585 | 6.83792522E-06 | 287 | 6.83751416E-06
10 | 769 | 2.31431418E-06 = 160445 | 1.83586827E-06 | 523 | 1.83517913E-06
11 | 1458 | 2.39220632E-04 | 14434 | 3.43871041E-07 | 1016 | 3.43329433E-07
12 | 4123 | 1.26862202E-03 8548 2.20533229E-05 1837 | 2.22190094E-05

In table (5), the best approximation is obtained with BICG for m = 10 and with BICGSTAB

and PCG for m = 10. The PCG has less number of iteration for the same accuracy.

Table 6: k =+/25.5

M gelrc(g Error of BICG Blétérsc')l'fAB BlcEGrgoTrAB Iéec;gf Error of PCG
2 3 0.289623396 2 0.289623396 3 0.289623396
3 7 0.093962295 6 0.093962295 7 0.093962295
4 11 0.023221393 11 0.023221393 11 0.023221393
5 22 0.004626346 275 0.004626346 22 0.004626346
6 41 0.000772314 77 0.000772314 41 0.000772314
7 81 0.000111478 208.5 0.000111478 80 0.000111478
8 169 | 1.45127820E-05 1052.5 1.45123047E-05 | 157 | 1.45121836E-05
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9 | 368 | 1.81533481E-06 24105 1.83691481E-06 | 328 | 1.83691490E-06
10 829 | 6.18819171E-06 9554 4.26124193E-07 | 663 | 4.22547519E-07

11 ' 1691 | 3.65583380E-04 11910 1.02309765E-07 & 1266 | 9.98263388E-08
12 | 3670 | 5.90709242E-04 27443 7.45231322E-06 | 2261 | 7.56741618E-06

In table 6, we note that the BiCG attends the best accuracy with m=9, but the BICGSTAB and
PCG attend it for m=11. The number of iterations of PCG is less than that for the other two

algorithms for the same accuracy.

Table 7: k= /52
Iter of Iter of Error Iter of
M Bicg EMOrofBICG  gicGstAB | BICGSTAB | pcG | EMMOrofPCG
2 3 0.289596921 2 0.289596921 3 0.289596921
3 7 0.093906953 6 0.093906953 7 0.093906953
4 11 0.023175159 10 0.023175159 11 0.023175159
5 23 0.004604848 26.5 0.004604848 22 0.004604848
6 39 0.000765177 51.5 0.000765177 38 0.000765177
7 73 0.00010925 1915 0.00010925 70 0.00010925
8 128 1.36839001E-05 550.5 1.36835714E-05 122 1.36835762E-05
9 337 | 1.53288974E-06 2066 1.52939937E-06 | 278 | 1.52939405E-06
10 | 631 | 3.47482551E-07 9724 1.69525232E-07 536 | 1.70979992E-07
11 | 2108 | 1.63486693E-05 14375 3.33366025E-07 | 1343 | 3.38084033E-07
12 | 13893 | 5.89988875E-05 7943 3.98346800E-07 | 2656 | 1.03657946E-06

In table 7, the best accuracy is obtained for m=10 with less iteration for the PCG.

Table 8: k=100

M :;t,?[;(g Error of BICG BICI:t(grS(')I'fAB Error BICGSTAB Ilgecr:gf Error of PCG
2 3 0.289596921 2 0.289596921 3 0.289596921
3 7 0.093906953 6 0.093906953 7 0.093906953
4 11 0.023175159 10 0.023175159 11 0.023175159
5 23 0.004604848 26.5 0.004604848 22 0.004604848
6 39 0.000765177 51.5 0.000765177 38 0.000765177
7 73 0.00010925 191.5 0.00010925 70 0.00010925
8 128 1.36839001E-05 550.5 1.36835714E-05 122 | 1.36835762E-05
9 337 1.53288974E-06 2066 1.52939937E-06 278 | 1.52939405E-06
10 631 3.47482551E-07 9724 1.69525232E-07 536 | 1.70979992E-07
11 2108 1.63486693E-05 14375 3.33366025E-07 | 1343 | 3.38084033E-07
12 | 13893 | 5.89988875E-05 7943 3.98346800E-07 | 2656 | 1.03657946E-06
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For table 8, the same remark as the previous case is obtained.

Exact solution T,, = exp(x) co s(y) with the approximate solutions by CGM and CGLS with
B=1o0nTl,

AZCOONTaY 00 E53 SOAB00S 1 Tonation of "0 Erce

ORI BRI gy K Joe Y Emorsl e
200N by BOG

sohtice by BOGETAR

skscoby PCG

et o ppprEe ¥Lices

(A): Exact and approximate solution (B): The error between the exact and the
calculated by BiCG, BiCGSTAB, PCG approximate one calculated by BiCG

(C): The error between the exact and the (D): The error between the exact and the
approximate one calculated by BICGSTAB approximate one calculated by PCG

Figure2: Results for the case of exact solution T (x,y) = exp(x) cos(y), B = 1, with n,, =
100,14, = 100 n, = 2000 . Approximate solutions calculated by the algorithms, BiCG, BiCGSTAB,
PCG with Tol = 10712,
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In the following, we study an example with a domain of less accessible part.

Example3: We solve the problem (1-3) at the domain bounded by p(8) = 1 and I; is defined
taking 8 = 0.5 with an exact solution is T'(x, y) = exp(x) cos(y). To discretize the boundary,
we take n;, = 200,n,;, = 200, and the number of internal domain pointsisn, = 4000 . The
linear system is solved by varying m = 1, ...,12 and by using algorithms, BiCG, BiCGSTAB,
PCG with Tol = 10712,

Table 9:k = V15
M gf;g Error of BICG | (';tgsc%;s Error BICGSTAB 'tlf(r:gf Error of PCG
2 3 0.316725761 25 0.316725761 3 0316725761
3 7 0.107537005 6.5 0.107537005 7 | 0.107537005
4 12 | 0.026431743 135 0.026431743 12 0026431743
5 22 | 0005392613 28.5 0.005392613 23 | 0.005392613
6 47 | 0.000899636 755 0.000899637 46 | 0.000899637
7 96 | 0000141111 263.5 0.000141111 91 | 0.000141111
8 | 199 | 3.34802581E-05 697.5 | 3.34894797E-05 | 178 | 3.34894942E-05
9 | 550 | 1.13387208E-05 50955 | 1.11085087E-05 & 402 | 1.11085281E-05
10 | 1318 | 2.05547803E-04 9268 2.06549883E-06 | 966 | 2.99460030E-06
11 | 2937 | 3.96103444E-03 | 21705 | 8.95364710E-05 | 2081 @ 8.95710383E-05
12| 13013 | 3.80378094E-03 | 14451 | 1.01838196E-03 | 3276 @ 1.92550776E-03

For m = 9, the BICG attend its best accuracy, but the BICGSTAB and PCG attend a better

accuracy for m = 10, and the PCG still with less number of iteration for the same accuracy.

Table 10:k = v25.5

M gfg‘g Error of BICG | o, clttgs%to\s Error BICGSTAB 'tF‘f(r:gf Error of PCG
2 3 0.31667775 25 0.31667775 3 0.31667775
3 7 0.107422891 6.5 0.107422891 7 0.107422891
4 12 | 0026363773 145 0.026363773 12 | 0.026363773
5 23 | 0.005360712 315 0.005360712 23 | 0.005360712
6 44 | 0.000886733 71 0.000886733 44 | 0.000886733
7 7 90 | 0.000129136 2125 0.000129136 87 | 0.000129136
8 | 223 | 1.62730298E-05 7485 1.62733949E-05 | 182 | 1.62734186E-05
9 | 433 | 2.36713062E-06 | 55905 | 2.22084865E-06 | 379 | 2.22096166E-06
10 | 1631 | 4.62038847E-03 | 21197 | 8.44033337E-07 = 937 | 8.46672620E-07
11 | 3216  6.58248110E-04 6784 2.11467237E-06 | 2001  2.17787588E-06
12 | 14234 | 8.22605957E-04 | 15893 | 8.29292564E-06 | 3397 | 1.30346166E-04
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For m = 9, the BICG attend its best accuracy, but the BICGSTAB and PCG attend a better

accuracy for m = 10, and for the PCG still with less number of iteration for the same accuracy.

Tabel 11: k = /52

E?E"Gf Error of BICG | o C'tgs‘%‘;B Error BICGSTAB ';eégf Error of PCG
3 0.316658482 25 0.316658482 3 0.316658482
7 0.107375467 6.5 0.107375467 7 0.107375467
11 | 0026335962 135 0.026335962 12 | 0.026335962
21 | 0.005346983 285 0.005346983 21 | 0.005346983
41 | 0.000882249 65.5 0.000882249 40 | 0.000882249
82 | 0.000127681 1745 0.000127681 81 | 0.000127681

171 | 1.58612162E-05 502.5 1.58613437E-05 164 | 1.58613435E-05
381 | 1.78888008E-06 1344.5 1.78816139E-06 307 | 1.78860034E-06
1075 | 2.60260577E-06 5921 1.78821258E-07 856 | 1.79767711E-07
4796 | 1.49784697E-04 24770 1.33075451E-07 | 2226 | 1.88835521E-08
4341 | 2.85413617E-04 19673 5.37527193E-06 | 2402 | 5.37996591E-06

el
N EBlooNoaswn Z

We note that whenm = 9, the BiCG attend its best accuracy, but the BICGSTAB and PCG

attend a better accuracy for m = 11, and for the PCG still faster for the same accuracy.

Tabel 12: kK =100

M g?rcg Error of BICG | étgsc%‘;B Error BICGSTAB 'E,ecrgf Error of PCG
2 3 0.316654033 25 0.316654033 3 0.316654033
3 7 0.107364277 55 0107364277 7 0107364277
4 11 | 0026329422 135 0.026329422 11 | 0.026329422
5 22 | 0.005343008 285 0.005343008 22 | 0.005343008
6 39 | 0000881183 61 0.000881183 39 | 0.000881183
7 78 0.00012742 1615 0.00012742 70 0.00012742
8 155 | 1.58016930E-05 4805 158015524E-05 | 155 | 1.58016525E-05
9 | 341 | 1.77496189E-06 16385 | 1.77474857E-06 | 323 | 1.77483572E-06
10 | 817 | 1.84713125E-07 6928 1.76211436E-07 | 548 | 1.77158114E-07
11 3198 | 1.24987793E-06 | 23798 | 1.19310203E-07 | 1214 | 1.23236474E-07
12 3444 | 4.96142356E-06 8024 4.00458413E-07 | 1991 | 5.86571403E-07

We note that when m = 10, the BiCG attend its best accuracy, but the BICGSTAB and PCG

attend a better accuracy for m = 11, and for the PCG still faster for the same accuracy.

Exact solution T,, = exp(x) co s(y) with the approximate solutions by CGM and CGLS with
B =0.50nT,
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(A): Exact and approximate solution
calculated by BiCG, BiCGSTAB, PCG

(B): The error between the exact and the
approximate one calculated by BiCG

Byr

(C): The error between the exact and the
approximate one calculated by BICGSTAB

(D): The error between the exact and the
approximate one calculated by PCG

Figure3: Results for the case of exact solution T(x,y) = exp(x)cos(y), B = 0.5, with n,, =
100,14, = 100 n, = 2000 . Approximate solutions calculated by the algorithms, BiCG, BiCGSTAB,

PCG with Tol = 10712,
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Conclusion

An inverse Cauchy problem for Helmholtz equations in a regular domain is solved by
benefiting from the over-specified boundary conditions, these extra data help to recover the
missing data on another inaccessible part. Using polynomial expansion following the method
of Rasheed et al., the problem is transformed to solve a direct problem of linear system. To
illustrate the proposed method, we apply it for some examples with polynomial and non-
polynomial exact solution, for all the cases we obtained approximations with good accuracy for
all the proposed conjugate gradiant-based algoriths: BiCG, BICGSTAB, PCG with the best

accuracy and the faster one is the PCG.
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