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Abstract

The primary objective of this paper is to introduce the new definitions of fuzzy separation and

fuzzy connectedness in fuzzy topological space, such as (fuzzy §*g - separation, fuzzy (5*g —
o) separation, fuzzy §*g - connected, fuzzy (5*g — @) connected) by using the definitions of
fuzzy §*g — (5"g — @) open sets and learning the interactions between them. We also explore
a fuzzy hereditary and fuzzy topological properties and show that fuzzy $*g — (58" —
®)connectedness is not a fuzzy hereditary property but a fuzzy topological feature.

Keyword:- f. §*g .s (fuzzy §*g — separated) , f.(5*g — @).s ,f. $*g .c(fuzzy §*g — connected) , f.

~ %~

(8'g —«). c, fuzzy §*g —home , fuzzy (5*g — @) home .

Introduction

The concept of fuzzy set was introduced by Zadeh[1]. And the fuzzy topological space was
introduced by Chang [6].And Fuzzy connected sets in fuzzy topological spaces introduced by
Chaudhuri [2].

Introduced fuzzy connected spaces defined as a fuzzy topological space X is said to be fuzzy
disconnected space if X can be expressed as the union of two disjoint non — empty fuzzy open
subsets of X. Otherwise, X is fuzzy connected space. In this work, we recall some basic concept

that we need in our work we introduce a new definition fuzzy $*g- separation, fuzzy (5*g — &)

separation, fuzzy §*g- connected, fuzzy (§*g — @)- connected space using definitions fuzzy
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(8*g — @) open sets and study the relations among them . At last we show that fuzzy (§*g — @)-
connected is not — fuzzy hereditary property but fuzzy topological property. Through this paper
the fuzzy topological space (X, T,) and (Y, Ty) (or simply X and Y ) when A is a fuzzy subset of
(X, T,), int (&), CL(A) which denote the interior and closure of a fuzzy set A.

1- Basic concepts of fuzzy set

Definition (1-1) [1]:- The membership function pA : % - [0, 1] defines a non-empty set X. and
a fuzzy set A in X. Thus we may describe this fuzzy set as.

A={(x, MA(X): X € X, pA(X) < 1}

[*Stands for the collection of all fuzzy sets in X. , when I¥= { A: A is fuzzy set in X }
Definition (1-2) [1]:- The set of all x € X such that a fuzzy set pA(%) > 0 and designated by the
symbol S(A) is the support of a fuzzy set A .

Definition (1-3):- A fuzzy point P in x is a unique fuzzy set whose membership function is

. ~ r,ifx =
given by PE(») = {01 v

When 0 < r < 1,y is the support of PF(x).

Definition (1-4) [1]:- If S(A) is a finite set, then a fuzzy set A is described as a finite fuzzy set.
Remark (1-5):-

1- A non-empty set X is referred to as a crisp set since it is a fuzzy set with membership p(x)
=1, VxeX.

2- A membership function pz(x) = 0, ¥ x € X is called an empty set and denoted by @.
Definition (1-6) [1]:- Let C be a fuzzy set in the non-empty set X and P! be a fuzzy point. If
UPr < uC(x) for every x € X and indicated by x € S(C), then P! is said to be in C or that
C includesP;.

Definition (1-7) [1]:- Let A and B by fuzzy sets of a universal set X then

1-Ac Biffuz(x) < pg(x) , Vx€X

2-A = Biff pz(x) = pg(x) forall x € X

3 - With a membership function of pzc = 1—Az(x), AC is the complement of a fuzzy set A.
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4-C=AUBiff p(x) = max { uz(x) , pg(X)}, v x € X

5-D=AnBifand only if ugz(x) = min { uz(x), ug(x)}, v x € X

6 - More specifically, for a family of fuzzy sets { A,: o € A where A is the any index set }

The union C = Ugex Aa and the intersection D = N e, Aa and defined respectively by

ue(X) = supgen {na(x); x € X}

H5(X) = infuen {Ha(x); x € X }

Definition (1-8):- A fuzzy subset A of fuzzy space X is said to be

1- fuzzy §°§ - closed set if pA(x) < pii(x) wher A < i and pii(x) < p(int (1) (%)) , the set of all
f. 3§ .c. subsets in X is signified by S*G C(X).

The complement of an f. §*g .c (fuzzy §*g — closed ) is said to be f. §*g.0.s , the collection of

all fuzzy §*g - open subsets in X is designated by the symbol $*G O(X).

2- The fuzzy §*g - closure of A represents by §*g —(7\) is the intersection of all f. §*g. c. subset

of X which contains A.

3- Af. 58 — ®o.s if pA(x) < p int(3*g — K(x)), the complement of an fuzzy §*g — & — open

set is defined to be f. §*8 — @. ¢, the family of all f. $*§ — &.0. subsets of X is denoted by T5 8~

. The intersection of all fuzzy §*g — & — closed sets containing A is represented by the symbol

clg*g_a(ﬁ).

Definition (1-9):- A function f: uX — puy allegedly is fuzzy §*g — (3*g — @) continuous iff the
fuzzy inverse image of each f.o.s (fuzzy open set) of Yisa f. §*g — (3"8 — ). o. subset of X.

2- Fuzzy connectedness in a fuzzy topological space.

We introduce the concept of fuzzy §*g — ("8 — @) - connected space and study some of their
properties. Also we study that fuzzy $*g — ("8 — @) - connected is not hereditary property but
fuzzy topological property.

Definition (2-1):- Uncertain topological space if two disjoint f. §*g .0. subsets E and F of X
exist, then X is a fuzzy §*§ — separation space. However, min { pE(x), u3*g j(x)}= @ and min

{F(x) 18"g —cl(B)(0)} =0
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Definition (2-2):- A fuzzy topological space X is a fuzzy §*§ — @ — separation space iff there

~% o~

exists two disjoint fuzzy §*g — & — open subsets F and E of X , whenever min { pE(x) ,
ucls* g — @ (F)(0)} = @ and min { pF(x) , pcls*s — @ (E)(x) } = @.

Remark (2-3):-

1-Every fuzzy open set is an §*g - (§*g — @) — open set but the converse is not true.

Also a fuzzy separation space is fuzzy §*g —(5§*g — @) — separation space.

But the converse is not true

2- Fuzzy $*g — open sets and f. $*g — @ -open set are in general independent, so we'll get that
Each fuzzy §*g — separation and fuzzy ( $*g — & ) — separation space are in general independent.
Remark (2-4):-

1 - Every two disjoint a fuzzy $*g — (§*g — @) - open subsets of any space, then they are fuzzy
§*g — (8"g — @) — separation.

2 — Every two disjoint a fuzzy $*g — (5*g — &) — closed subset of any space, then they are fuzzy
§*g — (8"g — @) — separation.

Because (let E and F are disjoint fuzzy §*g — (3*g — &) — closed subset of X , We already

min { pE(x) , pclsrg (F)(x) } = min { iEG), uF() } =B and min { pF(x) , nelgg (E)(0)} =
min { pF(x), kE(X) } =8

A =cl(A)iff Ais fuzzy closed

By definition we get that E and F are fuzzy §*g — (3"g — @) — separation.

Definition (2-5):- Topological space that is fuzzy If X cannot be described as a disjoint union
of two non-empty fuzzy 3*g — open sets, then X is said to be fuzzy §*g — connected.

(i-e there are two fuzzy §*g that are open subsets of X , Eand F, provided that min
{F), iE(X)} = @ , max {pF(x), pE(x)} = X.

If a fuzzy topological space X does not attain fuzzy §*g — connected space, it is alleged to be
fuzzy $*g — disconnected space.

~% ~

Definition (2-6):- An undefined topological space Fuzzy §*g — & — connected is a description

~ %~

of X if it cannot be described as a disjoint union of two non-empty fuzzy §*§ — & — open sets.
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(i-e there exists two fuzzy § g-& — open subsets E and F of X provided that min {uF(x), uE(x)}
=@, max { pPFx), pEx)} # X.

Uncertain topological space If X does not reach fuzzy $*g — @ — connected space, then it is
fuzzy §*g — @ — disconnected space ".

~%~

Remark (2-7):- 1- “Every fuzzy $*g — & — open set is & — f.0.s”

~%

so every fuzzy §*g — o — connected space is & — f.connected space .

2 — For each fuzzy §*g — connected and fuzzy $*g — @ — connected space are in general
independent. As in the example (2-8)

3 — A fuzzy connected space is fuzzy §*g — (5*g — @) — connectedness space.

4 — Unspecified subset it is claimed that A of X is a fuzzy §*g — (3" — @) disconnected set if it
is the union of two non-empty fuzzy §*g — (58 — &) segregated sets with the symbol §*g —
(3*g — @) in them. This leads to the statement that A is fuzzy §*g — (§*§ — &) connected If it
isn't fuzzy or unconnected, it's $*g — (5*g — @).

Example (2-8):-

1-letX={(6,03),(7,0.3),(8,03),(9,03)}
onT={X,0,{(6,03),(7,03),(80.3),(9,0.0)},{(6,03),(7,03),(8,00),
(9, 0.0)} . Then X is fuzzy §*g — connected space ( because there exists two fuzzy §*g — open
subsets F and E of X such that F={ (6,0.3),(7,0.0),(8,0.0),(9,0.0)}
AndE={(6,0.0),(7,0.3),(8,0.0),(9,0.0)} whenever min { pF (x), pE(x)}=@and  max
{uF(x) , uE(x)} # X, but not fuzzy §*g — & — connected .
2-letX={(1,05),(2,05),(3,05),(4,05)}
onT={X,0,{(1,05),(2,00),(3,00),(4,0.0)}

Hence X is fuzzy §*8 — & — connected and X is fuzzy & — connected space, fuzzy §*g —
unconnected space.

Theorem (2-9):- A fuzzy subset E of X is fuzzy §*g — (38 — &) — disconnected if it is defined
as a union of two non-empty fuzzy $*g — (§*g — @) — separated subsets of.

Proof :- = suppose that E is fuzzy §*g — disconnected , then u E = max { uA, uB } where A

and B are two fuzzy 3*g — disjoint non — empty closed sets ,
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Assume that A and B are fuzzy §*g — separated subsets of X .

Min {uA , u35*g - cl (B) } =min { min { pA, pE } , p3"g—cl (B) } =

min { pA(x), u§'g — g (B)(x)} = min { pARx) , pB(x) } =B,

so min { pB(x) , u5*g - cly (A)(x) } = min { pB(x) , pA(X)} = @

« suppose that uE = max {pA(x) , uB(x) } where A and B are fuzzy §*§ — open sets disjoint
non — empty fuzzy §*g — separated subsets of X.

we have min { pA(x) , u§*g ~B(x)} =min { min { pA(x) , pE(®)} , u5*g - B(x)} = @ and so
that min { pB(x) , u5°g - cly, (B)(X)} = min { min { LB(x) , pE) } , 15" -AX)} =3,

~ %~

we get that E is the union of non — empty fuzzy §*g — separated subsets of E , Thus E is fuzzy
§*g — disconnected. In the same way we demonstrate for fuzzy $*g — & — open set.

Corollary (2-10):- If a fuzzy space X is fuzzy §*g — (§*g — @) — separation space, then X is the
union of two disjoint non — empty fuzzy 5*g — (§*g — @) — closed subsets of X .

Proof: - let X = max {pE(x), uF(x) } where as E and F are fuzzy §*g — separated sets, then
fuzzy §°g — B =min{u3*g — cl () (x) , max {uE®), pF(x)}}= max { min {u3*g - (B)(x)
REGO}, min {u5°g -l (B)(%) , uF ()3} = min {u8"g — cl (E)(%) , hE(x) } = E (by def . 1-2)
so E is fuzzy §*g — closed set.

Similarly F is fuzzy §*g — closed set.

We demonstrate the same style for the fuzzy $*g — @ — open set.

As above noted hence that &@ —fuzzy connected is fuzzy topological property.

Corollary (2-11) :- A fuzzy space X is a union of two disjoint non — empty fuzzy $*g — (3*g —
®) — open subsets of X , then X is fuzzy §*8 — (3*g — @) — disconnected.

Proof: - suppose that X = max {uE(x), uF(x) } where as E and F are disjoint non — empty
fuzzy §*g — open sets , then E = FC is fuzzy §*g — closed . So X is fuzzy §*g — disconnected.

If P is any property in X . Then we call P hereditary if it appears in a relative fuzzy topological
space if we say P is not — hereditary.

Remark (2-12):- It is not a genetic trait for the fuzzy $*g — (§*g — @) — connectivity.

Similar to the example:
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Example (2-13) :- 1) Let X ={ (r ,0.12),(s, 0.12) , (t,0.12) ,(u, 0.12) }

And T={6,X, {(r,0.12) ,(s, 0.0) ,(t,0.0) ,(u,0.0)}, {(r, 0.0),(s, 0.12) ,(t ,0.12),(u,0.12)} ,
{(r,0.12) ,(s,0.0) ,(t,0.4),(u,0.12)} ,{(r,0.0) ,(5,0.0) ,(t,0.12) ,(u,0.12)}

Then X is fuzzy §*g — connected space because 3 { (r,0.12) ,(s,0.0) ,(t,0.0) ,(u ,0.12)},
{(r,0.0) ,(s,0.0),(t ,0.12) ,(u,0.0)}

are fuzzy $*g — open sets such that min { (r ,0.0) ,(s,0.0) ,(t,0.12) ,(u,0.0)} ,{(r ,0.0) ,

(s,0.0), (t,0.12) ,(u,0.0) } = @ and max {(r ,0.12) ,(s,0.0) ,(t,0.12) ,(u ,0.0) }.{(r ,0.12) ,(5 ,0.0)
,(t,0.0),(u,0.00} #X.

IFA={(r,012),(s,012)}<Xand Tz ={0,A, {(r,0.12), (5,0.0) }, {(r,0.0) ,(s ,0.12)}}
Then (A, Tz ) is not fuzzy §*g — connected 3 {(r,0.12) ,(s,0.0) } ,{(r,0.0) ,(s ,0.12) } are fuzzy
3*g — open sets whenever min { (r,0.12) ,(s,0.0) }, {(r ,0.0) ,(5,0.12) } = @ and max { (r,0.12)
(s,0.0)} {(r,0.0),(s,012)}=X
2)letX={(k,0.9),(1,0.9),(m,0.9),(n,09)}onT={(@,X, {(k,0.0),(1,0.9),(m,0.0),
(n,0.0) } {(k,0.0),(1,0.9),(m,0.9) ,(n,0.0) } {(k,0.9),(1,0.9) ,(m,0.0) ,(n,0.0)}, {(k,0.0).
(1,0.9) ,(m,0.9) ,(n,0.0)} {(k,0.0) ,(1,0.0) ,(m,0.9) ,(n,0.9) }, {(k,0.9) ,(1,0.9) ,(m,0.9) ,
(n,0.0)} {(k,0.0),(1,0.9),(m,0.9),(n,0.9)}},

Then X is fuzzy §*g — & — connected space, but if A = {(1,0.9) ,(m ,0.9) } < X and

Ta={9,A {(,0.9),(m,0.0)} {(1,0.0) (m,0.9)}} so Ais not fuzzy §*g — & — connected
space because 3 { (1,0.9) ,(m ,0.0)} ,{(1,0.0) ,(m ,0.9)} are fuzzy §*g — & — open sets ,

Min { (1,0.9) ,(m ,0.0) },{ (1,0.0) ,(m,0.0) } = @ max { (1,0.9) ,(m ,0.0) }.{(1 ,0.0) ,(m,0.9)} =
{(1,0.9) ,(m,0.9)}

Definition (2-14):- A map f: (X, Tz) = (Y, Ty) allegedly is fuzzy 5 — (3§ —@) —
homeomorphism (fuzzy $*g — (§*g — @) — home . for short ) if

(1) fis bijective map .

(2) fand f~* are fuzzy §*g — (3" — @) — continuous .

Let P be any property in (X, TX) if P is carried by fuzzy §*g — (5*g — &) — home . to another
space (Y , Ty) we say P is fuzzy topological property.
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Now, we introduce the main result about a fuzzy topological property the fuzzy $*g — (§*g — @)
— connected.

Theorem (2-15):- A fuzzy §*g — connected space is a fuzzy topological property.

Proof: - A f: (X, Ty) - (Y, Ty) be fuzzy §*g — home and space X is fuzzy §*g — connected
space.

To demonstrate this, we must (Y , Tg,) be fuzzy $*g — connected space.

If(Y, Ty) be fuzzy §*g — disconnected space , then there exists two disjoint non —empty fuzzy

5*g — open subsets of Y , E and F are fuzzy subsets of ¥ such that min { pE(x) , u3*g -F(x)} =
@ =min {{ pF(x), p$5'g -l (B)(x) }=0andE = @, F = @ ; as f is fuzzy $*§ — continuous ,
Ours has f~* (E) = E; and f~* (F) = F, where E,; and F; are fuzzy §*g — open in X.

Min {uE; (%) , 15°g —F; (0} =8, min { uF, , 15°g - E; (3= 8

Hence X is fuzzy §*g — disconnected but that is contradiction

Since max {uF;(x) , kE;(x)} = max { uf*(F1)(x) , wf " (E1)(0} = F~* (max {uF; (%),
ME; (30})

Hence X is fuzzy §*g — disconnected, f~* (Y) = X , we get the assume is not true .

Then (Y, Ty) is fuzzy 3*g — connected space .

Theorem (2-16):- A fuzzy $*g — & — connected space is a fuzzy topological property.

Proof: - Af: (X, T;) = (Y, Ty) be fuzzy §*§ — @ — home and space X is fuzzy (3*g — @)
connected space . So, we must demonstrate that (Y , Ty) be fuzzy ($*g — @ ) connected space

If (Y, Ty) be fuzzy (§*g — &) disconnected space , then there exists two disjoint non —empty
fuzzy (§*g — @) — open subsets of Y , E and F are subsets of Y such that min { pE(x) ,
uclsg-a(F)(X) 3 =0 = min {pF(x) , pclsg-a(E)X)} andE= 0, F =0, as , Fis fuzzy g —
@& — continuous We already have f~* (E) = E; and f~* (F) = F, where E, and F, are fuzzy §*g —
a—openin X. min { pE; (x) , pcly-z_a(F1)(¥)} = @ , min { uF; (%) , uclsyg_a(E)(x) } = 0

Hence X is fuzzy (5 — @) disconnected but conditions since max { pF;(x) , uE; (x) } = max

{Wf (F)09) , uf M (ED()} = (max {uF; (%), nE; (0})

Volume: 3, Issue: 1, January 2025 P-ISSN: 2958-4612
290 E-ISSN: 2959-5568



Academic Science Journal

~% o~

Hence X is fuzzy §*g — & — disconnected , f~* (Y) = X, We get that the assumption is not true

.Then (Y, Ty) is fuzzy §"§—a— connected space.
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