

On-iαw – Closed-Sets and -iαw – Continuous Functions

Beyda-S. Abdullah and Sabih W. Askandar*

Department-of Mathematics- College of Education-for Pure Science- University-of-Mosul [*sabihqaqos@uomosul.edu.iq](mailto:sabihqaqos@uomosul.edu.iq)

Received: 20 January 2024 Accepted: 30 April 2024

DOI: <https://dx.doi.org/10.24237/ASJ.02.04.841B>

Abstract

The main purpose of this article is to explain the notation of iαw- closed sets and iαw- open sets in topological space. Many properties and relationships among those sets are investigated. We also discovered that there is no relationship between iaw-closed sets and α -closed, i-closed, iα- closed sets. Additionally, the notions such as, iαw − continuous function , iαw − closed function, $i - \alpha w -$ open function, perfectly, $i\alpha w -$ continuous function, contra i α w – continuous function and strongly i α w – continuous function had been introduced. Also, we prove that each $i \propto w -$ continuous function in any topological space is αw – continuous function, each continuous function in any topological space is $i\alpha w$ – continuous function and there is no relationship between α – continuous function and i α – continuous function with iαw $-$ continuous function as well as some of its features. Finally, every strongly iαw − continuous is iαw − continuous , every perfectly iαw − continuous is strongly iαw −continuous and perfectly continuous function is contra iαw − continuous had been concluded.

Keywords: iαw- closed set, iw- closed set, iαw- continuous function, iw- continuous function, w- continuous function.

حول المجاميع المغلقة من النمط-iαw **والدوال المستمرة من النمط-**iαw

بيداء سهيل عبد هللا و صبيح وديع اسكندر قسم الرياضيات - كلية التربية للعلوم الصرفة - جامعة الموصل

الخالصة

الهدف االول من هذا البحث هو تقديم صنف المجاميع المغلقة من النمط-iαw والمجاميع المفتوحة من النمط- iαw في الفضاءات التبولوجية. عدة خصائص وعالقات بين هذه المجاميع تم اعطائها. ايضا برهنا بانه ال توجد عالقة بين المجاميع المغلقة من النمط-iαw ، المجاميع المغلقة من النمط-i، المجاميع المغلقة من النمط-α والمجاميع المغلقة من النمط-iα ، باالضافة الى ذلك قمنا بدراسة الدوال المستمرة من النمط-iαw ، الدوال المغلقة من النمط-iαw ، الدوال المفتوحة من النمط iαw، الدوال المستمرة التامة من النمط-iαw والدوال المستمرة بقوة من النمط-iαw ودراسة بعض خصائصها. كذلك برهنا بان كل دالة مستمرة من النمط-iαw تكون مستمرة من النمط-αw ، وكل دالة مستمرة تكون مستمرة من النمط-iαw ، وال توجد عالقة بين الدوال المستمرة من النمط-α والدوال المستمرة من النمط-iαw والدوال المستمرة من النمط-αw . واخيرا، برهنا بان كل دالة مستمرة بقوة من النمط-iαw تكون مستمرة من النمط-iαw ، وكل دالة مستمرة تامة من النمط-iαw تكون i مستمر ة من النمط- i .

الكلمات مفتاحية : مجموعة مغلقة من النمط-iαw ، مجموعة مغلقة من النمط-iw ، دالة مستمرة من النمط-iαw ، دالة \cdot مستمر ة من النمط-iw ، دالة مستمر ة من النمط-w .

Introduction

Many mathematicians have devised a variety of generalizations of closed sets in recent years. Levine [8], first defined and investigated considered the concept of generalized closed sets. Maki Devi and Balachandram [4], [10] defined generalized α-closed maps. Mohammed and Askander [2] presented the idea of i-closed sets. Sundaram and Sheik John [15] and recently M. Parimala, R. Udhayakumar and R. Jeevitha [13] studied αw-closed sets. Mohammed and Kahtab [9] defined the concept of iα- closed sets in topological spaces. In 2014, [3], Benchalli, Patil and Nalwad, introduced the concept of generalized wα-closed sets. In 2015, [14], Patil, Bechalli and Pallavi, introduced the concept of star wα-closed sets in topological spaces. In this study, a new class of closed sets is introduced, having the common adjective between the iαclosed and w-closed sets, called it iαw- closed set. This paper also defines the iαw- continuous function. Throughout this paper, τ , $\tau^{i\alpha}$ and $\tau^{\alpha w}$, denotes the topology of open set, ia-open, and αw-open respectively on the set G. Any subset H of G. $cl(H)$, int(H), Denotes closure set of H, interior set of H, we use the lower case letter of i, i α , α w, to the mention symbol to deal with topology τ^i , $\tau^{i\alpha}$ and $\tau^{\alpha w}$. Throughout this paper spaces (G,τ) and (M,σ) (or simply G and M).

Definition 1.1 A-subset H of a topological space G is referred to as an

 α – open [11], [10] if $H \subseteq int(cl(int(H))$. The complement of any α – open set is called α – closed set.

i-open [2] if there exist U∈ τ such that U≠ \emptyset , G and $H \subseteq cl(H \cap U)$.

i α -open [9] if there exist $U \in \tau^{\alpha}$ such that $U \neq \emptyset$, X and $H \subseteq cl(H \cap U)$.

w–closed[15] if $cl(H) ⊆ U$ whenever $H ⊆ U$ and U is semi – open in G. wcl(H) is the intersection of all w-closed sets which containing H.

 α w-closed [13] if wcl(H) $\subseteq U$ whenever $H \subseteq U$ and U is α – open in G.

iw-closed [1] if $wcl(H) \subseteq U$ whenever $H \subseteq U$ and U is i – open in G.

semi-open [7] if there exist U $\in \tau$ such that U $\neq \emptyset$, X and $U \subseteq H \subseteq cl(U)$. The complement of any semi-open set is called semi-closed set.

Definition 1.2. Let G and M be two topological spaces. A function $f: G \rightarrow M$ is known as following:

1) w – continuous [15] if $f^{-1}(K)$ is w – closed set of G each closed set for K of M.

2) αw – continuous [13] if $f^{-1}(K)$ is αw – closed set of G each closed set for K of M.

3) iw – continuous [1] if $f^{-1}(K)$ is iw – closed set of G each closed set for K of M.

4) Strongly- continuous [12], [6] if $f^{-1}(K)$ is both open and closed in G each open subset is for K in M.

5) contra – continuous [5] if $f^{-1}(K)$ is closed set in G for every open set K in M

6) contra w – continuous[5], if $f^{-1}(K)$ is w closed set in G for every open set K in M

Lemma 1.3. [9]

1) Each α – open set is $i\alpha$ – open.

 $2)$ Each semi – open set is i α – open.

3) Each i – open set is $i\alpha$ – open.

2. iaw closed set

In this section, we introduce a new class of closed sets which is called iαw-closed set and we investigate the relationship with, closed set, w-closed set, αw-closed set and iw-closed set.

Definition 2.1. A subset H of (G, τ) is named an iαw-closed set if $wcl(H) \subseteq E$ whenever $H \subseteq E$ and *E* is iα- open in (G, τ) . The opposite of *iaw* – closed set is named iaw- open. We refer to the universal family iαw – closed sets of a topological space G by $iawc(G)$. **Example 2.2.** Suppose $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\}\$. Then $wc(G) = {G, \emptyset, \{1\}, \{1, 3\}}$ and $\tau^{\alpha} = {G, \emptyset, \{2\}, \{1, 2\}, \{2, 3\}}$. Then, $\tau^{i\alpha} = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\$, and $i\alpha wc(G) = \{G, \emptyset, \{1\}, \{1, 3\}\}\$ **Example 2.3.** Suppose $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}\$. Then $wc(G) = {G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}}$ $\tau^{\alpha} = \{G, \emptyset, \{3\}, \{1, 2\}\}\,$ $\tau^{i\alpha} = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}\}$, and $iawc(G) = {G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}}$. **Theorem 2.4.** Each closed-set is iαw-closed-set.

Proof. Suppose that H be an closed set in G, then, H=cl(H). Let $H \subseteq E$, E is an i α -open in G. Since "each closed set is w-closed"([13]) we get, $wcl(H) \subseteq cl(H)$ (where wcl(H) is the intersection of all w-closed sets containing H), and since G is closed, we get, $wcl(H) \subseteq$ $cl(H) \subseteq E$. This shows that H is $iaw - closed$.

The following example shows that the converse of the aforementioned theorem need not be true.

Example 2.5.If $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}\$. Then

 $C(\tau) = \{\emptyset, G, \{1, 2\}, \{3\}\}\$, and

 $wc(G) = iawc(G) = {G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}}$

If $N=\{1,3\}$. Then N is not closed. However N is iaw-closed set.

Corollary 2.6. Any open-set is iαw-open set.

Theorem 2.7. Each iαw-closed set is αw-closed set.

Proof. Suppose that H be iaw-closed set in G and E is be any α -open set in G s.t $H \subseteq E$. By **lemma 1.3.(1),** E be $i\alpha$ – open, $wcl(H) \subseteq cl(H) \subseteq E$. Thus, H is αw – closed.

The following example shows that the converse of the aforementioned theorem need not be true.

Example 2.8. If $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\}$ Then

 $\alpha wc(G) = \{G, \emptyset, \{1\}, \{1, 3\}, \{1, 2\}\}\$, and

 $iawc(G) = {G, \emptyset, \{1\}, \{1, 3\}}$

If $N = \{1, 2\}$, then N is aw-closed set but not iaw-closed set.

Theorem 2.9. Each an iαw-closed set is w-closed set .

Proof. Suppose that H be an iaw-closed set in G and E is be any semi – open set in G s.t $H \subseteq$

E. By lemma 1.3.(2), E be $i\alpha$ – open. Since H is closed, $wcl(H) \subseteq cl(H) \subseteq E$. Therefore, H is w-closed set ■

Theorem 2.10. Every an iαw-closed set is an iw-closed set

Proof. Suppose that H be an iaw-closed set in G and E be any i-open set in G s.t $H \subseteq E$. By

Lemma1.3.(3), E be iα-open. Since H is closed, $wcl(H) \subseteq cl(H) \subseteq E$

This demonstrates *H* is an $iw - closed$ set in $G.\blacksquare$

Remark 2.11. There is no connection between α-closed [resp. iα-closed, i-closed and iαwclosed set in topological-space as shown in the following examples.

Example 2.12. Suppose $G = \{1, 2, 3\}$ Now,

1) $If \tau = \{G, \emptyset, \{3\}, \{1, 2\}\}\$, then $\{2\}$ is an iaw – closed but not α – closed

and not $i\alpha$ – closed.

2) If $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\}\$, then $\{3\}$ is α – closed and $i\alpha$ – closed

but it is not $iaw - closed$.

3) If $\tau = \{G, \emptyset, \{3\}\}\$, then $\{1\}$ is i closed but it is not iaw – closed.

Figure 1 :The connection-between iαw-closed sets and the other classes-mentioned above

3. Properties of iαw-closed sets

We obtain several basic properties of $iaw - closed$ sets.

Theorem 3.1. The intersection of two $iaw - closed$ subset are $iaw - closed$.

Proof. Suppose that A and B any two $iaw - closed$ -sets, let E be any $i\alpha - open$ in (G, τ), s.t $A \cap B \subseteq E$. Then $A \subseteq E$ and $B \subseteq E$. Since A and B are $i\alpha w - closed$ sets, $wcl(A) \subseteq E$ E and wcl(B) \subseteq E. Therefore wcl(A) \cap wcl(B) = wcl(A \cap B) \subseteq E. Hence A \cap B is an $i \propto$ $w - closed.$ ■

Example 3.2. From Example (2.2) If $A = \{1\}$ and $B = \{1, 3\}$, then $A \cap B = \{1\}$. It is also iαw-closed set.

Theorem 3.3. If A is an iaw-closed set in G and $A \subseteq B \subseteq iawcl(A)$. Therefore, B iaw-closed set in G. But not the opposite.

Proof. Suppose A is an iaw-closed set in G. Let $B \subseteq E$ such that E is an $i\alpha$ – open set in G. Since $A \subseteq B$, we have $A \subseteq E$. Since A is $iaw - closed$ and $wcl(B) \subseteq wcl(wcl(A)) =$ $wcl(A) \subseteq E$. Therefor $wcl(B) \subseteq E$. Hence B is an $iaw - closed$ in G. **Example 3.4.** If $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}\$. Then $wc(G) = iawc(G) = {G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}}$ Suppose $A = \{1\}$ and $B = \{1, 3\}$, such that A and B are $iaw - closed$ sets

But, $A \subseteq B \subset i \alpha wcl(A)$.

Theorem 3.5. If a subset N in (G, τ) is an *iaw* – *closed* set then $iawcl(N) - N$ does not have any empty $i\alpha$ – closed sets in (G, τ) .

Proof. Suppose N is $iaw - closed$ set and K be a nonempty $i\alpha - closed$ subset of $wcl(N) -$ N. Then $K \subseteq \text{wcl}(N) \cap (G - N)$. Since $(G - N)$ is $i\alpha - open$ and N is $i\alpha w - closed$ set. $wcl(N) \subseteq (G - N)$ therefore $K \subseteq (G - wcl(N))$.

Thus $K \subseteq \text{wcl}(N) \cap (G - \text{wcl}(N)) = \emptyset$. This implies that $K = \emptyset$. Thus $\text{wcl}(N) - N$ does not contain any nonempty $iaw - closed$.

Theorem 3.6. Let H is $i\alpha$ – open and $i\alpha w$ – closed set, then H is w – closed.

Proof. Since $H \subseteq H$ and H is $i\alpha$ – open and $i\alpha w$ – closed, we have $wcl(H) \subseteq H$. Thus $wcl(H) = H$. Hence H is $w - closed$ -set in G. \blacksquare

Theorem 3.7. Let H be an $i\alpha w - closed$ set in G. Then H is $w - closed$ iff $wcl(H) - H = \emptyset$. Which it is $i\alpha$ – closed.

Proof. Suppose *H* is $w - closed$. Then $wcl(H) = H$ and so $wcl(H) - H = \emptyset$, which is $i\alpha$ closed. Conversely $wcl(H) - H$ is $i\alpha - closed$. Then $wcl(H) - H = \emptyset$, since H is an $i\alpha w$ $closed$ -set-in G. That is $wcl(H) - H$ or H is $w - closed$.

4. $i\alpha w$ – Function Continuous

In this paragraph, we present the notation of an $i\alpha w - \text{continuous}$ function, a strongly $i\alpha w - \alpha w$ continuous function and a perfectly $i\alpha w -$ continuous function.

Definition 4.1. A function $f: G \to M$ is-named $i\alpha w - \text{continuous}$ if $f^{-1}(V)$ is an $i\alpha w - \alpha w$ *closed set of* $^{(G,\tau)}$ Regarding each closed set V of (M,σ) .

Example 4.2. For $G = M = \{1, 2, 3\}$. Consider $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}\$, and

$$
\sigma = \{M, \emptyset, \{3\}, \{1,3\}\}.
$$

Suppose $f: (G, \tau) \to (M, \sigma)$, as the following $f(1) = 1, f(2) = 3, f(3) = 2$. Then f is $i\alpha w$ – continuous.

Theorem 4.3. *Every continuous function* is $iaw - continuous$, but not conversely

Proof. Suppose K be closed set of (M, σ) . Given that f is continuous, $f^{-1}(K)$ is enclosed (G, τ)

From Theorem (2.4), $f^{-1}(K)$ is $i\alpha w - closed$ in (G, τ) . This shows that f is $i\alpha w$ continuous. ■

Example 4.4. For $G = M = \{1, 2, 3\}$. Consider, $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}\$, and

$$
\sigma = \{M, \emptyset, \{2\}, \{2,3\}\}.
$$

Let $f: (G, \tau) \to (M, \sigma)$ be defined by $f(1) = 1, f(2) = 2, f(3) = 3$. Then $V = \{2, 3\}$ in (M, σ) . $f^{-1}(\{2, 3\}) = \{2, 3\}.$

Thus, f is $i\alpha w$ – continuous but not continuous function.

Theorem 4.5. Any $iaw - continuous function is aw - continuous, but not conversely.$

Proof. Suppose K closed set of (M, σ) . Since $f^{-1}(K)$ is $i\alpha w - closed$ in (G, τ) . By Theorem (2.7), $f^{-1}(K)$ is an $\alpha w - closed$ set in $\binom{(G,\tau)}{P}$. Thus, f is $\alpha w - \text{continuous}$. ■

Example 4.6. For $G = M = \{1, 2, 3\}$. Consider,

 $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\}\$ and $\sigma = \{M, \emptyset, \{1, 2\}\}\$.

Let $f: (G, \tau) \to (M, \sigma)$ be defined by $f(1) = 1, f(2) = 2, f(3) = 3$. Then

 $V = \{1, 2\}$ in (M, σ) . $f^{-1}(\{1, 2\}) = \{1, 2\}.$

Therfore, f is αw – continuous but not $i\alpha w$ – continuous.

Theorem 4.7. Any $i\alpha w$ – continuous function is w – continuous.

Proof. Suppose-K-closed-set of (M, σ) . Since $f^{-1}(K)$ is an $i\alpha w - closed$ in (G, τ) . By

Theorem (2.9), $f^{-1}(K)$ is a $w-\text{closed set in } (G,\tau)$. Thus f is $w-\text{continuous.}$ \blacksquare

Theorem 4.8. Every $i\alpha w$ – continuous function is iw – continuous.

Proof. Suppose K is closed set of (M, σ) . Since $f^{-1}(K)$ is an *iaw* – *closed* set in (G, τ) . By

Theorem (2.10), $f^{-1}(K)$ is an $iw -$ closed set in $\binom{(G,\tau)}{m}$. Thus f is $iw -$ continuous. \blacksquare

 ${\bf Definition \ 4.9.}$ A function $f\!:\!G\to M$ is named $i\alpha w-{\rm closed}$ if for each closed set F of $^{(G,\tau)}$, $f(F)$ is an $i\alpha w - closed$ -set in (M, σ) .

Theorem 4.10. Every closed function is an $iaw - closed$ function, but not the opposite **Proof.** Every closed set being an $iaw - closed$.

Example 4.11. For $G = M = \{1, 2, 3\}$. Consider,

 $\tau = \{G, \emptyset, \{2\}, \{1, 2\}\}\$ and $\sigma = \{M, \emptyset, \{3\}, \{1, 2\}\}.$

Let $f: (G, \tau) \to (M, \sigma)$ be-define the-identity map, then f is an iaw – *closed function but f is not a closed* -function, because $\{1,3\}$ is closed in (G,τ) but $f({1, 3}) = {1, 3}$ is not closed in (M, σ) .

Theorem 4.12. If a function $f: G \to M$ is continuouse and $iaw - closed$ and H which is $i\alpha w - closed$ of G. Then $f(H)$ is $i\alpha w - closed$ in M

Proof. Suppose $f(H) \subset E$ where E is it closed in M, Since f is continuouse and $f^{-1}(E)$ is it closed containing H. Thus, $cl_{i\alpha}(H) \subset f^{-1}(M)$ as H is $iaw - closed$, since f is an $iaw - closed$ function, $f(cl_{i\alpha}(H)) \subset E$ is $i \propto w - closed$, E is an closed set which implies $cl_{i\alpha}(f(cl_{i\alpha}(H))) \subset E$ and hence $cl_{i\alpha}(f((H))) \subset E$ so $f(H)$ is $i\alpha w$ – closed in M. ■

Definition 4.13. A function $f: G \to M$ is known as an $iaw - open$ function if for each open set E of $^{(G,\tau)}$, $f(E)$ is an *iaw – open* set in (M,σ) .

Theorem 4.14. For any bijection $f: G \to M$ the statements can be written as follows: $f^{-1}: M \to G$ is $i\alpha w$ — continuous.

f is an $i\alpha w - open$ -function.

f is an $iaw - closed - function$.

Proof. (1) \rightarrow (2), Assumse H an open set in G . Since f^{-1} is iaw – continuous, then $(f^{-1})^{-1}(H) = f(H)$ is $i\alpha w - open$ in M and so f is $i\alpha w - open$.

 $(2) \rightarrow (3)$, let F a closed set in any G, then $G \ F$ opened in G. Since f is $i\alpha w -$ open, $f(G)$ F) is $i\alpha w - open$ in M. But $f(G\ F) = M\{f(F)$ is $i\alpha w - open$ in M. Therefore $f(F)$ is $i\alpha w - closed$ implies that f is $i\alpha w - closed$ -function.

(3) \rightarrow (1), . Let F a closed set in any G. By assumption $f(F)$ is an $i\alpha w - closed$ in M but $f(F) = (f^{-1})^{-1}(F)$. Therefore f^{-1} is continuous.

Definition 4.15. A function $f: G \to M$ is named strongly $iaw -$ continuous if each situation were its opposite, $i\alpha w$ – open set in *M* opened in G.

Theorem 4.16. Every strongly *iaw* −continuous it is continuous, but not conversely.

Proof. Suppose f is strongly $iaw - \text{continuous}$ and N open-set in M. By Corollary (2.6), then N be $i\alpha w - open$ in M. Since f is strongly – $i\alpha w$ – continuous, $f^{-1}(N)$ is open in G therefore f is continuous. ■

Example 4.17. For $G = M = \{1, 2, 3\}$ Consider,

 $\tau = \{G, \emptyset, \{1\}, \{3\}, \{1, 3\}, \{1, 2\}\}\$ and $\sigma = \{M, \emptyset, \{3\}, \{1, 2\}\}.$

Let $f: (G, \tau) \to (M, \sigma)$ be define by $f(1) = 1, f(2) = 2, f(3) = 3$. Then f is continuous but not strongly – iaw – continuous, because $\{2,3\}$ is iaw – open in M but $f^{-1}(\{2,3\})=$ $\{2, 3\}$ is not open in G.

Corollary 4.18. Every $strongly - i\alpha w - continuous$ is $i\alpha w - continuous$.

Theorem 4.19. Every strongly – continuous is strongly – $i\alpha w$ – continuous but not conversely.

Proof. Let f be strongly continuous and *U* is $iaw -$ open in M, since f is iaw continuous, $f^{-1}(U)$ opened-in G. Thus f is strongly $-$ *iaw* $-$ continuous.

Example 4.20. For $G = M = \{1, 2, 3\}$ Consider,

 $\tau = \{G, \emptyset, \{3\}, \{2, 3\} \}$ and $\sigma = \{M, \emptyset, \{3\}\}\$.

Let $f: (G, \tau) \to (M, \sigma)$ be defined the identity map, then f is strongly $-$ iaw $-$ continuous but not strongly – continuous. The subset $\{3\}$ is open in M, $f^{-1}(\{3\}) = \{3\}$ is open in G and it is not closed in G.

Definition 4.21. A function $f: G \to M$ is perfectly $iaw -$ continuous if each situation were its opposite, $iaw - open$ -set in M is both open and closed in G.

Theorem 4.22. Every perfectly iaw –continuous is- $strongly$ iaw – continuous.

Proof. Assume that f is *perfectly iaw – continuous*, let N be any $iaw - open$ set in M. Suppose f is *perfectly iaw* – *continuous*, f^{-1} (N) opened in G. Therefore f is strongly iaw – continuous. \blacksquare

The following example shows that the converse of the aforementioned theorem need not be true.

Example 4.23. For $G = M = \{1, 2, 3\}$ Consider

 $\tau = \{G, \emptyset, \{3\}, \{1, 3\}\}, \sigma = \{M, \emptyset, \{3\}\}.$ Let $f: (G, \tau) \to (M, \sigma)$ be define identification map, then f is strongly $i\alpha w - \text{continuous} c$ and not pervectly $i\alpha w - \text{continuous}$, because { 3} *is iaw – open in M* but $f^{-1}(\{3\}) = \{3\}$ is open in G but not closed in G. **Corollary 4.24.** Every $perfectly$ $iaw - continuous$ is $iaw - continuous$. **Remark 4.25.** The following diagram is based on the aforementioned results.

5. Contra $i\alpha w -$ Continuous Function

Definition 5.1. A function $f: G \to M$ supposed to be contra $i\alpha w$ – continuous (resp. contra iw – continuous), if -each open subsets inverse-image, M is an $i\alpha w$ – closed (resp, iw – closed) set in G.

Example 5.2. For $G = M = \{1, 2, 3\}$ consider $\tau = \{G, \emptyset, \{1\}\}, \sigma = \{M, \emptyset, \{3\}\}\$ and $\tau^{i\alpha}=\{G,\emptyset,\{1\},\{2\},\{3\},\{1, 2\},\{1, 3\},\{2, 3\}\}$

The identity mapping is unambiguous $f: (G, \tau) \to (M, \sigma)$ is contra $i\alpha w$ – continuous and contra iw – continuous.

Theorem 5.3. Any contra $-$ continuous function is-contra $i\alpha w -$ continuous.

Proof. Let $f: G \to M$ contra continuous function And N open in M. Suppose, f is contra – continuous, then $f^{-1}(N)$ a closed set in G . By Theorem (2.4), then $f^{-1}(N)$ is $i\alpha w$ – closed in G. Hence, f is contra iaw –continuous. \blacksquare

Theorem 5.4. Every perfectly continuous function is contra $iaw - continuous$.

Proof. Let $f: G \to M$ be perfectly continuous function and V is open in M. Suppose, f is perfectly continuous, then $f^{-1}(V)$ is a cl open in G, and hence closed. Hence, it is $iaw - closed$. Thus, f is contra $iaw - continuous$.

The following example shows that contra $i\alpha w$ – continuous function need not be contra – continuous and perfectly continuous

Example 5.5. For $G = M = \{1, 2, 3\}$ Consider

 $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}$ and $\sigma = \{M, \emptyset, \{1\}\}\$.

The identity mapping is unambiguous $f: (G, \tau) \to (M, \sigma)$ iscontra $i\alpha w$ – continuous,

but f is not contra – continuous and not perfectly continuous . Similar results include those seen below.

Proposition 5.6. Every contra $i\alpha w -$ continuous function is contra $w -$ continuous. **Proof.** Clear by use Theorem (2.9) .

Proposition 5.7. Every contra $iaw -$ continuous function iscontra $iw -$ continuous. **Proof.** Clear by use Theorem (2.10) .

Theorem 5.8. Any $totally - continuous$ function is $contra$ $iaw - continuous$.

Proof. Let $f: G \to M$ be totally continuous function and V an open set in M. Since, f is totally – continuous, then $f^{-1}(V)$ is a clopen set in G and hence closed. By **Theorem (2.4)**, then $f^{-1}(V)$ is $i\alpha w$ – closed in G. Hence, f is contra $i\alpha w$ – continuous. The converse of the above theorem need not be true by the following example.

Example 5.9. If $G = M = \{1, 2, 3\}$ Consider $\tau = \{G, \emptyset, \{3\}\}\$ and $\sigma = \{M, \emptyset, \{1\}\}\$. The identity mapping is unambiguous $f: (G, \tau) \to (M, \sigma)$ is contra $i\alpha w$ – continuous, but f is not totally – continuous because for open subset $f^{-1}{1} = {1} \notin CO(G)$.

Conclusions

It is concluded in this work that:

Each iaw – closed-set is αw – closed, each an iaw – closed-set is w – closed, every an $i\alpha w - closed$ -set is an iw – closed set.

There is no connection between α – closed [resp. i α – closed, i – closed] and i α w – closed in topological-space.

Every continuous function -is $i\alpha w -$ continuous, any $i\alpha w$ -continuous function is αw continuous, any iαw – continuous function is w – continuous, every iαw – $continuous function is $iw - continuous$.$

Every strongly $i\alpha w$ − continuous it is continuous, every strongly – continuous it is strongly – iaw – continuous, every perfectly $i\alpha w$ – continuous is- strongly $i\alpha w$ – continuous , every perfectly iαw -continuous it is iαw − continuous , any contra − continuous function is contra $i\alpha w$ – continuous and every perfectly continuous function is contra $iαw -$ continuous.

References

- 1. B. Abdullah, A. Mohammed, ii-Open Sets in Topological Spaces, International Math. Forum, 14(1), 41-48 (2019)
- 2. S. Askander, A. Mohammed, i-Open-Sets in bi-Topological-Spaces, AL-Rafidain Journal of Computer Sciences and Mathematics, 12(1), 13-23(2018)
- 3. S. Benchalli, P. Patil, P. Nawlad, Generalized wα-closed sets in topological spaces, Journal of new result in science, 7, 7-19 (2014)
- 4. R. Devi, K. Balachandran, H. Maki, Generalized α-Closed Maps and α- Generalized Closed Maps, Indian J. Pure. Appl.Math.,29(1), 37-49(1998)
- 5. J. Donchev, Contra Continuous Functions and Strongly S-Closed Spaces, International journal of Mathematics and mathematical sciences, 19, 303-310(1996)
- 6. N. Levine, Strongly Continuity in Topological Spaces, Amer. Math. Monthly, 67(3), 269- 269(1960)
- 7. N. Levine, Semi-Open Sets and Semi-Continuity in Topological Space, Amer. Math. Monthly, 70, (1963)36-41
- 8. N. Levine, Generalized Closed Set in Topological, Rend. Circ. Math. Palermo,19, 89-96 (1970)
- 9. A. Mohammed, O. Kahtab, On-iα-Open Sets, AL Rafidain- Journal of Computer Sciences and Mathematics, 9, 219-228(2012)
- 10. A. Mashhou, I. Hasanein, S. EI-Deeb, α-Continuous-and-α-Open- Mappings, Acta-Math. Hungar.41, 213-218(1983)
- 11. O. Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics, 15(3), 961-970(1965)

- 12. T. Noiri, Super Continuity and Some Strong Forms of Continuity, Indian J. Pure Appl. Math. 15(3), 241-250(1984)
- 13. M. Parimala, R. U-dhayakumar, R. Jeevith-a, V. Biju, On αw-Closed Sets in Topological Spaces, International Journal of Pure and Applied Math, 115(5), 1049-1056(2017)
- 14. P. Patil, S. Benchalli, S. Pallavi, Generalized star wα-closed sets in topological spaces, Journal of new result in science. 9, 37-45(2015)
- 15. P. Sundaram, M. Shrik John, On-w-Closed-Sets in-Topology, Acta Ciencia- Indica Mathematics, 4, 389-392(2000)