

On-iaw – Closed-Sets and -iaw – Continuous Functions

Beyda-S. Abdullah and Sabih W. Askandar*

Department-of Mathematics- College of Education-for Pure Science- University-of-Mosul *<u>sabihqaqos@uomosul.edu.iq</u>

Received: 20 January 2024 Accepted: 30 April 2024

DOI: https://dx.doi.org/10.24237/ASJ.02.04.841B

Abstract

The main purpose of this article is to explain the notation of iaw- closed sets and iaw- open sets in topological space. Many properties and relationships among those sets are investigated. We also discovered that there is no relationship between iaw- closed sets and a- closed, i- closed, ia- closed sets. Additionally, the notions such as, iaw – continuous function, iaw – closed function, i - aw - open function, perfectly, iaw – continuous function had been introduced. Also, we prove that each i $\propto w$ – continuous function in any topological space is aw - continuous function, each continuous function in any topological space is iaw – continuous function and there is no relationship between a – continuous function and ia – continuous function with iaw – continuous function as well as some of its features. Finally, every strongly iaw – continuous is iaw – continuous and perfectly continuous function is contra iaw – continuous had been concluded.

Keywords: iaw- closed set, iw- closed set, iaw- continuous function, iw- continuous function, w- continuous function.

حول المجاميع المغلقة من النمط-iαw والدوال المستمرة من النمط-iαw

بيداء سهيل عبد الله و صبيح وديع اسكندر قسم الرياضيات - كلية التربية للعلوم الصرفة - جامعة الموصل

Academic Science Journal

الخلاصة

الهدف الأول من هذا البحث هو تقديم صنف المجاميع المغلقة من النمط- $i\alphaw$ والمجاميع المفتوحة من النمط- $i\alphaw$ في الفضاءات التبولوجية. عدة خصائص و علاقات بين هذه المجاميع تم اعطائها. ايضا بر هذا بانه لا توجد علاقة بين المجاميع المغلقة من النمط- α والمجاميع المغلقة من النمط- $i\alpha$ المغلقة من النمط- α والمجاميع المغلقة من النمط- $i\alpha$ ، المعلقة من النمط- α ، والمجاميع المغلقة من النمط- $i\alpha$ ، المعلقة من النمط- $i\alpha$ ، المعلقة من النمط- $i\alpha$ ، المعلقة من النمط- α ، والمجاميع المغلقة من النمط- $i\alpha$ ، المعلقة من النمط- $i\alpha$ ، المعلقة من النمط- $i\alpha$ ، المعلقة من النمط- α ، والمجاميع المغلقة من النمط- $i\alpha$ ، بالاضافة الى ذلك قمنا بدر اسة الدوال المستمرة من النمط- $i\alpha$ ، الدوال المغلقة من النمط- $i\alpha$ ، الدوال المفتوحة من النمط- $i\alpha$ ، الدوال المستمرة التامة من النمط- $i\alpha$ ، ولا المعلقة من النمط- $i\alpha$ ، الدوال المفتوحة من النمط- $i\alpha$ ، الدوال المستمرة التامة من النمط- $i\alpha$ ، ولا المعلقة من النمط- $i\alpha$ ، الدوال المستمرة من النمط- $i\alpha$ ، الدوال المستمرة من النمط- $i\alpha$ ، ولا المعلقة من النمط- $i\alpha$ ، ولا $i\alpha$ ، ودر الله بعض خصائصها. كذلك بر هنا بان كل دالة مستمرة من النمط- $i\alpha$ ، ولا $i\alpha$ ، ولا المستمرة من النمط- $i\alpha$ ، ولا $i\alpha$ ، ودر الله مستمرة من النمط- $i\alpha$ ، ولا $i\alpha$ ، ودر الله مستمرة من النمط- $i\alpha$ ، ولا $i\alpha$ ،

الكلمات مفتاحية : مجموعة مغلقة من النمط-iαw ، مجموعة مغلقة من النمط-iw ، دالة مستمرة من النمط-iαw ، دالة مستمرة من النمط-iw ، دالة مستمرة من النمط-w .

Introduction

Many mathematicians have devised a variety of generalizations of closed sets in recent years. Levine [8], first defined and investigated considered the concept of generalized closed sets. Maki Devi and Balachandram [4], [10] defined generalized α -closed maps. Mohammed and Askander [2] presented the idea of i-closed sets. Sundaram and Sheik John [15] and recently M. Parimala, R. Udhayakumar and R. Jeevitha [13] studied α w-closed sets. Mohammed and Kahtab [9] defined the concept of i α - closed sets in topological spaces. In 2014, [3], Benchalli, Patil and Nalwad, introduced the concept of generalized w α -closed sets. In 2015, [14], Patil, Bechalli and Pallavi, introduced the concept of star w α -closed sets in topological spaces. In this study, a new class of closed sets is introduced, having the common adjective between the i α -closed and w-closed sets, called it i α w- closed set. This paper also defines the i α -continuous function. Throughout this paper, τ , $\tau^{i\alpha}$ and $\tau^{\alpha w}$, denotes the topology of open set, i α -open, and α w-open respectively on the set G. Any subset H of G. cl(H), int(H), Denotes closure set of H, interior set of H, we use the lower case letter of i, $i\alpha$, α w, to the mention symbol to deal with topology τ^i , $\tau^{i\alpha}$ and $\tau^{\alpha w}$. Throughout this paper spaces (G, τ) and (M, σ) (or simply G and M).

Definition 1.1 A-subset H of a topological space G is referred to as an

 α - open [11], [10] if $H \subseteq int(cl(int(H)))$. The complement of any α - open set is called α - closed set.

i-open [2] if there exist $U \in \tau$ such that $U \neq \emptyset$, *G* and $H \subseteq cl(H \cap U)$.

i α -open [9] if there exist $U \in \tau^{\alpha}$ such that $U \neq \emptyset, X$ and $H \subseteq cl(H \cap U)$.

w-*closed*[15] *if* $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is semi – open in G. wcl(H) is the intersection of all w-closed sets which containing H.

aw- closed [13] if $wcl(H) \subseteq U$ whenever $H \subseteq U$ and U is α – open in G.

iw-closed [1] if $wcl(H) \subseteq U$ whenever $H \subseteq U$ and U is i - open in G.

semi-open [7] if there exist $U \in \tau$ such that $U \neq \emptyset$, *X* and $U \subseteq H \subseteq cl(U)$. The complement of any semi-open set is called semi-closed set.

Definition 1.2. Let G and M be two topological spaces. A function $f: G \to M$ is known as following:

1) w – continuous [15] if $f^{-1}(K)$ is w – closed set of G each closed set for K of M.

2) αw – continuous [13] if $f^{-1}(K)$ is αw – closed set of *G* each closed set for K of M.

3) iw – continuous [1] if $f^{-1}(K)$ is iw – closed set of G each closed set for K of M.

4) Strongly- continuous [12], [6] if $f^{-1}(K)$ is both open and closed in *G* each open subset is for K in M.

5) contra – continuous [5] if $f^{-1}(K)$ is closed set in G for every open set K in M

6) contra w – *continuous*[5], if $f^{-1}(K)$ is w closed set in G for every open set K in M

Lemma 1.3. [9]

1) Each α – open set is $i\alpha$ – open.

2)Each semi – open set is $i\alpha$ – open.

3) Each i – open set is $i\alpha$ – open.

2. *iaw_*closed set

In this section, we introduce a new class of closed sets which is called i α w-closed set and we investigate the relationship with, closed set, w-closed set, α w-closed set and iw-closed set.

Definition 2.1. A subset H of (G, τ) is named an iaw-closed set if $wcl(H) \subseteq E$ whenever $H \subseteq E$ and *E* is ia- open in (G, τ) . The opposite of iaw – closed set is named iaw- open. We refer to the universal family iaw – closed sets of a topological space G by iawc(G). **Example 2.2.** Suppose $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\}$. Then $wc(G) = \{G, \emptyset, \{1\}, \{1, 3\}\}$ and $\tau^{\alpha} = \{G, \emptyset, \{2\}, \{1, 2\}, \{2, 3\}\}$. Then, $\tau^{i\alpha} = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$, and $iawc(G) = \{G, \emptyset, \{1\}, \{1, 3\}\}$ **Example 2.3.** Suppose $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}$. Then $wc(G) = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$, $\tau^{\alpha} = \{G, \emptyset, \{3\}, \{1, 2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$, $\tau^{i\alpha} = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}\}, and$ $iawc(G) = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$. **Theorem 2.4.** Each closed-set is iaw-closed-set.

Proof. Suppose that H be an closed set in G, then, H=cl(H). Let $H \subseteq E$, E is an i α -open in G. Since "each closed set is w-closed"([13]) we get, $wcl(H) \subseteq cl(H)$ (where wcl(H) is the intersection of all w-closed sets containing H), and since G is closed, we get, $wcl(H) \subseteq cl(H) \subseteq cl(H) \subseteq E$. This shows that H is $i\alpha w - closed$.

The following example shows that the converse of the aforementioned theorem need not be true.

Example 2.5.If $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}$. Then

 $C(\tau) = \{\emptyset, G, \{1, 2\}, \{3\}\}, \text{ and }$

 $wc(G) = i \alpha wc(G) = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$

If $N = \{1,3\}$. Then N is not closed. However N is iaw-closed set.

Corollary 2.6. Any open-set is iaw-open set.

Theorem 2.7. Each iαw-closed set is αw-closed set.

Proof. Suppose that H be iaw-closed set in G and E is be any α -open set in G s.t $H \subseteq E$. By lemma 1.3.(1), E be $i\alpha - open$, $wcl(H) \subseteq cl(H) \subseteq E$. Thus, H is $\alpha w - closed$.

The following example shows that the converse of the aforementioned theorem need not be true.

Example 2.8. If $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\}$ Then

 $\alpha wc(G) = \{G, \emptyset, \{1\}, \{1, 3\}, \{1, 2\}\}, \text{ and }$

 $i\alpha wc(G) = \{G, \emptyset, \{1\}, \{1, 3\}\}\$

If $N = \{1, 2\}$, then N is aw-closed set but not iaw-closed set.

Theorem 2.9. Each an i α w-closed set is w-closed set .

Proof. Suppose that H be an iaw-closed set in G and *E* is be any semi – open set in G s.t $H \subseteq$

E. By lemma 1.3.(2), *E* be $i\alpha$ – open. Since H is closed, $wcl(H) \subseteq cl(H) \subseteq E$. Therefore, H is w-closed set

Theorem 2.10. Every an iaw-closed set is an iw-closed set

Proof. Suppose that H be an iaw-closed set in G and E be any i-open set in G s.t $H \subseteq E$. By

Lemma1.3.(3), E be ia-open. Since H is closed, $wcl(H) \subseteq cl(H) \subseteq E$

This demonstrates *H* is an iw – closed set in *G*.

Remark 2.11. There is no connection between α -closed [resp. i α -closed, i-closed and i α w-closed set in topological-space as shown in the following examples.

Example 2.12. Suppose $G = \{1, 2, 3\}$ *Now*,

1) If $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}$, then $\{2\}$ is an iaw – closed but not α – closed and not ia – closed.

2) If $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\}, then \{3\} is \alpha - closed and i\alpha - closed$

but it is not $i\alpha w - closed$.

3) If $\tau = \{G, \emptyset, \{3\}\}$, then $\{1\}$ is i closed but it is not $i\alpha w$ - closed.

Figure 1 :The connection-between iaw-closed sets and the other classes-mentioned above

3. Properties of iaw-closed sets

We obtain several basic properties of $i\alpha w - closed$ sets.

Theorem 3.1. The intersection of two $i\alpha w - closed$ subset are $i\alpha w - closed$.

Proof. Suppose that A and B any two $i\alpha w - closed$ -sets, let E be any $i\alpha - open$ in (G,τ) , s.t $A \cap B \subseteq E$. Then $A \subseteq E$ and $B \subseteq E$. Since A and B are $i\alpha w - closed$ sets, $wcl(A) \subseteq E$ and $wcl(B) \subseteq E$. Therefore $wcl(A) \cap wcl(B) = wcl(A \cap B) \subseteq E$. Hence $A \cap B$ is an $i \propto w - closed$.

Example 3.2. From Example (2.2) If $A = \{1\}$ and $B = \{1, 3\}$, then $A \cap B = \{1\}$. It is also iaw-closed set.

Theorem 3.3. If A is an iaw-closed set in G and $A \subseteq B \subseteq iawcl(A)$. Therefore, B iaw-closed set in G. But not the opposite.

Proof. Suppose A is an iaw-closed set in G. Let $B \subseteq E$ such that E is an ia - open set in G. Since $A \subseteq B$, we have $A \subseteq E$. Since A is iaw - closed and $wcl(B) \subseteq wcl(wcl(A)) = wcl(A) \subseteq E$. Therefor $wcl(B) \subseteq E$. Hence B is an iaw - closed in G. **Example 3.4.** If $G = \{1, 2, 3\}$ and $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}$. Then $wc(G) = iawc(G) = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$

Suppose $A = \{1\}$ and $B = \{1, 3\}$, such that A and B are $i\alpha w - closed$ sets But, $A \subseteq B \subset i\alpha wcl(A)$.

Theorem 3.5. If a subset N in (G, τ) is an $i\alpha w - closed$ set then $i\alpha wcl(N) - N$ does not have any empty $i\alpha - closed$ sets in (G, τ) .

Proof. Suppose N is $i\alpha w - closed$ set and K be a nonempty $i\alpha - closed$ subset of wcl(N) - N. Then $K \subseteq wcl(N) \cap (G - N)$. Since (G - N) is $i\alpha - open$ and N is $i\alpha w - closed$ set. $wcl(N) \subseteq (G - N)$ therefore $K \subseteq (G - wcl(N))$.

Thus $K \subseteq wcl(N) \cap (G - wcl(N)) = \emptyset$. This implies that $K = \emptyset$. Thus wcl(N) - N does not contain any nonempty $i\alpha w - closed$.

Theorem 3.6. Let H is $i\alpha$ – open and $i\alpha w$ – closed set, then H is w – closed.

Proof. Since $H \subseteq H$ and H is $i\alpha - open$ and $i\alpha w - closed$, we have $wcl(H) \subseteq H$. Thus wcl(H) = H. Hence H is w - closed-set in G.

Theorem 3.7. Let H be an $i\alpha w$ – closed set in G. Then H is w – closed iff $wcl(H) - H = \emptyset$. Which it is $i\alpha$ – closed.

Proof. Suppose *H* is w - closed. Then wcl(H) = H and so $wcl(H) - H = \emptyset$, which is $i\alpha - closed$. Conversely wcl(H) - H is $i\alpha - closed$. Then $wcl(H) - H = \emptyset$, since H is an $i\alpha w - closed$ -set-in G. That is wcl(H) - H or H is w - closed.

4. *iαw* – Function Continuous

In this paragraph, we present the notation of an $i\alpha w - continuous$ function, a strongly $i\alpha w - continuous$ function and a perfectly $i\alpha w - continuous$ function.

Definition 4.1. A function $f: G \to M$ is-named $i\alpha w - continuous$ if $f^{-1}(V)$ is an $i\alpha w - closed$ set of (G, τ) Regarding each closed set V of (M, σ) .

Example 4.2. For $G = M = \{1, 2, 3\}$. Consider $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}$, and

$$\sigma \; = \; \left\{ M, \emptyset, \{3\}, \{1,3\} \right\} \; .$$

Suppose $f: (G, \tau) \to (M, \sigma)$, as the following f(1) = 1, f(2) = 3, f(3) = 2. Then f is $i\alpha w$ – continuous.

Theorem 4.3. Every continuous function is $i\alpha w$ – continuous, but not conversely

Proof. Suppose K be closed set of (M, σ) . Given that f is continuous, $f^{-1}(K)$ is enclosed (G, τ)

From Theorem (2.4), $f^{-1}(K)$ is $i\alpha w - closed$ in (G, τ) . This shows that f is $i\alpha w - continuous$.

Example 4.4. For $G = M = \{1, 2, 3\}$. Consider, $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\}$, and

$$\sigma = \{M, \emptyset, \{2\}, \{2, 3\}\}.$$

Let $f: (G, \tau) \to (M, \sigma)$ be defined by f(1) = 1, f(2) = 2, f(3) = 3. Then $V = \{2, 3\}$ in (M, σ) . $f^{-1}(\{2, 3\}) = \{2, 3\}$.

Thus, f is $i\alpha w$ – continuous but not continuous function.

Theorem 4.5. Any $i\alpha w$ – continuous function is αw – continuous, but not conversely.

Proof. Suppose K closed set of (M, σ) . Since $f^{-1}(K)$ is $i\alpha w - closed$ in (G, τ) . By Theorem (2.7), $f^{-1}(K)$ is an $\alpha w - closed$ set in (G, τ) . Thus, f is $\alpha w - continuous$.

Example 4.6. For $G = M = \{1, 2, 3\}$. Consider,

 $\tau = \{G, \emptyset, \{2\}, \{2, 3\}\} and \sigma = \{M, \emptyset, \{1, 2\}\}.$

Let $f: (G, \tau) \to (M, \sigma)$ be defined by f(1) = 1, f(2) = 2, f(3) = 3. Then

 $V = \{1, 2\} in (M, \sigma) \cdot f^{-1}(\{1, 2\}) = \{1, 2\}.$

Therfore, *f* is αw – continuous but not $i\alpha w$ – continuous.

Theorem 4.7. Any $i\alpha w$ – continuous function is w – continuous.

Proof. Suppose-K-closed-set of (M, σ) . Since $f^{-1}(K)$ is an $i\alpha w - closed$ in (G, τ) . By

Theorem (2.9), $f^{-1}(K)$ is a w - closed set in (G, τ) . Thus f is w - continuous.

Theorem 4.8. Every $i\alpha w$ – continuous function is iw – continuous.

Proof. Suppose K is closed set of (M, σ) . Since $f^{-1}(K)$ is an $i\alpha w - closed$ set in (G, τ) . By

Theorem (2.10), $f^{-1}(K)$ is an iw – closed set in (G, τ) . Thus f is iw – continuous.

Definition 4.9. A function $f: G \to M$ is named $i\alpha w$ – closed if for each closed set F of (G, τ) , f(F) is an $i\alpha w$ – closed-set in (M, σ) .

Theorem 4.10. Every closed function is an $i\alpha w$ – closed function, but not the opposite **Proof.** Every closed set being an $i\alpha w$ – *closed*.

Example 4.11. For $G = M = \{1, 2, 3\}$. Consider,

 $\tau = \{G, \emptyset, \{2\}, \{1, 2\}\} and \sigma = \{M, \emptyset, \{3\}, \{1, 2\}\}.$

Let $f: (G, \tau) \to (M, \sigma)$ be-define the-identity map, then f is an $i\alpha w - closed$ function but f is not a closed -function, because $\{1,3\}$ is closed in (G, τ) but $f(\{1,3\}) = \{1,3\}$ is not closed in (M, σ) .

Theorem 4.12. If a function $f: G \to M$ is continuouse and $i\alpha w - closed$ and H which is $i\alpha w - closed$ of G. Then f(H) is $i\alpha w - closed$ in M

Proof. Suppose $f(H) \subset E$ where E is it closed in M, Since f is continuouse and $f^{-1}(E)$ is it closed containing H. Thus, $cl_{i\alpha}(H) \subset f^{-1}(M)$ as H is $i\alpha w - closed$, since f is an $i\alpha w - closed$ function, $f(cl_{i\alpha}(H)) \subset E$ is $i \propto w - closed$, E is an closed set which implies $cl_{i\alpha}(f(cl_{i\alpha}(H))) \subset E$ and hence $cl_{i\alpha}(f((H))) \subset E$ so f(H)is $i\alpha w - closed$ in M.

Definition 4.13. A function $f: G \to M$ is known as an $i\alpha w - open$ function if for each open set E of (G, τ) , f(E) is an $i\alpha w - open$ set in (M, σ) .

Theorem 4.14. For any bijection $f: G \to M$ the statements can be written as follows: $f^{-1}: M \to G$ is $i\alpha w - continuous$.

f is an $i\alpha w - open$ -function.

f is an $i\alpha w$ – closed – function.

Proof. (1) \rightarrow (2), Assumse H an open set in G. Since f^{-1} is $i\alpha w$ – continuous, then $(f^{-1})^{-1}(H) = f(H)$ is $i\alpha w$ – open in M and so f is $i\alpha w$ – open.

(2) \rightarrow (3), let *F* a closed set in any *G*, then *G**F* opened in G. Since *f* is $i\alpha w$ - open, $f(G \setminus F)$ is $i\alpha w$ - open in M. But $f(G \setminus F) = M \setminus f(F)$ is $i\alpha w$ - open in M. Therefore f(F) is $i\alpha w$ - closed implies that f is $i\alpha w$ - closed-function.

(3) \rightarrow (1), Let *F* a closed set in any G. By assumption f(F) is an $i\alpha w$ – closed in M but $f(F) = (f^{-1})^{-1}(F)$. Therefore f^{-1} is continuous.

Definition 4.15. A function $f: G \to M$ is named strongly $i\alpha w$ – continuous if each situation were its opposite, $i\alpha w$ – open set in *M* opened in G.

Theorem 4.16. Every strongly $i\alpha w$ –continuous it is continuous, but not conversely.

Proof. Suppose *f* is strongly $i\alpha w - continuous$ and N open-set in M. By Corollary (2.6), then N be $i\alpha w - open$ in M. Since f is strongly $-i\alpha w - continuous$, $f^{-1}(N)$ is open in *G* therefore *f* is continuous.

Example 4.17. For $G = M = \{1, 2, 3\}$ Consider,

 $\tau = \{G, \emptyset, \{1\}, \{3\}, \{1, 3\}, \{1, 2\}\} \text{ and } \sigma = \{M, \emptyset, \{3\}, \{1, 2\}\}.$

Let $f: (G, \tau) \to (M, \sigma)$ be define by f(1) = 1, f(2) = 2, f(3) = 3. Then f is continuous but not strongly $-i\alpha w$ - continuous, because $\{2, 3\}$ is $i\alpha w$ - open in M but $f^{-1}(\{2, 3\}) = \{2, 3\}$ is not open in G.

Corollary 4.18. Every strongly $-i\alpha w - continuous$ is $i\alpha w - continuous$.

Theorem 4.19. Every strongly – continuous is strongly – $i\alpha w$ – continuous but not conversely.

Proof. Let *f* be strongly continuous and U is $i\alpha w$ – open in M, since *f* is $i\alpha w$ – continuous, $f^{-1}(U)$ opened-in G. Thus f is strongly – $i\alpha w$ – continuous.

Example 4.20. For $G = M = \{1, 2, 3\}$ Consider,

 $\tau = \{G, \emptyset, \{3\}, \{2, 3\}\} and \quad \sigma = \{M, \emptyset, \{3\}\}.$

Let $f: (G, \tau) \to (M, \sigma)$ be defined the identity map, then f is strongly $-i\alpha w$ - continuous but not strongly - continuous. The subset {3} is open in M, $f^{-1}({3}) = {3}$ is open in G and it is not closed in G.

Definition 4.21. A function $f: G \to M$ is perfectly $i\alpha w$ – continuous if each situation were its opposite, $i\alpha w$ – *open*-set in M is both open and closed in G.

Theorem 4.22. Every perfectly $i\alpha w$ – continuous is-*strongly* $i\alpha w$ – continuous.

Proof. Assume that f is *perfectly* $i\alpha w - continuous$, let N be any $i\alpha w - open$ set in M. Suppose f is *perfectly* $i\alpha w - continuous$, f^{-1} (N) opened in G. Therefore f is *strongly* $i\alpha w - continuous$.

The following example shows that the converse of the aforementioned theorem need not be true.

Example 4.23. For $G = M = \{1, 2, 3\}$ Consider

 $\tau = \{G, \emptyset, \{3\}, \{1,3\}\}, \sigma = \{M, \emptyset, \{3\}\}.$ Let $f: (G, \tau) \to (M, \sigma)$ be define identification map, then f is *strongly iaw* – *continuous* c and not *pervectly iaw* – *continuous*, because $\{3\}$ *is iaw* – *open in* M but $f^{-1}(\{3\}) = \{3\}$ is open in G but not closed in G. **Corollary 4.24.** Every *perfectly iaw* – *continuous* is *iaw* – *continuous*. **Remark 4.25.** The following diagram is based on the aforementioned results.

5. Contra $i\alpha w$ – Continuous Function

Definition 5.1. A function $f: G \to M$ supposed to be contra $i\alpha w$ – continuous (resp. contra iw – continuous), if each open subsets inverse-image, M is an $i\alpha w$ – closed (resp, iw – closed) set in *G*.

Example 5.2. For $G = M = \{1, 2, 3\}$ consider $\tau = \{G, \emptyset, \{1\}\}, \sigma = \{M, \emptyset, \{3\}\}$ and $\tau^{i\alpha} = \{G, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$

The identity mapping is unambiguous $f: (G, \tau) \to (M, \sigma)$ is contra $i\alpha w$ – continuous and contra iw – continuous.

Theorem 5.3. Any contra – continuous function is- contra $i\alpha w$ – continuous .

Proof. Let $f: G \to M$ contra continuous function And N open in M. Suppose, f is contra – continuous, then $f^{-1}(N)$ a closed set in G. By Theorem (2.4), then $f^{-1}(N)$ is $i\alpha w$ – closed in G. Hence, f is contra $i\alpha w$ –continuous.

Theorem 5.4. Every perfectly continuous function is contra $i\alpha w$ – continuous.

Proof. Let $f: G \to M$ be perfectly continuous function and V is open in M. Suppose, f is perfectly continuous, then $f^{-1}(V)$ is a clopen in G, and hence closed. Hence, it is $i\alpha w$ – closed .Thus, f is contra $i\alpha w$ – continuous .

The following example shows that contra $i\alpha w$ – continuous function need not be contra – continuous and perfectly continuous

Example 5.5. For $G = M = \{1, 2, 3\}$ Consider

 $\tau = \{G, \emptyset, \{3\}, \{1, 2\}\} and \sigma = \{M, \emptyset, \{1\}\}.$

The identity mapping is unambiguous $f: (G, \tau) \rightarrow (M, \sigma)$ is contra $i\alpha w$ – continuous,

but f is not contra – continuous and not perfectly continuous . Similar results include those seen below.

Proposition 5.6. Every *contra* $i\alpha w$ – *continuous function* is *contra* w – *continuous*. **Proof.** Clear by use Theorem (2.9).

Proposition 5.7. Every contra $i\alpha w$ – continuous function is contra iw – continuous. **Proof.** Clear by use Theorem (2.10).

Theorem 5.8. Any totally – continuous function is contra $i\alpha w$ – continuous .

Proof. Let $f: G \to M$ be totally continuous function and V an open set in M. Since, *f* is totally – continuous, then $f^{-1}(V)$ is a clopen set in *G* and hence closed. By **Theorem (2.4)**, then $f^{-1}(V)$ is $i\alpha w$ – closed in *G*. Hence, *f* is contra $i\alpha w$ – continuous. The converse of the above theorem need not be true by the following example.

Example 5.9. If $G = M = \{1, 2, 3\}$ Consider $\tau = \{G, \emptyset, \{3\}\}$ and $\sigma = \{M, \emptyset, \{1\}\}$. The identity mapping is unambiguous $f: (G, \tau) \to (M, \sigma)$ is contra $i\alpha w$ – continuous, but f is not totally – continuous because for open subset $f^{-1}\{1\} = \{1\} \notin CO(G)$.

Conclusions

It is concluded in this work that:

Each $i\alpha w$ - closed-set is αw - closed, each an $i\alpha w$ - closed-set is w - closed, every an $i\alpha w$ - closed-set is an iw - closed set.

There is no connection between α – closed [resp. $i\alpha$ – closed , i – closed] and $i\alpha w$ – closed in topological-space.

Every continuous function -is $i\alpha w$ – continuous, any $i\alpha w$ -continuous function is αw – continuous, any $i\alpha w$ – continuous function is w – continuous, every $i\alpha w$ – continuous function is iw – continuous.

Every strongly $i\alpha w - continuous$ it is continuous, every strongly - continuous it is strongly - $i\alpha w - continuous$, every perfectly $i\alpha w - continuous$ is- strongly $i\alpha w - continuous$, every perfectly $i\alpha w$ -continuous it is $i\alpha w - continuous$, any contra - continuous function is contra $i\alpha w$ - continuous and every perfectly continuous function is contra $i\alpha w$ - continuous and every perfectly continuous function is contra $i\alpha w$ - continuous and every perfectly continuous function is contra $i\alpha w$ - continuous and every perfectly continuous function is contra $i\alpha w$ - continuous and every perfectly continuous function is contra $i\alpha w$ - continuous - continuous function is contra $i\alpha w$ - continuous - co

References

- B. Abdullah, A. Mohammed, ii-Open Sets in Topological Spaces, International Math. Forum, 14(1), 41-48 (2019)
- S. Askander, A. Mohammed, i-Open-Sets in bi-Topological-Spaces, AL-Rafidain Journal of Computer Sciences and Mathematics, 12(1), 13-23(2018)
- S. Benchalli, P. Patil, P. Nawlad, Generalized wα-closed sets in topological spaces, Journal of new result in science, 7, 7-19 (2014)
- R. Devi, K. Balachandran, H. Maki, Generalized α-Closed Maps and α- Generalized Closed Maps, Indian J. Pure. Appl.Math.,29(1), 37-49(1998)
- 5. J. Donchev, Contra Continuous Functions and Strongly S-Closed Spaces, International journal of Mathematics and mathematical sciences, 19, 303-310(1996)
- N. Levine, Strongly Continuity in Topological Spaces, Amer. Math. Monthly, 67(3), 269-269(1960)
- N. Levine, Semi-Open Sets and Semi-Continuity in Topological Space, Amer. Math. Monthly, 70, (1963)36-41
- N. Levine, Generalized Closed Set in Topological, Rend. Circ. Math. Palermo, 19, 89-96 (1970)
- A. Mohammed, O. Kahtab, On-iα-Open Sets, AL Rafidain- Journal of Computer Sciences and Mathematics, 9, 219-228(2012)
- A. Mashhou, I. Hasanein, S. EI-Deeb, α-Continuous-and-α-Open- Mappings, Acta-Math. Hungar.41, 213-218(1983)
- O. Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics, 15(3), 961-970(1965)

- T. Noiri, Super Continuity and Some Strong Forms of Continuity, Indian J. Pure Appl. Math. 15(3), 241-250(1984)
- M. Parimala, R. U-dhayakumar, R. Jeevith-a, V. Biju, On αw-Closed Sets in Topological Spaces, International Journal of Pure and Applied Math, 115(5), 1049-1056(2017)
- 14. P. Patil, S. Benchalli, S. Pallavi, Generalized star wα-closed sets in topological spaces, Journal of new result in science. 9, 37-45(2015)
- P. Sundaram, M. Shrik John, On-w-Closed-Sets in-Topology, Acta Ciencia- Indica Mathematics, 4, 389-392(2000)