
  

 

202 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 2, April 2025 

 
 
 
 

Exploring Solutions of Geometry Problems for Inverse Cauchy Problems in 

Helmholtz and Modified Helmholtz Equations 

Zainab A. Mansour 2, Shurooq H. Ali 1*and Fatima M. ABOUD 1 

*scimathms222303@uodiyala.edu.iq  

1Department of Mathematics, College of Science, University of Diyala 

2Department of Mathematics, College of Education for pure Sciences, Tikrit University 

This article is open-access under the CC BY 4.0 license)http://creativecommons.org/licenses/by/4.0( 

Received: 22  January 2024  Accepted: 16 April 2024   

 Published: 30 April 2025 

DOI: https://dx.doi.org/10.24237/ASJ.03.02.846C 

Abstract 

In the present paper explores a reverse Cauchy problem for a heat transfer issue described by 

the Helmholtz and modified Helmholtz equation. Our goal is to identify an unknown defect 𝐷 

within a simply connected bounded domainΩ, given the Dirichlet data (temperature) ℎ  on the 

boundary𝜕𝐷, and Neumann data (heat flux) 𝜕𝑛ℎ on the boundary𝜕Ω. We assume that the 

temperature ℎ satisfies the Helmholtz equation (or modified Helmholtz equation) that governs 

the heat condition in the fin. To solve this problem, we propose a method that involves two 

steps. First, we solve a Cauchy problem using the Helmholtz equation (or modified Helmholtz 

equation) to determine the temperatureℎ. Then, in the second phase, we solve a system of 

nonlinear scalar equations to determine the coordinates of the points defining the 

boundary𝜕𝐷. This can be achieved using an iterative method, such as Newton's method. 

Keywords:  Inverse Cauchy problem, Helmholtz equation, modified Helmholtz equation, 

polynomial expansion, Newton method. 
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Introduction 
In This article involves on the inverse problem of identifying an anonymous defect 𝐷 within a 

bounded domainΩ, characterized by boundary Γ = 𝜕Ω  (boundary temperature and heat flux). 

It assumes that the steady state temperature ℎ  gratifies the Helmholtz equation (or the 

modified Helmholtz equation), which governs heat conduction in a fin: 

               ∆ ℎ ±  𝑘2 ℎ = 𝐹,             Ω/𝐷  

with the domain being  Ω\𝐷 ⊂ ℝ2 and F being a function that is provided. Any problem of 

this nature is an example of an ill-posed problem. In point of fact, a problem is considered to 

be well-posed in the sense of Hadamard if the solution is one that is both unique and stable 

[Hadamard, 1923]. On the other hand, if the solution does not satisfy any of these three 

conditions, then the problem is considered to be ill-posed, and in order to solve this ill-posed 

problem, an inverse problem needs to be formulated. When compared to the direct 

difficulties, the inverse problem is often considered to be more challenging to solve than the 

direct problems. 

Additionally, the inverse problems exhibit instability, as noted by [Hadamard in 1923]. This 

means that even a slight error in the input data measurement can result in a significant 

perturbation or error in the solution. 

     In this article, we adopt a technique akin to the approach employed in citations [1, 3, 4, 14, 

11, 19, 24] to estimate the solution through a polynomial expansion. Moreover, we make use 

of the discrete decoupled Cauchy-Newton algorithm [20] to precisely ascertain the 

unidentified interior boundary. The creators of the mentioned study employed this 

methodology to tackle an inverse problem related to the modified Helmholtz equation. 

However, in our study, we applied it to solve an inverse problem for the Helmholtz equation 

and compare the results with those obtained for the modified Helmholtz equation, considering 

different physical parameters𝑘 = √2,√15 ,√25.5,√52. 

In the remainder of the parts of this paper, the following is included: In the second section, we 

take the Helmholtz equations and the modified Helmholtz equations together. In reference to 

the Decoupled Cauchy-Newton method, which was discussed in section three. In the fourth 
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section, you will demonstrate the numerical results and the discussion by providing some 

examples. At long last, we discuss our findings and conclusions. 

Mathematical Expression for Helmholtz equation and modified Helmholtz equation  

Consider the assumption that there exists a bounded domain Ω in ℝ2 that is simply linked and 

has a smooth border𝜕Ω.  Let 𝐷 be an unidentified defect that is compactly contained inside  Ω 

and has a border that is𝜕𝐷. It is assumed that this defect is smooth and piecewise analytic, and 

that it is linked at the point where Ω𝑎 = Ω\ 𝐷 . Under the assumption that the temperature 

ℎ(𝑥, 𝑦) in Ω𝑎  is in accordance with the modified Helmholtz equation and the Helmholtz 

equation: 

∆ℎ(𝑥, 𝑦) ± 𝑘2ℎ(𝑥, 𝑦) = 𝐹 (𝑥, 𝑦),              (𝑥, 𝑦) ∈ Ω𝑎                            (1) 

That is, the value of 𝑘 is determined by the convective heat transfer coefficient, the thermal 

conductivity, and the thickness of the fins. It is assumed that the steady state Dirichlet 

boundary conditions on the interior and outer borders 𝜕𝐷 and 𝜕Ω are supplied, which means 

that the Dirichlet temperature data  ℎ\𝜕Ω𝑎 is given, and the temperature ℎ is able to satisfy the 

following problem: 

∆ℎ(𝑥, 𝑦) ± 𝑘2ℎ(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) ,                      (𝑥, 𝑦) ∈ Ω𝑎                             (2) 

                 ℎ(𝛿, 𝛳) = 𝑓(𝛿, 𝛳)  ,                              (𝛿, 𝛳) ∈ 𝜕Ω                            (3) 

          ℎ(𝛿, 𝛳) =  ℎ0(𝛿, 𝛳),                                        (𝛿, 𝛳) ∈ 𝜕𝐷                         (4) 

where 𝐹, 𝑓 and ℎ0 are given function  

When 𝐷  is known, it is common knowledge that the direct Dirichlet problem, which is 

represented by equations (2)–(4), has a singular solution,  ℎ ∈ 𝐻1(Ω\𝐷) .and it is known that 

𝐹 ∈ 𝐿2(Ω), 𝑓 ∈ 𝐻
1

2(𝜕Ω), and ℎ0 ∈ 𝐻
1

2(𝜕𝐷)  [see 21] .In addition to this, we are subject to the 

following condition: 

                𝜕𝑣 ℎ(𝛿, 𝜃) = 𝑔 (𝛿, 𝜃),                                                                                    (5) 

 

      where 𝜕Ω represents the portion of the boundary that is accessible, and 𝜕𝑣ℎ\𝜕Ω represents 

the Neumann heat flow data on the boundary defined by 𝜕Ω.Therefore, the inverse issue that 
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is being considered involves the extraction of certain information on the boundary 𝜕𝐷 from 

the data  𝑔|𝜕Ω. and instead of measuring the flux on the full boundary 𝜕Ω, the data (5) might 

only be partial, meaning it only measures a non-zero section Γ ⊂ 𝜕Ω. 

It is common knowledge that the inverse problem is described as being nonlinear and ill-

posed, in contrast to the direct problem, which is described as being linear and well-posed. 

While it has been demonstrated, as referenced in [13] that the solution to the inverse problem 

outlined in Equations. (2)– (4) and (5) is unique, this solution is not continuously dependent 

on errors in the input Cauchy data (3) and (5). 

Decoupled Cauchy-Newton algorithm 

The using Nachaoui-Aboud decoupled Cauchy-Newton method [20], we will solve the 

equation (2-5) in order to locate 𝐷. In order to solve the inverse issue and find the temperature 

ℎ in 𝐷, we must first solve a Cauchy problem that is controlled by the Helmholtz equation and 

the modified Helmholtz equation. Polynomial expansion is the method that we use when 

dealing with situations that have smooth boundaries, By using this approach, we will get a 

solution for ℎ that is based on polynomial expansion. Once we have a solution for ℎ, we go on 

to the second sub-problems, which include determining the coordinates of the points that 

define the boundary 𝐷 . This is done after we have determined the answer for ℎ . The 

application of a number of nonlinear scalar equations is what we do in order to get these 

results. Before we can obtain the nonlinear equations, we must first convert the problem into a 

parametric form and then solve it numerically by using an iterative technique like the Newton 

method. 

Polynomial Expansion approximation of the Cauchy problem  

 In order to get a close approximation of the solution to the Cauchy problem (2)– (5), we offer 

a polynomial expansion that is comparable to the one that was presented in [1, 3, 11, 14, 24]. 

We specifically need an approximation polynomial that follows the general form: 

ℎ(𝑥, 𝑦) =  ∑ ∑ 𝑐𝑖𝑗

𝑖

𝑗=1

𝑚

𝑖=1

 𝑥𝑖−𝑗 𝑦𝑗−1                                                                                 (6) 
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When the coefficients 𝑐𝑖𝑗 are unknown and to be found, with 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑖, the 

total number of these unknown coefficients is 
𝑚(𝑚+1)

2
. With this formula substituted into the 

Helmholtz equations and the Helmholtz equations changed in (2), we would get: 

∑ ∑(
𝜕2

𝜕𝑥2

𝑖

𝑗=1

𝑚

𝑖=1

+  
𝜕2

𝜕𝑦2
 ± 𝑘2)𝑐𝑖𝑗𝑥𝑖−𝑗𝑦𝑗−1 = 𝐹(𝑥, 𝑦 )                                                                (7) 

We can write the previous equation as follows: 

 

∑ ∑(
(𝑖 − 𝑗)(𝑖 − 𝑗 − 1)

𝑥2
+  

(𝑗 − 1)(𝑗 − 2)

𝑦2

𝑖

𝑗=1

𝑚

𝑖=1

 ± 𝑘2) 𝑐𝑖𝑗𝑥𝑖−𝑗𝑦𝑗−1 = 𝐹(𝑥, 𝑦)                         (8) 

 
For each of the  𝑛1𝑏 points, we obtain a system of linear equations with coefficients  𝑐𝑖𝑗 by 

noting that this equation must be satisfied for every (𝑥, 𝑦) in the domain Ω. 

∑ ∑( 
(𝑖 − 𝑗)(𝑖 − 𝑗 − 1)

𝑥𝑙
2

𝑖

𝑗=1

𝑚

𝑖=1

+ 
(𝑗 − 1)(𝑗 − 2)

𝑦𝑙
2  ± 𝑘2)𝑐𝑖𝑗𝑥𝑙

𝑖−𝑗
𝑦𝑙

𝑗−1

= 𝐹(𝑥𝑙, 𝑦𝑙)                                    (9) 

for 𝑙 =  1, … , 𝑛1𝑏.  

We must define boundary conditions for  ℎ  to finalize this system. Given that we have 

Dirichlet and Neumann boundary information, we can utilize them to compute the 

coefficients 𝑐𝑖𝑗 . It is important to mention that the normal derivative of 𝑢(𝑥, 𝑦) can be 

expressed as shown in [17], 

𝜕𝑛𝑢 =  𝜂(𝜃) [cos(𝜃) −  
𝜌′

𝜌2
 sin(𝜃)] 𝜕𝑥𝑢 + 𝜂(𝜃) [sin(𝜃) −  

𝜌′

𝜌2
cos(𝜃)] 𝜕𝑦𝑢       (10) 

in which 𝜂(𝜃)  have been defined as: 

𝜂(𝜃) =  
𝜌(𝜃)

√𝜌2(𝜃) +  [𝜌′(𝜃)]2
                                                                                               (11) 

 Now, by defining ℎ as 𝑢 and 𝜌 as 𝛿, and utilizing formula (10) for the normal derivative in 

boundary condition (5), and replacing the solution ℎ in (3) with its approximation from (6), 

we obtain a system from equations. Evaluating this system at 𝑛1𝑎 locations yields a system of 
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2 ∗ 𝑛1𝑎 linear equations .if this system is combined with the 𝑛1𝑏 equations from (9), a system 

of linear equations of the form is obtained. 

𝐴𝑐 =  𝑏                                                                                                                   (12)  

where the vector 𝑐 is of length 

                         𝑛2 =
𝑚(𝑚 + 1)

2
                                                                                                      (13) 

The coefficients 𝑐𝑖𝑗 that need to be calculated have been rearranged within it. The rectangular 

matrix 𝐴 in the system has dimensions  𝑛1 ∗ 𝑛2 and a length given𝑛1 = 2 ∗ 𝑛1𝑎 + 𝑛1𝑏. The 

known data vector  𝑏 also has a length of 𝑛1 = 2 ∗ 𝑛1𝑎 + 𝑛1𝑏 . 

This means that solving the system of linear algebraic equations (12) is all that's needed to 

resolve the inverse Cauchy problems (2), (3), and (5). To discover the unique solution of the 

system of linear algebraic equations (12), the number of collocation points  𝑛1 and the number  

𝑛2 have to satisfy the inequality𝑛1 ≥ 𝑛2. After the coefficients  𝑐𝑖𝑗 have been discovered, the 

polynomial expansion (6) can be utilized to evaluate the solution  ℎ(𝑥, 𝑦) of the Cauchy 

problem (2)-(5) at points within the domainΩ. 

  𝑨  Represents the matrix that defines the linear system resulting from the polynomial 

expansion. 𝒃  is the represents data vector, 𝒄  represents the vector of coefficients in the 

polynomial expansion, and the regularization parameter is a small positive constant. 

Determining the unknown Boundary with Newton’s Method 

Through the utilization of the Nachaoui-Aboud discrete decoupled Cauchy-Newton algorithm 

[20], it is assumed that the Cauchy problem has been resolved. This is because the vector  𝑐  

allows for the evaluation of the function  ℎ(𝑥, 𝑦) at any point (𝑥, 𝑦) in Ω.  We can assert that 

for a fixed𝜃, there exists a value  𝛿(𝜃) in the interval  (0, 𝛿0(𝜃)) such that 𝛿(𝜃) is on the 

boundary𝜕Ω, and we can continue this process to uncover the unknown boundary 𝜕𝐷. With 

the boundary condition (4) on𝐷, we can define a point (𝛿(𝜃), 𝜃) on 𝜕𝐷  for a given  𝜃 in the 

range[0,2𝜋]. 

              ℎ(𝛿, 𝜃) =  ℎ0(𝛿, 𝜃)                                                                                                   (14) 

where ℎ is the answer to the Cauchy problem that is shown by (2)–(3) and (5). We describe 

𝐹𝑟𝑁(𝛿(𝜃)) =  ∑ ∑ 𝑐𝑖𝑗

𝑖

𝑗=1

𝑚

𝑖=1

(𝛿(𝜃))
𝑖−1

(cos(𝜃))𝑖−𝑗(sin(𝜃))𝑗−1 −  ℎ0(𝛿(𝜃), 𝜃) = 0             (15) 
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It is essential to calculate the root 𝛿(𝜃) of the nonlinear operator 𝐹𝑟𝑁   as defined by the 

nonlinear equation (15) in order to ascertain the approximate value of (𝛿(𝜃), 𝜃) 𝜖 𝜕𝐷, where 

the boundary condition (4) is satisfied. The reason for this is because equation (15) is a scalar 

nonlinear equation. The solution for the root of 𝐹𝑟𝑁 , given a fixed 𝜃𝜖 [0,2𝜋] , can be 

determined using Newton's method. Since the 𝐹𝑟𝑁  operator is explicitly defined in terms of 

𝛿(𝜃).Note that: 

𝑑𝛿𝐹𝑟𝑁(𝜌(𝜃)) = ∑ ∑ 𝑐𝑖𝑗(𝑖 − 1)(𝛿(𝜃))
𝑖−2

(cos(𝜃))𝑖−𝑗(sin(𝜃))𝑗−1𝑖
𝑗=1

𝑚
𝑖=1 −  𝑑𝛿ℎ0(𝛿(𝜃), 𝜃)       

          (16)     

This means that 𝑑𝛿𝐹𝑟𝑁 is the derivative of the function 𝐹𝑟𝑁 with respect to 𝛿. 

With Newton's algorithm, we generate a series of values denoted by 𝛿𝑛 , starting with the 

initial value 𝛿0 = 𝛿0(𝜃) , and then updating it as follows: 

            𝛿𝑛+1 =  𝛿𝑛 − 
𝐹𝑟𝑁(𝛿𝑛)

𝑑𝛿𝐹𝑟𝑁(𝛿𝑛)
                                                                                       (17) 

Consequently, we can summarize our method for solving the inverse geometric problem for 

the Helmholtz and modified Helmholtz equations (2)-(5), This involves determining the inner 

boundary of an annular domain based on a given set of boundary Cauchy data (temperature 

and heat flux) using the Nachaoui-Aboud discrete decoupled Cauchy-Newton algorithm [20]. 

Numerical Results and Discussion 

This section presents the numerical results obtained using the polynomial approximation 

method described and the Nachaoui-Aboud discrete decoupled Cauchy-Newton algorithm. 

These findings are utilized to address the Cauchy problem for the Helmholtz and modified 

Helmholtz equations in two-dimensional bounded domains. By employing the Conjugate 

Gradient Least Squares (CGLS) method, the data that was obtained from the linear system 

that was represented in equation (12) is resolved. 

Example 1: 

 Assume that we have the Cauchy problem for (Helmholtz & modified Helmholtz equations) 

with exact solution:  

ℎ(𝑥, 𝑦) = 6𝑥2𝑦2 − 𝑥4 − 𝑦4 

The Dirichlet data given on the interior and exterior boundaries 𝜕𝐷 and 𝜕Ω as follows:  

ℎ(𝛿, 𝜃) = 6𝑟4(cos(𝜃) sin(𝜃))2 − (𝑟𝑐𝑜𝑠(𝜃))4 − (𝑟𝑠𝑖𝑛(𝜃))
4
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𝑔(𝜃) =
𝜕ℎ

𝜕𝑛
= (12𝑥𝑦2 − 4𝑥3) cos(𝜃) + (12𝑦𝑥2 − 4𝑦3) sin(𝜃) 

     With domain Ω say circle with radius (0.7), For decouple Cauchy-Newton, we take 𝑛1𝑎 =

50  ,and for stopping criterion in the Newton iteration |𝛿𝑛+1 − 𝛿𝑛| ≤ 10−2 we take the cases 

that 𝑘 = √2  and √15 ,where k is a physical parameter. The results represent as follows: 

  

𝒌 = √𝟐 = √𝟏𝟓 

                                      a:results for Helmholtz equation 

  

𝒌 = √𝟐 𝒌 = √𝟏𝟓 

                        b:results for modified Helmholtz equation 

Figure 1: From figures it is clear that the approximation results with a high degree of 

precision. 
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Example 2: Suppose that the boundary conditions in (2), (3) are computed from the exact 

solution: 

ℎ(𝑥, 𝑦) = 𝑥4 − 𝑦4 

This equation satisfied the Helmholtz (or modified Helmholtz) equation and its given as 

follows: 

ℎ(𝛿, 𝜃) = (𝑟(cos(𝜃))4 − (𝑟(𝑠𝑖𝑛𝜃))
4
 

𝑔(𝜃) =
𝜕ℎ

𝜕𝑛
= 4𝑥3(cos(𝜃)) − 4𝑦3(sin(𝜃)) 

For decoupled Cauchy-Newton algorithm, we take = √25.5  , √52 , 𝑛1𝑎 = 50 , and 𝑇𝑜𝑙 =

10−4, the results represent as follow : 
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Figure 2: The results in a. and b. with Helmholtz equation and c. and d. with modified 

Helmholtz equation. 

These outcomes are acquired through initial iteration of Newton’s technique carried out on the 

circle.  

Noise Effect 

In practical applications, when inverse problems are formulated, known data is acquired 

through using measurements that may leading to mistakes. To assess the stability of the 
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                   d. 𝒌 = √𝟓𝟐 
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numerical solution, we introduce noise into the Dirichlet and Neumann boundary data 𝑓  and 

𝑔  provided by equations (4) and (5). 

The following equation is used to perturb the precise Cauchy data: 

𝑓(𝜃) = ℎ𝑒𝑥(𝛿(𝜃), 𝜃) + 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 

𝑔(𝜃) = 𝜕ℎ𝑒𝑥(𝛿(𝜃), 𝜃) +  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 

 In this case,  𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡, 𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛  represents the randomly distributed Gaussian 

error, and it refer to the noise level with a values of 0.001, 0.01, 0.05, and 0.1 

Example 3: We take into account all provided data in (2), (3) which were taken similarly in 

example 2. The boundary which was acquired using  0.01, 0.001, 0.05, 0.1 noise 

consecutively, for both Dirichlet and Neumann boundary data utilizing parameter physical  

𝑘 = √52  the outcomes was illustrated as shown : 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 Figure 3(a): With 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.01        Figure 3(b): With 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.001 
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      Figure 3(c): With 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.05                Figure 3 (d): With  𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.1 

Figure 3: The effect of noise with Helmholtz equation. (Effect of noise on Dirichlet 

boundaries) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4(a): With 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.01            Figure 4(b): With  𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.001 
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Figure 4(c): With 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.05                   Figure 4(d): With  𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 0.1 

 
Figure 4: The effect of noise with modified Helmholtz equation. (Effect of noise on Dirichlet 

boundaries) 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5(a):With  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.01              Figure 5(b):With  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.001 
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Figure 5(c):With  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.05           Figure 5(d):With  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.1 

Figure 5: The effect of noise with Helmholtz equation. (Effect of noise on Neumann 

boundaries) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig6(a):With 𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.01               Fig6(b):With  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.001 
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Figure 6(d): With  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.1                  Figure 6(c):With  𝑁𝑜𝑖𝑠𝑒𝑁𝑒𝑢𝑚𝑎𝑛𝑛 = 0.05 

Figure 6: The effect of noise with modified Helmholtz equation. (Effect of noise on Neumann 

boundaries) 

 

Conclusion 
This study aims to address an inverse Cauchy issue related to a heat transfer problem that is 

ruled by the Helmholtz equation and a modified Helmholtz equation. The goal is to ascertain 

the unidentified defect 𝐷  within a bounded domain Ω   that is simply connected. This is 

accomplished by utilizing the Dirichlet data (temperature) ℎ  at the border 𝜕𝐷  and the 

Neumman data (heat flux) 𝜕𝑛ℎ at the border 𝜕Ω. The method that is being proposed involves 

breaking the problem down into two sub-problems. The first stepping a Cauchy problem is 

solved by using the Helmholtz equation (or a modified Helmholtz equation) to determine the 

temperature ℎ. Then, it uses a polynomial expansion to get a close approximation of the 

solution, which lets us get the immediate problem in solving a linear system, which is 

addressed by the CGLS algorithm. The other stepping in resolving a nonlinear scalar equation 

involves determining the positions of the points that establish the boundary by utilizing an 

iterative technique like Newton’s method, and the both Helmholtz equation and its modified 

Helmholtz equation were investigated, with varying examples studied for each, the 

approximate value of the precise limit is determined with high precision for the various in 

boundaries (whether they are regular or irregular boundary 𝜕𝐷). Certainly, when considering 

diverse boundary variations and various precise solution types (including polynomial as well 
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as non-polynomial), obtaining a close approximation of the boundary's exact value becomes, 

achieved with a geometry resembling the exact one. Since the inverse problems are inherently 

unstable, an alternative approach is to introduce noise into the Cauchy data, that way 

verifying the stability of the solution.  
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