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Abstract

In this article a fourth order differential boundary value problem is solved using a mesh less
collocation method. The efficiency of the proposed methods is illustrated by solving problems
with some examples of a polynomial and Non polynomial exact solutions and by using
Conjugate gradient method and Conjugate gradient Least square algorithms and the numerical
stability is verified by using a noise for the input boundary data.
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Introduction

The fourth order differential equation has many applications in physics (in the fields of fluid
and solid mechanics), mathematics, engineering mathematics and computing sciences. In the
last decades several iterative and non-iterative methods have been developed where the
Dirichlet and or Dirichlet and Neumann conditions are satisfied on the boundary. Some authors
have treated the fourth order problem directly and solved the problems in its original form,
other authors are preferred to split the problem in two problems of second order, i.e. a couple
of problems with Laplace equation, this permit them to benefit from the advantage of the second
order equation and all the results lied to them. Recently, a new iterative method has been
proposed based on the transformation of the bi-harmonic equation with the Dirichlet and
Neumann boundary conditions to an optimization problem similar to an optimal control one
[1 ].Some authors proposed some numerical techniques based on finite difference method
(FDM) (see [1]. In [3] the authors proposed some numerical techniques based on finite
difference method (FDM) (see [3] by splitting the bi-harmonic problem into two decoupled
Poisson equations). Some other works based on the finite element method (FEM), or on a mixed
finite volume method (see [4] and the references cited therein). A mesh less Multi-quadric (MQ)
collocation method to solve bi-harmonic problems with discontinuous boundary conditions has
been proposed in [9]. An iterative method based on the fixed point theory to solve bi-harmonic
type equation with mixed boundary conditions see [7]. The authors in [17] have proposed a
meshless spectral element method based on the Legendre-Galerkin approximation to solve the
two-dimensional bi-harmonic equation. In [10], [11], [12], [13], [14] the authors have given

some accurate techniques to solve the inverse problems.

In this work, we propose a meshless collection method following the same method proposed
by Rashid et al. in [16]. For this we present the solution as a polynomial expansion and by
verifying the Bi-Laplacian differential equation and the boundary condition with the given
Cauchy data, we obtain a linear system, we solve this linear system by using CGM and CGLS

algorithms by applying the proposed method for some examples with polynomial and non-
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polynomial exact solutions and we verify the stability of the numerical results by applying some

noise on the given data.

The plan for the rest of this article is as follows, In section 2, the Inverse Cauchy problem bi-
harmonic equation is stated. A numerical method based on the approximation of the solution
by a polynomial expansion is proposed in section 3. The application of the proposed method on
some examples with the numerical results in section 4. The stability of the numerical method is

checked in section 5. In section 6 we give our conclusion.

Inverse Cauchy problem bi-harmonic equation
We consider the inverse Cauchy problem of bi harmonic equation defined on an annular domain

QA={r0):0<r<1, 0 < 6<2n}
Dg={(r,0) :0<7r<p, 0<p<1 0 £ 6<2m}
With the boundary I'; U T,
L={r6) :r=p,0) 0 < 6<2m}
L={(r6) :r=p; @) 0 < 6<2n}

Where 0 < p.(0) < 1and 0 < p;(6) < 1. The problem is given as follows:

A*u = F(x,y)in Q ¢))
u(p,0) = up(6),only )
dnu(p,6) = ho(6),0on Ty 3
Au(p, 8) = wy,on Ty )
d0,0u(p,0) =w'y,on T, 5)
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The Cauchy data u, d,,u, Au, d,,Au are given onI’; which is called asthe accessible part of the
boundary, this part of the boundary is over determined (in which there are four boundary
conditions), but unfortunately there is no data on I, (no boundary condition in this part) so this
part is known as under-determined or inaccessible part of the boundary. For these raison an
inverse Cauchy problem (see [7], [8]) for the bi-Laplacian is formulated to determine the

unknown function u on the interior under-determined boundary T,.

We recall that d,, is the outer normal derivative which is given by Rasheed et. al. [16].

ou(p,0) p'ou(P,6) (6)
26 02 a0

dnu(p,0) =n(6)

p(6) (7
Vp2(0) + [p'(6)]?

withn(0) =

In general cases the radiusp can be taken as a function p, 6 i.e. it is a variable, so we can

calculate its derivative.
In this paper, we take a special case in which p is a constant, so p’, 6 =0.

In fact, the normal derivatives is given by the inner product of the gradient with the normal
vector, i.e. ‘Z—;‘:V u.7,50 We can express the normal derivate in terms of the derivative with

respect to xand y.We take the polar coordinates, here the points (x, y)are the points with respect

to the p, 6.

d,u(p,8) =n(6) [cos(B) — Z—;sin(e)] 0x(Au) + n(0)[sin(6) ®

!

_ % cos(6)] dy(Au)

Expression of Solution as a polynomial expansion

We consider that the solution u(x, y) is expressed as the following polynomial expansion:

Volume: 2, Issue: 1, January 2024 401 P-1SSN: 2958-4612
Manuscript Code: 649E E-ISSN: 2959-5568



Academic Science Journal

u(x,y) =Xty Z§'=1 Cijxi_j}’j_1 (©)
Now, we express the problem in (1-5) in form of the expansion in (9). To do so, we find
0xu(x, y)=Xmy Xhog c(i—j) xt Iyt (10)
dyu(x, y)=Xity ¥ ci(j—1) xtiy/=2 (11)
From which the different degree of derivatives are calculated to find Au, 0,A, A%u .
m i
BuGx,y) = D" Y ey [ = PG =] = DXy 4 (= DG - iy ]
i=1 j=1 (12)

Then

i

0.(8) = D" N ey (1= NG —j = V(i = = 2)xi7I 3y
i=1 j=1 (13)
+( =) (= D=2 K yi

0,8 = D" ¥ eyl(i= N —j = DG — i yi?
i=1 j=1 (14)

+(G—-1DG—2)( —3)xiTy 1]

By using (8), the normal derivative of the Laplacian is given by the following:
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00 G)(xY) = ) ) cyn(@)[cos(6)

i=1 j=1

= L @) = )G j = D~ = Dy

(15)
+ (= DG = 2 = PxIyI7] + n(@)[sin(6)
~ 3 eos(@)](i = )i~ = DG ~ Dx' 2y
+(0-DG =20
—3)x Tyl ]
and
BGy) =) ) ey(i- )= j-1)(i=j-2)(i =) = 3)xiIy0=D
i=1 j=1 (16)
+2( =N —j - DG - DG - 29Ty 0
+( = DG - 2)( =) - DxPyU=
__ m(m+1)

The coefficients c;;must be determined, the number of these coefficientsc;;is= ——— . To

obtain a linear system we express c;; as a vector cof length n where the index ij is used to

i

obtain the index of the components of ¢ = [c,],x1 DYy taking ¢ = 1(2;1) + j, so the unknowns

functionu(x,y) can be expressed as an inner product of a row of variables, say v, with a

column of coefficient vector c, i.e.

u=v.c 17)
where
[€1]
[cy |
v =[Lxy,x%xy,y%,x3,], ¢= [ng
cn
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Similarly, the normal derivative d,, u can be represented as a scalar product of a row of
variables, say e, with a column of coefficient vector ¢ , i.e. u = e.c where the component

ofeare given by

ex =n(@[(i-jx""7"1y/~1 (cos(8) —pﬁzsin(e) +(j—1) xtJyi2 (sin(@)
D (18)
p
— ?cos( 9))].

Also, the Laplacian can be expressed as an inner product of a row of variables, say d, with a

column of coefficient vector ¢, i.e.Au = d. c where the component of d are given by
di = [ —NE—j—DxT2Y 1+ (G- 1[G - 2)x" 7Ty ] (19)

and the normal derivative of the Laplacian can be expressed as an inner product of a row of
variables, say o, with a column of coefficient vector c , i.e.d,,Au = . c where the component

of p are given by
e = 1(0)[cos(8) = sin(O)][( = N —j = D = j = Va7 yI7!

+( — DG — 2)( — Hxt-1yi 73]
_ (20)
+1(6)[sin(6) — ﬁcosw)](i — P —j— 1) — Dxii=2yi=?

+ (- DG -0 - DTy

Finally, the bi-Laplacian can be expressed as an inner product of a row of variables, say &, with

a column of coefficient vector ¢, i.e.A%u = &. cwhere the component ofpare given by

&G =(-1D)—j-1)(i—j-2)(i—j-3)xiT 4yt
+2(i- )= j-1)(-1)(j- 2)xtI72y3

o (21)
+(-1)G-2)(G-3)( - 4)xt Ty
Now, we are ready to construct the linear system
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Ac=b (22)
is constructed such that 4, b are matrices with 5 blocks:

1. The first one is constructed by satisfying the first boundary condition given in (2) using the
formula in (17) for some given function u, and for some selected points on I3,

2. The second block by satisfying the second boundary condition in (3) using the formula in (18)
for some given function h, and for some selected points on I3,

3. The third block by satisfying the third boundary condition in (4) using the formula in (19) for
some given function w, and for some selected points on I7,

4. The fourth block by satisfying the fourth boundary condition in (5) using the formula in (20) for
some given function w’, and for some selected points on I3,

5. The fifth block by satisfying the bi-Laplacian differential equation in (1) using the formula in

(21) for some given function F and for some selected points in the domain Q\Dpg.
For this we selectn, points on the boundary I7, say (xi, yi),i = 1, ..., n, to satisfy the condition
(2-5) and we selectn, points in the domain Q\Dg,say (xj,yj),j = 1,..,n, to satisfy the

equation (1). So the vector b is of order 4n; +n, and A is (4n, + n,) X n matrix and the

vector ¢ is of ordern = 2+
(V1] [ ue(6) ]
v7’11 uo(gnl)
e ho(61)
97,11 hO (enl)
dy wo(61)
A=| : |b= :
7’71 W?(enl) (23)
Q1 wo(61)
Q,nl W’0(9n1)
/1 0
&, ] L0
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So the inverse Cauchy problem for the bi-Laplacian equation is reduced to solve the linear

system in (23).
Solving the linear system by using CGM and CGLS algorithms

Consider the linear system given in (22), to solve this system, we use two well-known
algorithms, which are the Conjugate Gradient method (CGM) and the Conjugate Gradient least
square method (CGLS) (see [16], [2]).

Stopping criterion and Initial guess

An important thing that we need to care about to start and stop a numerical method, is that the
initial guess (we take it the zero vector with a propitiate order) and for stop these algorithms is

the following stopping criteria:

|7;]] < Tol (24)
I

Tol
T (25)

Numerical results and discussion
For illustrating the efficacy of the proposed method, we consider some examples with

polynomial and non-polynomial exact solutions. The given exact solution is used to calculate:

e the function F in the domain Q\Dg

o the trace of the exact solution is equal to ugon 'l

o the normal derivative the exact solution is equal to hyon T’y

o the Laplacian of the exact solution is equal to wy on T’y

e the normal derivative of the Laplacian is equal to w'yon 'l
in addition to these data, we use the zero initial guess and the CGM and CGLS like-methods are
used with some propitiate tolerance and stopping criteria. For the algorithms of CGM and
CGLS see [16].
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Example(1)

We consider the problem (1-5) with an exact solution is u(x,y) = x* — y * with an annular
domain bounded byp,(0) = 1,p;(6) = 0.5, the outer part of the boundary is the accessible
part I'1 is taken with p,(6) = 1 and =2, the number of points on the outer boundary is taken
to be n,=100 and the number of the internal domain points isn,=1000 . We varym from 2 to

10 for both algorithm CGM and CGLS.

u(x,y) = x* —y* whenn, =100 andn, =1000 with Tol = 1071°
M No. of Iteration for Relative Error with No. of Iteration for | Relative Error with
CGM CGM CGLS CGLS
2 - - - -
3 - - - -
4 - - - -
5 2 1.8e-12 3 2.1189e-12
6 2 9.8e-12 4 3.2864-12
7 8 6.3e-09 8 0.22957
8 11 3.6e-09 12 0.22957
9 23 1.5e-07 17 0.0094068
10 28 2.7e-08 18 0.0094068
11 45 0.00042 36 0.32837

We note that when we take m = 2,3,4, the both algorithms do not attend an accepted accuracy
of convergence. The exact solution is a polynomial of degree 4, so the ideal approximation
obtained for m = 5, i.e. we approximate a polynomial of degree 4 by a polynomial of degree
4, so when we take m = 5, the convergence is attended with 3 iterations with a relative error
2.1189e-12for CGLS and with 2 iteration with a relative errorl.8e-12for CGM which are very

ideal.

Now we take the case with n;=400 and n,=8000,Tol = 10710

u(x,y) = x* — y* whenn,;=400 and n,=8000, Tol = 10~*°
M No. of Iteration for Relative Error with No. of Iteration Relative Error with
CGM CGM for CGLS CGLS
2 - - - -
3 - - - -
4 - - - -
5 2 3.7e-12 3 4.4697e-14
6 3 2.7e-12 4 1.4576e-11
7 9 2.4e-10 10 0.22957
8 11 2.6e-09 15 0.22957
9 24 5.6e-08 17 0.0097726
10 32 9.4e-09 27 0.0097726
11 55 0.00042 42 0.033654
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Similarly to the previous case, we note that when we take m = 2,3,4, the both algorithms do
not converge. In fact, our exact solution is a polynomial of degree 4, so the ideal approximation
obtained for m = 5, i.e. we approximate a polynomial of degree 4 by a polynomial of degree
4, so when we take m = 5 the number of iteration equal to 4 and the relative error is equal
4.4697e-14 for CGLS and 3.7e-12 for CGM which are very ideal.

The following figures show the errors and the comparison of the exact solution and the

approximate solution calculated by CGM.
In the following the figure of the exact and approximate solutions by CGM and CGLS.

In the following the error by CGM.

16 Error
4 X10 . . T T T T
S Emor=U acYecam )
2 L
1 L
0 "
£ -1
w
2t
3t
_4 L
-5 r
-B N 1 L 1 | B
o 1 2 3 4 ) 6 T

e
Figure 2: Error by CGMfor n1=100 and n2=1000 with Tol=10"""
Example (2):

In this example we suppose that the exact solution is u(x,y) = x* + y *the domain is
bounded byp(6)=1 and I'1 is defined taking =2 the number of boundary collection used for
discretizing the boundary is taken to be n1=100 and n,=10 and the number of internal

collectionn, =1000 .
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Case 1:n,=100 and n,=1000 with Tol = 10710

u(x,y) = x* — y* whenn,; =100 andn, =1000 with Tol = 10~1°

M No. of Iteration for Relative Error with No. of Iteration for | Relative Error with

CGM CGM CGLS CGLS
2 - - - -
3 - - - -
4 - - - -
5 6 5.6678e-14 3 2.1189%e-12
6 11 6.4118e-13 4 3.2864-12
7 20 1.6091e-12 8 0.22957
8 27 2.4387e-12 12 0.22957
9 88 9.3526e-10 17 0.0094068
10 126 1.2239e-09 18 0.0094068

For m=5 the number of iteration =6 and the relative error is equal 5.6678e-14 for CGM

and2.1189e-12 for CGLS that is a good approximation.

0.065

0.06 +

0.055

0.05 +

0.045 -

0.04 -

exact and approximate solutions

0.035

Approximate and exact solutions in function of ¢

solution by CGM
exact solution X*+v*| |

0.03 :
0 1

2 3

(7]

Figure 3: Approximate Solution by CGM and exact solution u(x, y) = x* + y*for n,

4 5

400 and n, = 8000 with Tol = 1071°

In the following the figure of the error:

6

7
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1 =108 Error
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0 1 2 3 4 6 6 7
o

Figure 4: Error by CGM for n; = 400 and n, = 8000 with Tol = 10710
Example(3):
In this example we solve the problem (1-5) by supposing that the exact solution is
u(x,y) = exp(x) cos(y) + x*

with the same domain and boundary for the previous examples .The number of boundary on
the boundary is taken to be n; = 200 and the number of the points in the interior domain
isn, = 4000. As the previous examples we study the cases of m = 2, ..., 11,for both CGM and
CGLS algorithms, with a tolerance Tol = 1072,

u(x,y) = exp(x) cos(y) + x* when n; =200 and n,=4000 with Tol = 10712
M No. of Iteration for . . No. of Iteration for Relative Error with
CGM Relative Error with CGM CGLS CGLS
2 - - - -
3 - - - -
4 - - - -
5 13 0.026025063244862 13 0.026025063245107
6 21 0.0245600183899321 25 0.024560018387322
7 43 0.023827973140670 44 0.023827973190222
8 73 0.032073059303643 76 0.032073059309326
9 172 0.032816995091338 154 0.032816994769686
10 370 0.032398126449167 312 0.032398123460117
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In the following the figure of the exact and approximate solutions by CGM and CGLS.

Approwmate and exaot solutions In function of &

exact solution explXicos(¥i+ x4 ||
solubon by CGM H
soldion by CGLS

@

H

exact gd approxmade soltions with OGM ang OGLS
= N 2 @

=]
®

{

| A + i A }
o 1 2 3 a 5 5] 7
"

Figure 5: Exact and approximate solutions by CGM and CGLS foru(x,y) =
exp(x) cos(y) + x* when n1=200 and n2=4000 with Tol=10"12

In the following the error by CGM.

0.05

T 1
Ervorfu'_’d—uc,t’"}

004
0.03
002

001

Emrer

«0.01

-002

-0.03

004 : " ) | L i
0.04, L 4 3 i . s )

Figure 6: Error between exact solution and the calculate approximation by CGM

In the following the figure of the error CGLS.
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Figure 7: Error between exact solution and the calculate approximation by CGLS

Stability and effect of a noise

It is well-known that the inverse problem depends on the data that may have some error due to the
measurement error. So, we check the effect of any noise of the data on the calculate solution. Here, we
give the following form of the noise on the Cauchy data:

Uy (0) = up(p,0) + 0 xrand

Where rand is the Gauss random error and o is the deviation of measurement errors. o is the
noise level, it takes the values 0.001, 0.01, 0.05 and 0.1.

We test the effect of the noise for example 3.

u(x,y) = exp(x) cos(y) + x* when n; =200 and n,=4000 with Tol = 10712
o No. of lteration for Relative Error with No. of Iteration for Relative Error with
CGM CGM CGLS CGLS
0.1 58 0.048048673438369 61 0.048048673438261
0.01 61 0.023294161460917 65 0.023294161455813
0.05 60 0.029669222287058 62 0.029669222287195
0.001 57 0.023741709140837 64 0.023741709141370

In the following the figures of each case:
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Figure 9 : Noise paramétre o = 0.01
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Figure 10 : Noise paramétre ¢ = 0.05
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Approxemate and exact schtions in function of o
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solution by CGLS
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Figure 12 : Noise parameétre ¢ = 0.001

In fact, the problem in example 3 is ill-posed with Condition number about
2.355744917801085e+003. Figures present the exact and calculate approximate solutions
obtained by both CGM and CGLS on the boundary T,.These figures show that for a big value
o = 0.1 the approximate solution move away from the exact solution and the error multiplied
by 2 and by reducing the value of ountil ¢ = 0.001the approximate solution be closer to the
exact solution, the most important for all these cases the solution still stable for both CGM and
CGLS. These both approximations still good, even for a high value of noise until o = 0.1
relative random parameter,in fact our problem is highly ill-conditioned with condition
number2.355744917801085e+003.

Conclusion

We solve the inverse Cauchy problem of bi-Laplacian differential equation in an annular
domain, the unknown data on a part of the boundary are recovered

from the over-specified Cauchy boundary conditions. The inverse Cauchy problem is
reformulated to solve a direct problem benefiting from a polynomial expansion of the solution.
Different kind of numerical examples with polynomial and non-polynomial exact solution are
presented to confirm that our proposed method overcome the severe ill-posedness of the inverse
Cauchy problem. The stability of the method is checked by applying a different value of noise
on the Cauchy data.
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