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Abstract

In this paper, the Creating self-reflexive matrices for the Hill Cipher algorithm in Gaussian
integers is discussed. It's not always possible to find the inverse of the matrix that was used to
encrypt the plaintext. Therefore, the encrypted text cannot be deciphered if the matrix is not
invertible. The encryption matrix utilized in the self-reflexive matrix Creating method is self-
reflexive as well. As a result, we do not need to find the matrix’s inverse during decryption.
Additionally, this approach does away with the computational cost of determining the matrix's
inverse during decryption. We also provided an example showing the work of Hill-Cipher

using a self-reflecting matrix in Gaussian integers.
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Introduction

In this day, there is undoubtedly a necessity retain the data securely of global electronic
connectedness from hackers, viruses, electronic surveillance, and electronic hoaxes. This will
result in a high awareness of the need to safeguard systems from network-based attacks, ensure
the legitimacy of messages and information, and protect resources and information from
exposure [1]. Cellular communications, e-commerce, computer passwords, pay-TV, email
transmission, Automated teller machine (ATM) card security, money transmission, and digital
signatures are just a few of the aspects of our daily life that are impacted by cryptography, the
art of encryption.The science or art of enclosing the methods and principles for transforming a
message from plaintext into cipher text, which makes no sense, and back to plaintext again is
known as cryptography [1].

Today, cryptography is regarded as a field of both computer-science and mathematics and is
closely related to information theory, engineering, and computer security[2]. Even yet, in the
distant past, the term "cryptography" exclusively applied to the encryption and decryption of
messages .Asymmetric and symmetric cryptography are now the two main classifications
used. Asymmetric cryptography uses two separate keys, whereas in symmetric cryptography
the sender and receiver utilize the same key for encryption and decoding. Each of these
cryptosystems has benefits and drawbacks. For instance, symmetric cryptography is less
secure than asymmetric cryptography, but it consumes less computational resources. Only a
few cryptosystems, including Advanced Encryption Standard,(AES), Twofish, River-Cipher 4
(RC4), and Data Encryption Standard, are currently used widely (DES). On the other hand,
the genesis of these Classic cryptosystems is known. The foundation for Classic cryptology is

provided by conventional ciphers such the Caesar, Hill, and Vigenere ciphers.
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This paper focuses on the Hill-Cipher, which was created by mathematician Lester S.-Hill and

initially published in the American Mathematical Monthly in 1929.

The Gaussian integers Z[i] are complex number of the form a + bi with a, b € Z integers

and i = v—1. The number a is called the real part and b is the imaginary part. We add two

numbers as [3]
(a+bi)+(c+di)=(a+c)+ b+ d)i

And multiply as
(a+ bi)(c + di) = (ac — bd) + (bc + ad)i

In this study, we suggest creating self-reflexive matrices In Gaussian Integers that can be
applied to the Hill cipher technique. The goal of this study is to eliminate the drawback of
utilizing a random key matrix for Hill cipher encryption when the matrix is not message
invertible. Furthermore, the computational complexity can be decreased by skipping the step

of obtaining the matrix inverse during decryption,

The rest of the paper is structured as follows. In section 1, the Hill-Cipher algorithm is
discussed. In section 2, the Gaussian integers are explained briefly. In section 3, the modular
arithmetic in Gaussian integers are covered. In section 4, the proposed method is presented.

Finally, the conclusions is provided.

1. Hill Cipher (HC)

Lester Hill introduced the Hill Cipher in 1929 [4]. The Hill cipher, a famous cryptographic
algorithm, is based on linear algebra. The plaintext is organized as a matrix of blocks. The Hill
Cipher employs matrix multiplication and matrix inverse techniques. Hill Cipher encryption
keys are square matrices, where n is the block size [5]. These matrices should be invertible
because their inverses are the decryption keys [6]. A square matrix is only invertible if its
determinant is not equal to zero [6].
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In the conventional Hill cipher, Formula 1 and Formula 2 conduct the encryption and

decryption processes, respectively.

C =K-P (mod 26) 1)
P=K1:C (mod 26)) 2)
where P = the plaintext,
C = the ciphertext,
K = the encryption key,
K ~1 = the decryption key.

2. THE GAUSSIAN INTEGERS

The Gaussian integers are an interesting topic in number Theory. In this section, we give basic

definitions and theorems of the Gaussian integers, see [7, 8].
Definition 2.1: (The Gaussian Integers) The Gaussian integers are given as
Z[i] = {x + yi:x,y € Z,i = -1}
Definition 2.2: (The Conjugate) Let @« = x + yi be a Gaussian integer, then the conjugate of
ais
a=x—yi.

Note 2.1: Z[i] is a commutative ring of the field of the complex numbers under the usual

addition and multiplication.

Definition 2.3: (The Norm) Let @ = x + yi be a Gaussian integer, then the norm of « is given

as

N(a) = aa = (x + yi)(x — yi) = x? + y2.
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Proposition 2.1:
1. Ifa,pB € Z[i], then N(af) = N(a)N(B)
2. IfyeqQ,thenN(y) = y2

Theorem 2.1: (Division Theorem): Let a, B € Z[i], where B # 0, then there are q,r € Z[i],
suchthat,a = bq + r and N(r) < N(f).

Theorem 2.2: (Euclidian Algorithm): Let a, B € Z[i] be two Gaussian integers, then by the

division theorem, we have
a=fy;+p1, N(p) <N(@B)
B=piv2+p2  N(py) <N(py)

pP1 = P2y3 + pP3, N(p3) < N(p3)

Pr-2 = Pr-1Yk T+ Pr N(px ) < N(pg-1)
P k-1 = PrVk+1:
The last non-zero remainder py is the greatest common divisor of a and 3, and it is denoted by
gcd(a, B).

3. Modular Arithmetic In Gaussian Integers

The mathematical operations that are discussed in this article are addition, subtraction, unary
operation, multiplication, and division[9] .This is the basis for creating the self-reflexive matrix

for the Hill cipher method. Several characteristics of the congruence modulo operator include:

1. azﬁ(mod,u)ifﬂ(a—ﬁ)

2. (amodyu)=p (modu) = a=pmodpu

3. fa=p (modu)and B =y (modu) = and a =y (mod p)
4. Ifa=p (modu) = B = a (mod p)
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Let Z[i];, = [0, 1, u — a] the set of residues modulo p if modular arithmetic is performed
within set Z[i]}, the following equation present the arithmetic operations:
Addition:
(a + B)mod u = [(@ mod u) + (B mod p)] mod u
Negation:
—amod u = p— (amod u)
Subtraction:
(a — p) mod pu = [(a mod p) — (B mod w)] mod
Multiplication:
(a = B) mod u = [(a mod p) = (8 mod )] mod u
Division:
(“/ﬁ) mod u =y whena = (B xy) mod u

The following, exhibits the properties of modular in Gaussian integers.

Commutative law:

(a+B)modu=(+a)ymodu

(a * B) mod p = (B * a) mod

Associative

Law:
[(@+ B) +y]mod = [a+ (B +y)]modu

Distribution Law:
[a + (B + )] mod u = [((a * f) mod )  ((a *y) mod p)] mod p
Identities:

(0 + a) mod u = a mod
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(1*a)mod u = amod u

Inverses:

For each a € Z[i];, 3 f such that

(a+pB)modu=0thenp = —a

For each a € Z[i];, 3 f such that

(a*pB)mod u = 1.

4. Proposed Methods: (Creating self-reflexive matrices In Gaussian Integers)

Since the inverse of the matrix is necessary for Hill cipher decryption, it presents a challenge
because it is not always present [8]. The matrix must be invertible in order for the encrypted
text to be decoded. We suggest using a self-reflexive matrix generating method when using the
Hill Cipher to encrypt data in order to solve this issue. The encryption matrix in the self-
reflexive matrix creation method is invertible in and of itself .As a result, we don't need to find
the matrix's inverse during decryption. Additionally, by using this approach, the
computationally challenging task of determining the matrix's inverse during decryption is

eliminated.

A self-reflexive matrix is a matrix whose inverse is its original value and is given by
B=B"1

Where B is Matrix of size n X n.

In the proposed method, the Creating self-reflexive matrices in Gaussian Integers, where
the components of the used matrices are Gaussian integers. That is, Z[i] is used in the proposed
method instead of Z. By considering the finite field of Gaussian integers, Table 1 shows the
corresponding Gaussian integers to the letters modulo 1+5i.
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Table 1: the letters and their corresponding values of Gaussian integers.

The letter The Integer The corresponding | e | erter | The Integer The corresponding
Gaussian integers Gaussian integers
A 1 1 N 14 14
B 2 1+ (0] 15 15
C 3 3 P 16 4i
D 4 2i Q 17 1+4+4i
E 5 14 2i R 18 3+ 3i
F 6 6 S 19 19
G 7 7 T 20 2+ 4i
H 8 2+ 2i U 21 21
| 9 3i \Y/ 22 22
J 10 1+ 3i W 23 23
K 11 11 X 24 24
L 12 12 Y 25 5i
M 13 2+3i Z 26 1+5io0r0

4.1 Creating self-reflexive matrix( 2 x 2) on Gaussian Integers

This segment generalizes the generation of self-reflexive 2x2 matrix over Gaussian integers

2[il.
Let

1 bzz —b12]

B = [bll ] consequently B~ =—-| Pt
21 11

b21 b22

where Ab is the determinant of matrix (B). Hence, B is said to be self-reflexive if B~ = B So,

1. b12 = _Ab;Z and, b21 = _le = Ab=-1

2. b11 = _bzz = b11 + b22 =0

Example: (For modulo 2 + 3i)

_[12i 11 o L 11
B = [ : ]then Ab=-land B~ =— [_l Iy ]
By Euclid’s algorithm we get B~ = [ 14! 13‘],
So,B=B"1
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4.2 Creating self-reflexive matrix ( 3 x 3) on Gaussian Integers

In this subsection, we broaden the definition of what it means to produce a self-reflexive 3x3

matrix on a Gaussian integer z[i].Let

bua|biz bi [B11| B12
B = 1byy| by, bos| = B_21 B_22]1
b31| b3z bzz
Where By; = [by1], Biz = [b12 bi3], B —[b“- and B,, = bz, b23] If B is self
11 = b1l Bz = 1012 izl By =", 22 = |p baa |’ -
31 32 D33

reflexive then,
Bfi + Bi2By; =1,
B11B12 + B12B;; = 0,
B31B11 + BypBy1 = 0,
and
By1B1; + By, =I

Since B;; = [by1], and B,,(by1I + B,3) = 0, It is necessary for a non-trivial solution that,
(blll + Bzz) = 0

So

By1By, =1 — By,7, .. (3)
A non-trivial solution to equation (3) will also meet this condition B;;B,; = 1 — by,?
Algorithm:

1. Select any arbitrary, 2 X 2 matrix B,,.

2. We obtain, B;; = b;; = — (one of the Eigen values of B,,)
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3. Take B1By; = b1 8] [b(l)z b(l)s] by1b1z  ba1bys

= and B,,B,, = I — B,,>
b3, b31by; b31b13] 21712 22

b
4. Weget By, = [b1z  bi3], By = [bii].

5. Form the matrix completely.

Example: ( For modulo 2+3i)
Consider B,, = [:i ZLL] which has Eigen value A = ¥1,and b;; = —(—1) =1or—-1 =12

If b;; = 1, implies

R i | E R P
b,1b;, = 0. So b,; =0, and by, = 0,

b21b13 = O SO b13 == O a.nd b31 = 0,

1 0 0
So the matrixwillbe B = |0 —i 2i|. Other matrix can also be obtained if we take b;; = 12.
0 —i i

4.3 Creating self-reflexive matrix (4 x 4) on Gaussian Integers.

Here we extend the notion of what it means to generate a 4x4 self-reflexive matrix on

a Gaussian integers z[i] to a more general context. Let

[bn b1, bi3 b14]
|b21 b, b3 b24|

B =
[bgl by, | bas b“J

b4—1 b42 b43 b4—4—
. . . Bll BlZ
be self-reflexive matrix partitionedas B = | ——
B21 BZZ
Volume: 2, Issue: 1, January 2024 117 P-ISSN: 2958-4612

Manuscript Code: 701B E-ISSN: 2959-5568



Academic Science Journal

bll blZ] B.., = b13 b14] B,. = b31 b32] B.,., = b33 b34]
by bapl” T byy baal” T2 bar bl bz bapl’

Where B;; =
Then B;,B,1 =1 — Bf; = Bi3By1 = (I — By1)(I + Byy)

By1Biy + B13Bsy = 0,B1B11 + BBy =0, and ByyBip =1 — By,”
In order to obtain, solution for all the four matrix equations B;,B,; can be factorized as
Then By1By; + B12B5; = By1(I — By1)k + (I — By1)kBy; or k(B + Bz) (I — By1)
So0B;; +B,, =00rBy; =1,
Since, By; = I isa trivial solution then, B;; + B,, = 0 is taken.
The same solution is found when the third and fourth matrix equations are solved.

Algorithm:

1. Select any arbitrary, 2 X 2 matrix B,,.

2. We obtain, By; = —By,

3. Let, By, = (I — By1)k or (I + By,)k for k a scalar constant
4

5

' Then, 321 = (1 + Bll)% or (I - Bll)%)

Form the matrix completely.

Example: ( For Modulo 2 + 3i)

! 3 10
Take By, = [2 +2i ] then, B;; = [ 5 _ 21 e
If kisselectedas 1, B;, =1 — By4,, then
_ 10
[2+21 1+2 | and By = [—2—2i 1—2i]’
We have
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12 10 2 3
B = —2—12i —2i 2+2i 1+2i
0 10 1 3

—2-2i 1-2i 2+2i 20

44 A general method of creating an even self-reflexive matrix on Gaussian

Integers.
[ bir b1z . o bin ]
| by, by, o by, | . . .
Let B = | = | be an n X n self-reflexive matrix partitioned to
|- bnl bnz bnn
Bll B12 . - n n
= |—|—=|, where n is even and B4, By,, B,; and B,, are matrices of order — x —
BZI BZZ 2 2
each.
So,

B13By1 =1 — B121 = (I — By + Byy),
If B, is one of the factors of I — B2, then, B,, is the other.
Solving the 2™¢ matrix equation results B;; + B,, = 0, Then form the matrix.
Algorithm:

1. Select any arbitrary, =~ X —- matrix B;,.
We get, Bll = _Bzz_
Let, B;, = (I — Byy)k or (I + By1)k for k a scalar constant

Then, BZl = (I + Bll)% or (I - Bll)%l

o ~ N

Form the matrix completely.
Example: ( For modulo 2 + 3i)

Consider the following matrix

Volume: 2, Issue: 1, January 2024 119 P-ISSN: 2958-4612
Manuscript Code: 701B E-ISSN: 2959-5568



Academic Science Journal

Bzz=[1-§3i 12-I;i]’

then,

By, = [—11—0 3i —Ez—l i]

Take By, = k(I — B;;), with k = 2, then

B =17 5Tl

by Euclid’s algorithm we get

[0 242 _ 112
Blz - 6 2+4l]’and BZI _(I+B11)k - [5 12:|$
Therefore
—-1-3i —-1-i 0 24 2i
s_| 10 —2i 6  2+4i
1 2 1+ 3i 1+
5 12 3 2i

5. Application of Hill-Cipher by self-reflecting matrices in Gaussian integers

The following example shows the work Hill-Cipher on a self-reflecting matrix 2x2 in

Gaussian integers.
Encryption:

1 1 ]

Choose Plaintext : AYAT: [ ) .
50 24+ 4i

key = [1i2i 1;,”] Is self-reflecting matrices, then
C =K:-P (mod 2+ 3i)

=01 [511 2 -:41'] (mod 2+ 30)
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_[-554+12i —44+ 34i .
_[ e _4+3i](m0d2+31)
by Euclid’s algorithm we get

CE[zzi :i:]

Decryption;
P=K™1:-C (mod?2+3i)

= [1?" 1;,“] [221 -1+ i] (mod 2 + 3i)

-1+

_[—22+24i —-23—23i

=750 T 5 mod2+30)

by Euclid’s algorithm we get

PE[Sli 2i4i]=[¢ ?

Conclusions

In order to create self-reflexive matrices for the Hill-Cipher algorithm in Gaussian integers.
This study presents effective methods. As it is known that the Hill Cipher decoding process
does not require matrix reversal, these methods are less computationally complicated. In
addition, these proposed methods for creating self-reflexive matrices can be applied to other
algorithms that call for matrix inversion. Also, Gaussian integers are used to change the number
of the plaintext to a different number. So, in the proposed method, the time it takes to attack
needs to be doubled compared to the time it takes to attack in the classic Hill-Cipher. Because
of this, the new method is more reliable and stronger than the old one . Finally, We provided
an example showing the working of Hill-Cipher using an self-reflecting matrix in Gaussian

integers.
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