

214

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

Autonomous Agent Learning for Navigation in Continuous Environments:

A Deep Reinforcement Learning Approach

Ina’am Rabah Mohammed*1 , Maha Adham Al-Bayati2 and Farah qais Al khalidi2

1Al-Sharia Department , College of Islamic Sciences, Diyala University, Diyala, Iraq

2Computer Science Department, College of science, Al-Mustansiriya University, Baghdad, Iraq.

m.anaamrabah@uodiyala.edu.iq

This article is open-access under the CC BY 4.0 license)http://creativecommons.org/licenses/by/4.0(

Received: 12 March 2024 Accepted: 1 May 2024

 Published: July 2025

DOI: https://dx.doi.org/10.24237/ASJ.03.03.870A

Abstract

Recently, there has been an increasing interest in applying techniques of machine learning to

autonomous agent learning. The autonomous ability of agents to detect and adapt to their

environment enhances their adaptability and efficacy in completing numerous activities. A

learning framework known as Reinforcement learning (RL) learns an agent how to act in a way

that maximizes the value of a reward signal. Within the domain of agentcis, agents are trained

to perform various tasks through trial and error, by employing reinforcement learning. In this

paper, we utilizing one of the reinforcement learning algorithms, the Deep Q-learning Network

(DQN). In DQN, used for autonomous agent learning, the agent can learn and determine the

optimum policy that will guide it to its destination from its interactions with the environment.

The agent's decision-making ability allows it to modify its policy as a response to observable

circumstances. Experiments performed in a simulated continuous environment revealed results

that presented the ability of an agent to react in response to changing conditions and

demonstrated that the agent was effectively adapting its behavior in accordance with the learned

policy.

Keywords: Reinforcement learning, Simulated environment, DQN, Autonomous Learning.

http://creativecommons.org/licenses/by/4.0
https://orcid.org/0009-0005-6896-1654
https://orcid.org/0000-0003-0975-432X
https://orcid.org/0000-0002-8604-2484

215

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

Introduction

The capability of an agent to learn how to navigate and intelligently avoid obstacles represents

an essential component of an agent's intelligence. This capability influenced agent movements'

efficiency, obstacle information processing, and obstacle avoidance strategies [1]. Traditionally,

autonomous agents were designed for model-based environments with clearly defined locations.

However, independent agents have to operate in unexpected and unfamiliar situations. One of

the most significant features of an agent is the ability to navigate around such environments

while avoiding obstacles [2].

One of the critical components of the navigation process is self-navigating autonomous agents.

Allowing autonomous agents to learn how to adapt to unexpected and dynamic environments

and avoid obstacles in their environment may exhibit intelligent navigation, human-like

behaviors, and real-time obstacle avoidance; this guarantees that autonomous agents can

securely and successfully operate in challenging real-world systems, such as delivery,

transportation, search and rescue, and inspection [3]. The most well-known RL algorithm which

was introduced in 1989, is Q-learning [4]. For autonomous agent navigation and obstacle

avoidance [5, 6], Q-learning has been applied very successfully by several researchers. The

ability of Q-learning to solve path-planning problems for autonomous agents in 3D settings has

also been evaluated [7].

Additionally, a number of writers have suggested hybrid techniques that combine fuzzy logic

[8, 9] and artificial neural networks [10, 11] with reinforcement learning.

Gao et al. (2020) proposed a reinforcement learning based- agent route planning method. The

algorithm first discretizes the information about the direction of target points obtained by

LiDAR and the information about obstacles surrounding the autonomous agent into finite states.

In this method, the authors designed a continuous reward function and a reasonable number of

environment models and state spaces to ensure that the agent's actions are correctly rewarded

which increases the training efficiency of the algorithm. The training of an agent carried out in

a Gazebo simulation environment, and the effectiveness of the algorithm is confirmed by the

training results. Zhang et al. (2020) used the artificial potential field method in combination

with reinforcement learning to guide the autonomous agent to complete the path planning task.

216

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

This strategy aims to assign a potential value to each point in the agent's path inside the

environment. The target point attracts and rewards the agent, while the obstacle repels and

penalizes the agent. The main drawback of this method is that it requires a significant amount

of a priori knowledge, but it also tends to fall into the problem of local optimality.

Learning-based approaches, which provide considerable promise, try to solve issues with

autonomous agent navigation by learning from data. Drivable routes [14], obstacle detectors

[15], end-to-end driving from demos [16], [17], and other skills may be learned via supervised

learning approaches. On the other hand, the quantity of human-labeled data naturally restricts

these techniques, as the capabilities and performance of deep neural networks are typically

heavily restricted by the available data. Due to the growing popularity of high-performance

computers, reinforcement learning—which learns autonomously via trial and error—achieves

remarkable success in a range of activities.

The contribution of this paper presents a deep reinforcement learning system to address the

problem of autonomous navigation. By leveraging DQN, autonomous agents can learn

navigation policies, make decisions based on sensory inputs, avoid obstacles, follow paths, and

reach target locations. The combination of deep neural networks, experience replay, and

reinforcement learning techniques in DQN has proven to be effective for autonomous

navigation in a wide range of applications, including autonomous vehicles, drones, and mobile

robots.

The rest of this paper is arranged as follows: Section 2 presents the algorithm of reinforcement

learning used in this paper; Section 3 presents the methodology of the proposed method section

4 highlights the experimental results and discussions. Section 5 is the conclusion.

Reinforcement Learning

Reinforcement Learning (RL) is a powerful learning approach that allows an agent to learn

optimal actions by interacting with an environment and receiving feedback in the form of

rewards. Deep Q-learning Network (DQN), one of the reinforcement learning methods has

shown great success in solving complex tasks, including navigation.

The DQN algorithm approximates the Q-values, which represent the expected cumulative

rewards for performing specific actions in different states by utilizing the deep neural network.

217

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

DQN can handle high-dimensional state spaces, such as raw sensor inputs like images or point

clouds, and learn complex representations directly from the data [18].

One of reinforcement learning's main advantages. Reinforcement learning tackles the larger

issue of goal-directed agent-environment interaction, in contrast to some other machine learning

techniques that concentrate on discrete sub-problems or particular tasks. It takes into account

the full process of an agent learning to make choices with specific objectives in an unpredictable

environment. For example, supervised learning concentrates on learning from labeled instances

without making it clear how the information acquired would be helpful in reaching a certain

objective [19]. In contrast, reinforcement learning highlights the ability of an agent to sense its

state, interact with it, and choose behaviors that influence it in order to achieve its goals [20].

Furthermore, some planning techniques take long-term objectives and plan creation into

account, although frequently without regard to immediate decision-making. They might not

cover the process of acquiring or updating the predictive models required for planning. On the

other hand, reinforcement learning combines planning with real-time decision-making By

learning the agent to interact with the environment and progressively enhance its decision-

making abilities. While those methods have produced a lot of helpful outcomes, a major

drawback is that they only address specific sub-problems [21].

This comprehensive approach to reinforcement learning enables agents or any autonomous

system to learn and develop strategies for solving complex problems in dynamic and uncertain

environments. It makes it possible to integrate observation, action, and decision-making into a

coherent framework, which promotes more intelligent and goal-directed behavior [2].

A. Markov decision process

The Markov decision process is a mathematical model of the problem of learning from

interaction to achieve an objective. It is the agent who learns and makes decisions. As a result

of the agent's actions, the environment responds and shows the agent new situations. Rewards

are also produced by the environment and are unique numeric values that the agent aims to

optimize progressively by making decisions about what to do [2]. Figure 1 shows a Markov

decision process model of the interaction of an agent with an environment.

218

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

Figure 1: The Interaction of Agent–Environment in a Markov Decision Process Model [2].

B. Q- learning algorithm

A model-free reinforcement learning method for managing Markov Decision Processes (MDPs)

is known as Q-learning. An agent is trained using this type of Temporal Difference (TD)

learning approach to determine the optimal policy of action for maximizing cumulative rewards

in a particular environment.

The expected cumulative rewards that an agent can obtain by carrying out a certain action in a

particular state and then following the optimal policy of actions are known as the optimum

action-value function Q(s, a), or Q-function, where s denotes the state and a the action [22].

The state-action space is first discovered by the agent through its initial exploration of the

environment conducted at random. As training progresses, it exploits the learned Q-values to

select actions with higher rewards. The update rule for the Q-value of the current state-action

pair is as follows:

Q(s, a) = Q(s, a) + α * (r + γ * max[Q(s', a')] - Q(s, a)) (1)

where Q(s, a) is the Q-value of state s and action a, α is the learning rate (step size), r is the

immediate reward, γ is the discount factor (determines the importance of future rewards), s' is

the next state, and max[Q(s', a')] is the maximum Q-value of the next state [23]. The agent can

utilize the learned Q-values to determine actions indiscriminately when the Q-values have

219

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

converged or the training is finished. The optimum policy that maximizes predicted cumulative

rewards is obtained by selecting the action with the highest Q-value for each state.

While Q-learning is a popular and effective reinforcement learning algorithm, it also has some

limitations and disadvantages.

1. Exploration-Exploitation Tradeoff: Q-learning requires a balance between exploitation

and exploration. Initially, for the purpose of choosing the best action, the agent

explores its surroundings, yet too much exploration might impede convergence and

render learning ineffective. Conversely, premature exploitation resulting from

inadequate information may result in inadequate policy. It might be difficult to decide

on the best exploration technique, particularly in complicated areas.

2. Curse of Dimensionality: Q-learning struggles when state and action spaces are high-

dimensional. Since the dimensionality of the issue increases exponentially with the

number of state-action pairs, it is not computationally viable to store and update Q-

values for every potential combination. This limitation, also referred to as the "curse of

dimensionality," restricts Q-learning's use to situations with small or controllable state-

action spaces [24].

3. Lack of Generalization: Q-learning usually learns Q-values for certain pairs of states

and actions. It could be difficult to extrapolate from training to previously unforeseen

situations or behaviors. This inability to generalize might make it more difficult for the

agent to perform well in unfamiliar circumstances or apply what it has learned to

similar activities [25].

These drawbacks draw attention to a few of Q-learning's shortcomings and difficulties. It is

important to consider that there are Q-learning extensions and variants, including Double Q-

learning and Deep Q-Networks (DQN), that solve some of these drawbacks and enhance the

algorithm's performance in intricate and high-dimensional situations [26].

C. Deep Q - learning networks (DQN) algorithm

Due to the exponential growth of Q-table's size with the increase in the number of states and

actions, one of the primary disadvantages of Q-learning is that it becomes impractical when

dealing with enormous state spaces. Deep learning, an important machine learning discipline,

220

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

was established. Deep learning employs multilayer neural networks to automatically learn the

image and extract its detailed features, in contrast to classical machine learning [27]. Combining

Q-learning with deep neural networks is an alternate strategy to address this problem. It was

introduced by DeepMind in 2015 and has achieved significant success in solving complex

reinforcement learning problems [28].

The fundamental concept of DQN is to approximate the action-value function (Q-function) by

utilizing a deep neural network, also known as the Q-network. Traditional techniques with high-

dimensional and continuous state spaces, and Q-learning struggle; DQN, in contrast, handles

these types of situations. The neural network receives the state as an input and outputs the Q-

values for all possible actions. The following Figure 2 illustrates the difference between Q-

learning and deep Q-network in evaluating the Q-value [29]:

Figure 2: The difference between Q-learning and deep Q-Network [29]

The DQN algorithm introduced several key components to make Deep Q-Learning more stable

and efficient, including experience replay and a separate target network.

1. Experience Replay: Developed by DQN, this technique includes randomly sampling mini-

batches of experiences during training and storing the agent's experiences in a replay memory

buffer to provide more robust learning [29].

2. Target Network: DQN employs not only the Q-network but also an additional target network.

While the Q-network is used to choose actions, the target network, which is a replica of the Q-

221

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

network, is used to calculate the target Q-values during training. The learning process is

stabilized by regularly updating the target network parameters to match the Q-network

characteristics. Effective learning requires striking a balance between exploitation—taking the

most well-known action—and exploration—trying new actions [28].

Convolutional neural networks (CNNs), often referred to as deep neural networks with

convolutional layers [30], are commonly used in DQN as the Q-network [31].

Material and Methods

This section describes the methodology of the proposed method which can be applied in agents,

drones or any application in navigation system. The proposed method was tested in a dynamic

simulated environment, Figure 3 demonstrates the implementation of our proposed model for

autonomous agent learning.

Figure 3: The diagram illustrating the Structure of the Proposed Model

222

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

Results and Discussion

1. Simulation environment

We use the CartPole environment from OpenAI. The actions are 0 to push the cart to the left

and 1 to push the cart to the right. The continuous state space is an X coordinate for location,

the velocity of the cart, the angle of the pole, and the velocity at the tip of the pole. The score,

also called averaged reward, is what we give to the agent to know if its action is good or not.

Based on that, the agent will try to optimize and pick the right action. A reward of +10 is granted

to the agent at each step while the pole is kept upright. The maximum reward an agent can earn

in a single episode is 250. Episode (iteration) ends when episode length exceeds 200 steps.

The states, actions, rewards, and further observations that are gathered throughout the agent's

interaction with the environment are what make up the training data in the simulated

environment.

2. Training

The DQN algorithm is used as mentioned in section 2. The learning rate α is set to 0.001. A

discount factor γ of 0.95 is chosen. The experience replay's batch size was fixed at 24. The agent

engages with the environment to gather these state-action-reward-next state transitions during

training, then stores them in a replay memory buffer. During the training phase, random

transitions are then sampled from this replay memory, which serves to reduce the correlation

between successive samples and increase the stability of learning. The training data is used to

estimate the Q-values, or predicted rewards, for each state-action combination so that the DQN

agent, or any other reinforcement learning agent, may learn from it. The agent updates its Q-

values and minimizes Q-loss between the target Q- values and predicted Q-values using mean

square error. The mean square error (MSE) equation is commonly used in the training process

of the DQN algorithm to update the Q-values. The equation measures the discrepancy between

the predicted Q-values and the target Q-values, guiding the agent's learning. It is given by:

MSE =
1

N
 ∑(Q_target(s, a) − Q_predicted(s, a))2 (2)

Where N is the batch size (the number of transitions sampled from the replay memory), Q_target

(s, a) represents the target Q-value for a given state-action pair (s, a) and Q_predicted (s, a)

represents predicted Q-value for the same state-action pair.

223

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

The Q-target value is calculated using the Bellman equation and serves as the desired value for

the agent to learn. It is defined as:

Q_target(s, a) = R(s, a) + γ * max Q(s', a') (3)

where:

R(s, a) is the immediate reward obtained when taking action in state s, γ is the discount factor

that determines the trade-off between immediate and future rewards, max Q(s', a') represents the

maximum predicted Q-value for the next states' over all possible actions a'. The Q-predicted

value is the agent's estimate of the Q-value for a given state-action pair, obtained from the neural

network approximation. The neural network takes the state as input and produces Q-values for

each possible action. By minimizing the mean square error, the agent adjusts the weights of the

neural network to bring the predicted Q-values closer to the target Q-values, thereby improving

its performance over time. Table 1 presents the training process for the 200 episodes.

Table 1: The Training Process of DQN for 200 Episodes.

episodes score Q- loss

1/200 23.0 0.9137245

2/200 9.0 0.877809

3/200 10.0 0.839088

4/200 23.0 0.751476

5/200 22.0 0.676394

6/200 19.0 0.618038

7/200 29.0 0.5371084

8/200 13.0 0.5057535

8/200 10.0 0.4834445

9/200 13.0 0.455222

10/200 9.0 0.437329

11/200 9.0 0.4201389

12/200 16.0 0.3897078

13/200 14.0 0.3651230

14/200 10.0 0.3490173

15/200 9.0 0.335298

16/200 12.0 0.317311

17/200 10.0 0.3033145

18/200 11.0 0.288485

19/200 14.0 0.2702863

20/200 12.0 0.255786

21/200 10.0 0.244503

22/200 9.0 0.234893

23/200 10.0 0.212486

224

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

24/200 8.0 0.2051603

25/200 9.0 0.1970961

26/200 14.0 0.18466228

27/200 10.0 0.1765167

28/200 12.0 0.15509201

29/200 14.0 0.1466356

30/200 11.0 0.139466

31/200 11.0 0.1326482

32/200 10.0 0.126797

33/200 9.0 0.121204

34/200 10.0 0.1164392

35/200 10.0 0.1113034

36/200 11.0 0.1058624

37/200 8.0 0.1022119

38/200 11.0 0.0972148

39/200 9.0 0.0933936

40/200 11.0 0.0897223

41/200 9.0 0.0861958

42/200 10.0 0.0823937

43/200 10.0 0.0787593

44/200 10.0 0.0752852

45/200 9.0 0.07232597

46/200 27.0 0.06348844

47/200 17.0 0.05859542

48/200 10.0 0.05601075

49/200 23.0 0.05016253

50/200 31.0 0.04315921

. . .

. . .

. . .

. . .

299/200 210.0 0.0009945703

Discussions

The results from Table 1 which are presented in Figure 4, show that the decrease in the Q-loss

indicates that the agent's Q-values are becoming more aligned with the optimal Q-values, which

implies that the agent's policy is improving. As the agent continues to update the Q-network,

the predicted Q-values become more accurate approximations of the target Q-values. The Q-

loss decreases because the Q-network is learning to better estimate the expected cumulative

rewards for each state-action pair.

225

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

Figure 4: Q-loss per episode during training for 200 episodes

In supervised learning, the performance of a model can be easily tracked during training by

evaluating it on the training and validation sets. However, in reinforcement learning, precisely

evaluating the progress of an agent during training can be difficult. As suggested by [29], our

evaluation metric is the total averaged reward the agent collects in an episode over a number of

episodes. The metric of averaged reward tends to be very noisy because small changes in the

weights of a policy can lead to large changes in the distribution of states.

Figure 5: Averaged reward per episode with Q- learning and DQN algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Q
-
Lo
ss

episodes

226

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

Figure 5 depicts the averaged reward, which can reflect the stability of the DQN algorithm in

each iteration. The averaged reward of DQN increases stably while that of Q- learning algorithm

varies significantly. The results show that DQN achieves a better balance between exploration

and exploitation; this exploration helps the agent discover more rewarding actions and update

the Q-network accordingly, leading to a decrease in the Q-loss.

Conclusion

DQN-based autonomous agent learning for navigation in uncertain environments provides a

promising approach to train agents to navigate and make decisions adaptively. By combining

deep neural networks and Q-learning, agents can learn effective navigation strategies directly

from sensor data, leading to more capable and intelligent robotics systems in uncertain and

dynamic scenarios. By leveraging DQN-based autonomous agent learning, we can develop

intelligent and adaptive robotic systems capable of navigating through uncertain environments

with improved efficiency and safety. These systems have the potential to revolutionize various

domains, including autonomous vehicles, robotics assistants, and exploration agents.

Source of funding: None

Conflict of interest: None

Ethical clearance: None

References

[1] T. Ribeiro, F. Gonçalves, I. Garcia, G. Lopes, A. F. Ribeiro, Q-learning for autonomous

autonomous Mobile robot obstacle avoidance, In: 2019 IEEE International Conference

on Autonomous Robot Systems and Competitions (ICARSC), IEEE, 1-7(2019),

DOI(https://doi.org/10.1109/ICARSC.2019.8733621)

[2] R. S. Sutton, and A. G. Barto, Reinforcement learning: An introduction, (MIT press,

201), DOI(https://doi.org/10.1017/S0263574799271172)

[3] F. Gul, W. Rahiman, S. S. N. Alhady, A comprehensive study for agent navigation

techniques, Cogent Engineering, 6(1), 1-25(2019),

DOI(http://dx.doi.org/10.1080/23311916.2019.1632046)

https://doi.org/10.1109/ICARSC.2019.8733621
https://doi.org/10.1017/S0263574799271172
http://dx.doi.org/10.1080/23311916.2019.1632046

227

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

[4] W. Wang, Z. Wu, H. Luo, and B. Zhang, Path planning method of autonomous robot

using improved deep reinforcement learning, Journal of Electrical and Computer

Engineering, 2022, 1-7(2022), DOI(https://doi.org/10.1155/2022/5433988)

[5] W. D. Smart, L. P. Kaelbling, Practical reinforcement learning in continuous spaces, In:

Proceedings of the seventeenth international conference on machine learning, 903-

910(2000)

[6] W. D. Smart, L. P. Kaelbling, Effective reinforcement learning for autonomous robots,

In: Proceedings 2002 IEEE International Conference on Robotics and Automation, 4,

3404-3410(2002), DOI(https://doi.org/10.1109/ROBOT.2002.1014237)

[7] Z. Liu, Q. Wang, and B. Yang, Reinforcement Learning-Based Path Planning

Algorithm for Autonomous Robots, Wireless Communications and Autonomous

Computing, 2022, (2022), DOI(https://doi.org/10.1155/2022/1859020)

[8] H. Boem, and H. Cho, A sensor-based navigation for an autonomous agent using fuzzy

logic and reinforcement learning, IEEE Transaction on System, Man, and Cybernetics,

25, 464-477(1995)

[9] N. Yung, and C. Ye, Self-learning fuzzy navigation of autonomous vehicle, In:

Proceedings of Third International Conference on Signal Processing, 2, 1465-

1468(1996), DOI(https://doi.org/10.1109/ICSIGP.1996.571139)

[10] G. Yang, E. Chen, and C. An, Autonomous agent navigation using neural Q learning,

In: IEEE proceedings of the third international conference on machine learning and

cybernetics, (2004), DOI(https://doi.org/10.1109/ICMLC.2004.1380601)

[11] K. Macek, I. Petrovic, and N. Peric, A reinforcement learning approach to obstacle

avoidance of autonomous agents, In: 7th international workshop on advanced motion

control, (2002), DOI(https://doi.org/10.1109/AMC.2002.1026964)

[12] J. Gao, W. Ye, J. Guo, Z. Li, Deep reinforcement learning for indoor autonomous robot

path planning, Sensors, 20(19), 5493(2020), DOI(https://doi.org/10.3390/s20195493)

[13] Z. H. Zhengwan, Z. H. Chunjiong, L. I. Hongbing, and X. I. Tao, Multipath transmission

selection algorithm based on immune connectivity model, Journal of Computer

Applications, 40(12), 3571(2020), DOI(https://doi.org/10.4236/jcc.2024.127007)

https://doi.org/10.1155/2022/5433988
https://doi.org/10.1109/ROBOT.2002.1014237
https://doi.org/10.1155/2022/1859020
https://doi.org/10.1109/ICSIGP.1996.571139
https://doi.org/10.1109/ICMLC.2004.1380601
https://doi.org/10.1109/AMC.2002.1026964
https://doi.org/10.3390/s20195493
https://doi.org/10.4236/jcc.2024.127007

228

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

[14] D. Barnes, W. Maddern, and I. Posner, Find your own way: Weakly-supervised

segmentation of path proposals for urban autonomy, In: 2017 IEEE International

Conference on Robotics and Automation (ICRA), 203-210(2017),

DOI(https://doi.org/10.1109/ICRA.2017.7989025)

[15] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller and

Y. LeCun, Learning long-range vision for autonomous off-road driving, Journal of Field

Agentics, 26(2), 120–144(2009), DOI(https://doi.org/10.1002/rob.20276)

[16] D. A. Pomerleau, Alvinn: An autonomous land vehicle in a neural network, Advances

in neural information processing systems, 1, 305–313(1989)

[17] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,

M. Monfort, U. Muller, and J. Zhang, End to end learning for self-driving cars, arXiv

preprint arXiv:1604.07316(2016), DOI(https://doi.org/10.48550/arXiv.1604.07316)

[18] F. Al-Mahamid, and K. Grolinger, Reinforcement Learning Algorithms: An Overview

and Classification, In: 2021 IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE), 1-7(2021),

DOI(https://doi.org/10.1109/CCECE53047.2021.9569056)

[19] A. S. Shaker, S. R. Ahmed, Information Retrieval for Cancer Cell Detection Based on

Advanced Machine Learning Techniques, Al-Mustansiriyah Journal of Science, 33(3),

20-26(2022), DOI(https://doi.org/10.23851/mjs.v33i3.1069)

[20] G. Butler, A. Gantchev, P. Grogono, Object-oriented design of the subsumption

architecture, Software: Practice and Experience, 31(9), 911-923(2001),

DOI(https://doi.org/10.1002/spe.396)

[21] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, A Survey of Path Planning

Algorithms for Autonomous Agents, Vehicles, 3(3), 448-468(2021),

DOI(https://doi.org/10.3390/vehicles3030027)

[22] J. Cui, G. Nie, Motion Route Planning and Obstacle Avoidance Method for Autonomous

Robot Based on Deep Learning, Journal of Electrical and Computer Engineering, 2022,

1-11(2022), DOI(http://dx.doi.org/10.1155/2022/5739765)

https://doi.org/10.1109/ICRA.2017.7989025
https://doi.org/10.1002/rob.20276
https://doi.org/10.48550/arXiv.1604.07316
https://doi.org/10.1109/CCECE53047.2021.9569056
https://doi.org/10.23851/mjs.v33i3.1069
https://doi.org/10.1002/spe.396
https://doi.org/10.3390/vehicles3030027
http://dx.doi.org/10.1155/2022/5739765

229

Academic Science Journal

P-ISSN: 2958-4612

E-ISSN: 2959-5568

Volume: 3, Issue: 3, July 2025

[23] H. Y. Ryu, J. S. Kwon, J. H. Lim, A. H. Kim, S. J. Baek, and J. W. Kim, Development

of an Autonomous Driving Smart Wheelchair for the Physically Weak, Applied

Sciences, 12(1), 1-18(2021), DOI(https://doi.org/10.3390/app12010377)

[24] J. Raajan, P. V. Srihari, J. P. Satya, B. Bhikkaji, and R. Pasumarthy,” Real time path

planning of agent using deep reinforcement learning, IFAC-PaperOnLine, 53(2), 15602-

15607(2020), DOI(http://dx.doi.org/10.1016/j.ifacol.2020.12.2494)

[25] V. A. Bakale, V. S. YK, V. C. Roodagi, Y. N. Kulkarni, M. S. Patil, S. Chickerur, Indoor

Navigation with Deep Reinforcement Learning, In :2020 International Conference on

Inventive Computation Technologies (ICICT), 660-665(2020),

DOI(https://doi.org/10.1109/ICICT48043.2020.9112385)

[26] R. Singh, J. Ren, and X. Lin, A Review of Deep Reinforcement Learning Algorithms

for Autonomous Agent Path Planning, Vehicles, 5(4), 1423-1451(2023),

DOI(https://doi.org/10.3390/vehicles5040078)

[27] H. H. Ali, J. R. Naif, and W. R. Humood, A New Smart Home Intruder Detection System

Based on Deep Learning, Al-Mustansiriyah Journal of Science, 34(2), 60-69(2023),

DOI(https://doi.org/10.23851/mjs.v34i2.1267)

[28] X. Lei, Z. Zhang, and P. Dong, Dynamic path planning of unknown environment based

on deep reinforcement learning, Journal of Robotics, 2018(12), 1-10(2018),

DOI(https://doi.org/10.1155/2018/5781591)

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.

Riedmiller Playing atari with deep reinforcement learning, arXiv:1312.5602v1 [cs.LG],

(2013)

[30] N. M. Khassaf, and S. H. Shaker, Image Retrieval based Convolutional Neural Network,

Al-Mustansiriyah Journal of Science, 31(4), 43- 54(2020),

DOI(http://doi.org/10.23851/mjs.v31i4.897)

[31] K. Yeom, Deep Reinforcement Learning Based Autonomous Driving with Collision

Free for Autonomous Agents, International Journal of Mechanical Engineering and

Robotics Research, 11(5), 338-44(2022), DOI(10.18178/ijmerr.11.5.338-344)

https://doi.org/10.3390/app12010377
http://dx.doi.org/10.1016/j.ifacol.2020.12.2494
https://doi.org/10.1109/ICICT48043.2020.9112385
https://doi.org/10.3390/vehicles5040078
https://doi.org/10.23851/mjs.v34i2.1267
https://doi.org/10.1155/2018/5781591
http://doi.org/10.23851/mjs.v31i4.897
https://www.ijmerr.com/index.php?m=content&c=index&a=show&catid=209&id=1738

