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Abstract 

Recently, there has been an increasing interest in applying techniques of machine learning to 

autonomous agent learning. The autonomous ability of agents to detect and adapt to their 

environment enhances their adaptability and efficacy in completing numerous activities. A 

learning framework known as Reinforcement learning (RL) learns an agent how to act in a way 

that maximizes the value of a reward signal. Within the domain of agentcis, agents are trained 

to perform various tasks through trial and error, by employing reinforcement learning. In this 

paper, we utilizing one of the reinforcement learning algorithms, the Deep Q-learning Network 

(DQN). In DQN, used for autonomous agent learning, the agent can learn and determine the 

optimum policy that will guide it to its destination from its interactions with the environment. 

The agent's decision-making ability allows it to modify its policy as a response to observable 

circumstances. Experiments performed in a simulated continuous environment revealed results 

that presented the ability of an agent to react in response to changing conditions and 

demonstrated that the agent was effectively adapting its behavior in accordance with the learned 

policy. 
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Introduction 

The capability of an agent to learn how to navigate and intelligently avoid obstacles represents 

an essential component of an agent's intelligence. This capability influenced agent movements' 

efficiency, obstacle information processing, and obstacle avoidance strategies [1]. Traditionally, 

autonomous agents were designed for model-based environments with clearly defined locations. 

However, independent agents have to operate in unexpected and unfamiliar situations. One of 

the most significant features of an agent is the ability to navigate around such environments 

while avoiding obstacles [2]. 

One of the critical components of the navigation process is self-navigating autonomous agents. 

Allowing autonomous agents to learn how to adapt to unexpected and dynamic environments 

and avoid obstacles in their environment may exhibit intelligent navigation, human-like 

behaviors, and real-time obstacle avoidance; this guarantees that autonomous agents can 

securely and successfully operate in challenging real-world systems, such as delivery, 

transportation, search and rescue, and inspection [3]. The most well-known RL algorithm which 

was introduced in 1989, is Q-learning [4]. For autonomous agent navigation and obstacle 

avoidance [5, 6], Q-learning has been applied very successfully by several researchers. The 

ability of Q-learning to solve path-planning problems for autonomous agents in 3D settings has 

also been evaluated [7]. 

Additionally, a number of writers have suggested hybrid techniques that combine fuzzy logic 

[8, 9] and artificial neural networks [10, 11] with reinforcement learning. 

Gao et al. (2020) proposed a reinforcement learning based- agent route planning method. The 

algorithm first discretizes the information about the direction of target points obtained by 

LiDAR and the information about obstacles surrounding the autonomous agent into finite states. 

In this method, the authors designed a continuous reward function and a reasonable number of 

environment models and state spaces to ensure that the agent's actions are correctly rewarded 

which increases the training efficiency of the algorithm. The training of an agent carried out in 

a Gazebo simulation environment, and the effectiveness of the algorithm is confirmed by the 

training results. Zhang et al. (2020) used the artificial potential field method in combination 

with reinforcement learning to guide the autonomous agent to complete the path planning task. 
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This strategy aims to assign a potential value to each point in the agent's path inside the 

environment. The target point attracts and rewards the agent, while the obstacle repels and 

penalizes the agent. The main drawback of this method is that it requires a significant amount 

of a priori knowledge, but it also tends to fall into the problem of local optimality. 

Learning-based approaches, which provide considerable promise, try to solve issues with 

autonomous agent navigation by learning from data. Drivable routes [14], obstacle detectors 

[15], end-to-end driving from demos [16], [17], and other skills may be learned via supervised 

learning approaches. On the other hand, the quantity of human-labeled data naturally restricts 

these techniques, as the capabilities and performance of deep neural networks are typically 

heavily restricted by the available data. Due to the growing popularity of high-performance 

computers, reinforcement learning—which learns autonomously via trial and error—achieves 

remarkable success in a range of activities. 

The contribution of this paper presents a deep reinforcement learning system to address the 

problem of autonomous navigation. By leveraging DQN, autonomous agents can learn 

navigation policies, make decisions based on sensory inputs, avoid obstacles, follow paths, and 

reach target locations. The combination of deep neural networks, experience replay, and 

reinforcement learning techniques in DQN has proven to be effective for autonomous 

navigation in a wide range of applications, including autonomous vehicles, drones, and mobile 

robots. 

The rest of this paper is arranged as follows: Section 2 presents the algorithm of reinforcement 

learning used in this paper; Section 3 presents the methodology of the proposed method section 

4 highlights the experimental results and discussions. Section 5 is the conclusion. 

Reinforcement Learning 

Reinforcement Learning (RL) is a powerful learning approach that allows an agent to learn 

optimal actions by interacting with an environment and receiving feedback in the form of 

rewards. Deep Q-learning Network (DQN), one of the reinforcement learning methods has 

shown great success in solving complex tasks, including navigation. 

The DQN algorithm approximates the Q-values, which represent the expected cumulative 

rewards for performing specific actions in different states by utilizing the deep neural network. 
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DQN can handle high-dimensional state spaces, such as raw sensor inputs like images or point 

clouds, and learn complex representations directly from the data [18]. 

One of reinforcement learning's main advantages. Reinforcement learning tackles the larger 

issue of goal-directed agent-environment interaction, in contrast to some other machine learning 

techniques that concentrate on discrete sub-problems or particular tasks. It takes into account 

the full process of an agent learning to make choices with specific objectives in an unpredictable 

environment. For example, supervised learning concentrates on learning from labeled instances 

without making it clear how the information acquired would be helpful in reaching a certain 

objective [19]. In contrast, reinforcement learning highlights the ability of an agent to sense its 

state, interact with it, and choose behaviors that influence it in order to achieve its goals [20]. 

Furthermore, some planning techniques take long-term objectives and plan creation into 

account, although frequently without regard to immediate decision-making. They might not 

cover the process of acquiring or updating the predictive models required for planning. On the 

other hand, reinforcement learning combines planning with real-time decision-making By 

learning the agent to interact with the environment and progressively enhance its decision-

making abilities. While those methods have produced a lot of helpful outcomes, a major 

drawback is that they only address specific sub-problems [21].  

This comprehensive approach to reinforcement learning enables agents or any autonomous 

system to learn and develop strategies for solving complex problems in dynamic and uncertain 

environments. It makes it possible to integrate observation, action, and decision-making into a 

coherent framework, which promotes more intelligent and goal-directed behavior [2]. 

A. Markov decision process 

The Markov decision process is a mathematical model of the problem of learning from 

interaction to achieve an objective. It is the agent who learns and makes decisions. As a result 

of the agent's actions, the environment responds and shows the agent new situations. Rewards 

are also produced by the environment and are unique numeric values that the agent aims to 

optimize progressively by making decisions about what to do [2]. Figure 1 shows a Markov 

decision process model of the interaction of an agent with an environment.   
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Figure 1: The Interaction of Agent–Environment in a Markov Decision Process Model [2]. 

 

B. Q- learning algorithm 

A model-free reinforcement learning method for managing Markov Decision Processes (MDPs) 

is known as Q-learning. An agent is trained using this type of Temporal Difference (TD) 

learning approach to determine the optimal policy of action for maximizing cumulative rewards 

in a particular environment. 

The expected cumulative rewards that an agent can obtain by carrying out a certain action in a 

particular state and then following the optimal policy of actions are known as the optimum 

action-value function Q(s, a), or Q-function, where s denotes the state and a the action [22]. 

The state-action space is first discovered by the agent through its initial exploration of the 

environment conducted at random. As training progresses, it exploits the learned Q-values to 

select actions with higher rewards. The update rule for the Q-value of the current state-action 

pair is as follows:  

Q(s, a) = Q(s, a) + α * (r + γ * max[Q(s', a')] - Q(s, a))                                            (1) 

where Q(s, a) is the Q-value of state s and action a, α is the learning rate (step size), r is the 

immediate reward, γ is the discount factor (determines the importance of future rewards), s' is 

the next state, and max[Q(s', a')] is the maximum Q-value of the next state [23]. The agent can 

utilize the learned Q-values to determine actions indiscriminately when the Q-values have 
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converged or the training is finished. The optimum policy that maximizes predicted cumulative 

rewards is obtained by selecting the action with the highest Q-value for each state.  

While Q-learning is a popular and effective reinforcement learning algorithm, it also has some 

limitations and disadvantages. 

1. Exploration-Exploitation Tradeoff: Q-learning requires a balance between exploitation 

and exploration. Initially, for the purpose of choosing the best action, the agent 

explores its surroundings, yet too much exploration might impede convergence and 

render learning ineffective. Conversely, premature exploitation resulting from 

inadequate information may result in inadequate policy. It might be difficult to decide 

on the best exploration technique, particularly in complicated areas. 

2. Curse of Dimensionality: Q-learning struggles when state and action spaces are high- 

dimensional. Since the dimensionality of the issue increases exponentially with the 

number of state-action pairs, it is not computationally viable to store and update Q-

values for every potential combination. This limitation, also referred to as the "curse of 

dimensionality," restricts Q-learning's use to situations with small or controllable state-

action spaces [24]. 

3. Lack of Generalization: Q-learning usually learns Q-values for certain pairs of states 

and actions. It could be difficult to extrapolate from training to previously unforeseen 

situations or behaviors. This inability to generalize might make it more difficult for the 

agent to perform well in unfamiliar circumstances or apply what it has learned to 

similar activities [25].   

These drawbacks draw attention to a few of Q-learning's shortcomings and difficulties. It is 

important to consider that there are Q-learning extensions and variants, including Double Q-

learning and Deep Q-Networks (DQN), that solve some of these drawbacks and enhance the 

algorithm's performance in intricate and high-dimensional situations [26]. 

C. Deep Q - learning networks (DQN) algorithm 

Due to the exponential growth of Q-table's size with the increase in the number of states and 

actions, one of the primary disadvantages of Q-learning is that it becomes impractical when 

dealing with enormous state spaces. Deep learning, an important machine learning discipline, 
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was established. Deep learning employs multilayer neural networks to automatically learn the 

image and extract its detailed features, in contrast to classical machine learning [27]. Combining 

Q-learning with deep neural networks is an alternate strategy to address this problem. It was 

introduced by DeepMind in 2015 and has achieved significant success in solving complex 

reinforcement learning problems [28].  

The fundamental concept of DQN is to approximate the action-value function (Q-function) by 

utilizing a deep neural network, also known as the Q-network. Traditional techniques with high-

dimensional and continuous state spaces, and Q-learning struggle; DQN, in contrast, handles 

these types of situations.  The neural network receives the state as an input and outputs the Q-

values for all possible actions. The following Figure 2 illustrates the difference between Q-

learning and deep Q-network in evaluating the Q-value [29]: 

Figure 2: The difference between Q-learning and deep Q-Network [29] 

 

The DQN algorithm introduced several key components to make Deep Q-Learning more stable 

and efficient, including experience replay and a separate target network. 

1. Experience Replay: Developed by DQN, this technique includes randomly sampling mini-

batches of experiences during training and storing the agent's experiences in a replay memory 

buffer to provide more robust learning [29]. 

2. Target Network: DQN employs not only the Q-network but also an additional target network. 

While the Q-network is used to choose actions, the target network, which is a replica of the Q-



  

 

221 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 3, July 2025 

 
 
 
 

network, is used to calculate the target Q-values during training. The learning process is 

stabilized by regularly updating the target network parameters to match the Q-network 

characteristics. Effective learning requires striking a balance between exploitation—taking the 

most well-known action—and exploration—trying new actions [28]. 

Convolutional neural networks (CNNs), often referred to as deep neural networks with 

convolutional layers [30], are commonly used in DQN as the Q-network [31].  

Material and Methods 

This section describes the methodology of the proposed method which can be applied in agents, 

drones or any application in navigation system. The proposed method was tested in a dynamic 

simulated environment, Figure 3 demonstrates the implementation of our proposed model for 

autonomous agent learning.   

 

Figure 3: The diagram illustrating the Structure of the Proposed Model 
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Results and Discussion 

1. Simulation environment   

We use the CartPole environment from OpenAI. The actions are 0 to push the cart to the left 

and 1 to push the cart to the right. The continuous state space is an X coordinate for location, 

the velocity of the cart, the angle of the pole, and the velocity at the tip of the pole. The score, 

also called averaged reward, is what we give to the agent to know if its action is good or not. 

Based on that, the agent will try to optimize and pick the right action. A reward of +10 is granted 

to the agent at each step while the pole is kept upright. The maximum reward an agent can earn 

in a single episode is 250. Episode (iteration) ends when episode length exceeds 200 steps. 

The states, actions, rewards, and further observations that are gathered throughout the agent's 

interaction with the environment are what make up the training data in the simulated 

environment.  

2. Training 

The DQN algorithm is used as mentioned in section 2. The learning rate α is set to 0.001. A 

discount factor γ of 0.95 is chosen. The experience replay's batch size was fixed at 24. The agent 

engages with the environment to gather these state-action-reward-next state transitions during 

training, then stores them in a replay memory buffer. During the training phase, random 

transitions are then sampled from this replay memory, which serves to reduce the correlation 

between successive samples and increase the stability of learning. The training data is used to 

estimate the Q-values, or predicted rewards, for each state-action combination so that the DQN 

agent, or any other reinforcement learning agent, may learn from it. The agent updates its Q-

values and minimizes Q-loss between the target Q- values and predicted Q-values using mean 

square error. The mean square error (MSE) equation is commonly used in the training process 

of the DQN algorithm to update the Q-values. The equation measures the discrepancy between 

the predicted Q-values and the target Q-values, guiding the agent's learning. It is given by:  

MSE =  
1

N
 ∑(Q_target(s, a) − Q_predicted(s, a))2                                                     (2)       

Where N is the batch size (the number of transitions sampled from the replay memory), Q_target 

(s, a) represents the target Q-value for a given state-action pair (s, a) and Q_predicted (s, a) 

represents predicted Q-value for the same state-action pair.     
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The Q-target value is calculated using the Bellman equation and serves as the desired value for 

the agent to learn. It is defined as: 

Q_target(s, a) = R(s, a) + γ * max Q(s', a')                                                               (3) 

where: 

R(s, a) is the immediate reward obtained when taking action in state s, γ is the discount factor 

that determines the trade-off between immediate and future rewards, max Q(s', a') represents the 

maximum predicted Q-value for the next states' over all possible actions a'. The Q-predicted 

value is the agent's estimate of the Q-value for a given state-action pair, obtained from the neural 

network approximation. The neural network takes the state as input and produces Q-values for 

each possible action. By minimizing the mean square error, the agent adjusts the weights of the 

neural network to bring the predicted Q-values closer to the target Q-values, thereby improving 

its performance over time. Table 1 presents the training process for the 200 episodes. 

 

Table 1: The Training Process of DQN for 200 Episodes. 

episodes score Q- loss 

1/200 23.0 0.9137245 

2/200 9.0 0.877809 

3/200 10.0 0.839088 

4/200 23.0 0.751476 

5/200 22.0 0.676394 

6/200 19.0 0.618038 

7/200 29.0 0.5371084 

8/200 13.0 0.5057535 

8/200 10.0 0.4834445 

9/200 13.0 0.455222 

10/200 9.0 0.437329 

11/200 9.0 0.4201389 

12/200 16.0 0.3897078 

13/200 14.0 0.3651230 

14/200 10.0 0.3490173 

15/200 9.0 0.335298 

16/200 12.0 0.317311 

17/200 10.0 0.3033145 

18/200 11.0 0.288485 

19/200 14.0 0.2702863 

20/200 12.0 0.255786 

21/200 10.0 0.244503 

22/200 9.0 0.234893 

23/200 10.0 0.212486 
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24/200 8.0 0.2051603 

25/200 9.0 0.1970961 

26/200 14.0 0.18466228 

27/200 10.0 0.1765167 

28/200 12.0 0.15509201 

29/200 14.0 0.1466356 

30/200 11.0 0.139466 

31/200 11.0 0.1326482 

32/200 10.0 0.126797 

33/200 9.0 0.121204 

34/200 10.0 0.1164392 

35/200 10.0 0.1113034 

36/200 11.0 0.1058624 

37/200 8.0 0.1022119 

38/200 11.0 0.0972148 

39/200 9.0 0.0933936 

40/200 11.0 0.0897223 

41/200 9.0 0.0861958 

42/200 10.0 0.0823937 

43/200 10.0 0.0787593 

44/200 10.0 0.0752852 

45/200 9.0 0.07232597 

46/200 27.0 0.06348844 

47/200 17.0 0.05859542 

48/200 10.0 0.05601075 

49/200 23.0 0.05016253 

50/200 31.0 0.04315921 

. . . 

. . . 

. . . 

. . . 

299/200 210.0 0.0009945703 

 

Discussions 

The results from Table 1 which are presented in Figure 4, show that the decrease in the Q-loss 

indicates that the agent's Q-values are becoming more aligned with the optimal Q-values, which 

implies that the agent's policy is improving. As the agent continues to update the Q-network, 

the predicted Q-values become more accurate approximations of the target Q-values. The Q-

loss decreases because the Q-network is learning to better estimate the expected cumulative 

rewards for each state-action pair. 
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Figure 4: Q-loss per episode during training for 200 episodes 

In supervised learning, the performance of a model can be easily tracked during training by 

evaluating it on the training and validation sets. However, in reinforcement learning, precisely 

evaluating the progress of an agent during training can be difficult. As suggested by [29], our 

evaluation metric is the total averaged reward the agent collects in an episode over a number of 

episodes. The metric of averaged reward tends to be very noisy because small changes in the 

weights of a policy can lead to large changes in the distribution of states.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Averaged reward per episode with Q- learning and DQN algorithms 
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Figure 5 depicts the averaged reward, which can reflect the stability of the DQN algorithm in 

each iteration. The averaged reward of DQN increases stably while that of Q- learning algorithm 

varies significantly. The results show that DQN achieves a better balance between exploration 

and exploitation; this exploration helps the agent discover more rewarding actions and update 

the Q-network accordingly, leading to a decrease in the Q-loss. 

Conclusion 

DQN-based autonomous agent learning for navigation in uncertain environments provides a 

promising approach to train agents to navigate and make decisions adaptively. By combining 

deep neural networks and Q-learning, agents can learn effective navigation strategies directly 

from sensor data, leading to more capable and intelligent robotics systems in uncertain and 

dynamic scenarios. By leveraging DQN-based autonomous agent learning, we can develop 

intelligent and adaptive robotic systems capable of navigating through uncertain environments 

with improved efficiency and safety. These systems have the potential to revolutionize various 

domains, including autonomous vehicles, robotics assistants, and exploration agents. 
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