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Abstract 

The introduction of deep learning has brought about worthy changes in the field of speech 

processing. By utilizing many processing layers, models have been developed that can estimate 

tongue motions and extract complex information from speech data. This review provides an 

overview of the main deep learning models and their applications in the tongue movement 

estimation function using real-time video sequences. In order to assess the relevant literature, a 

literature review was performed. All papers published between 2017 and 2023 that discussed 

methods for using deep learning techniques that were pertinent to this research were considered. 

After going over each article in detail, 25 of the many found met the inclusion criteria. Relevant 

articles were found using searches in Google Scholar, IEEE Xplore, and Scopus. This study's 

findings highlight a significant challenge to improving deep learning network performance: a 

dataset with real-time video sequences of tongue movements. Such a dataset is essential for 

developing automatic speech processing and high-accuracy estimation of tongue movements. 

Keywords: Tongue Movements, Deep Learning, Real-time video, Speech Processing, Tongue 

Contour. 

Introduction 

Examining the most significant current methodological approaches used to estimate tongue 

movement with the use of AI technology is the goal of this paper. Additionally, it emphasizes 
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the many types of data utilized to derive the most accurate estimation of tongue movement 

based on face movement. The report additionally elucidates research findings, identifies 

existing knowledge gaps, and proposes potential avenues for future research [1]. As 

demonstrated in Table 1, there has been a dearth of reviews and survey studies examining the 

Deep Learning (DL) models that incorporate estimation of tongue domains, despite the fact that 

numerous algorithms are employed to construct these models. To fully grasp the complexities 

of human communication, studies of tongue movement and speech are essential. The utilization 

of medical ultrasonography systems for capturing tongue movement during speech has grown 

prevalent due to significant advancements in medical imaging techniques and their remarkable 

capabilities [1, 2]. 

According to the research, visual cues can help distinguish between acoustically similar sounds 

with different articulatory characteristics. Better communication strategies in challenging 

listening environments and aids for people with hearing loss can result from a deeper 

understanding of the relationship between these sensory modalities [3]. 

A valuable articulatory tool that enables the observation of tongue surface movements 

extending from the base of the tongue to the tip of the tongue is tongue ultrasound. Tongue 

ultrasound is used in the areas of language teaching and silent speech interfaces, enabling 

communication through inaudible signals [4]. 

In terms of convenience and security, ultrasound imaging is unparalleled [5]. But of all the 

imaging modalities, magnetic resonance imaging (MRI) has the highest resolution and can 

show more details regarding the craniofacial anatomy, voice tract, and soft tissues [6]. To 

improve speech analysis, MRI is utilized to acquire images of the vocal tract in real time, in 

either a 2D or 3D orientation [7, 8] . 

Improvements in speech processing systems have been made possible by recent developments 

in deep learning, particularly in the areas of attention mechanisms [7] and transformers [9]. 

Transformers make it possible to describe long-range relationships in the input signal, while 

attention methods let the model zero in on the most relevant parts of the signal. As a result of 

these advancements, speech processing systems have become much more effective and flexible, 

opening up new possibilities for use in a wide variety of contexts. 
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Noninvasive and simple to implement, ultrasound imaging of the tongue (UTI) has found 

widespread application in studies of speech production and clinical linguistics. 

This study contributes to the review of tongue movement estimation and speech extraction by 

analyzing the efficiency of machine learning and deep learning techniques using criteria such 

as mean square error (MSE), accuracy, precision, and so on. As a result, a review process must 

be used to conduct the analysis. ML/DL is a pre-research investigation into the methods utilized 

to evaluate tongue movements based on specific criteria. The remainder of this review is 

organized as follows: Section II summarizes several current extant reviews on AI in the realm 

of speech extraction, tongue movement estimation, and basic information for machine learning 

or distant learning approaches; the third section describes the research methods used in this 

study. The fourth and fifth parts provide details on the survey's research methodology and 

highlight current techniques in this subject. Section VI introduces transfer-learning technology 

in the subject of tongue movement estimation, followed by a discussion of performance 

analysis, with an emphasis on current research gaps. Finally, the key findings of the systematic 

review are provided in the final section. 

Related works: 

Articulatory information extraction from ultrasound image sequences has been the focus of 

several prior efforts [10]. 

C.Wu.et al [11] introduced a 3D convolutional neural network that was trained on a database 

of unlabeled ultrasound video to predict the upcoming tongue image based on past images. This 

network is able to do this because it is able to distinguish between different types of tongue 

tissue. 

SahaP.et al. in [12] introduced a method for ultrasonic (US) voice synthesis using a 3D 

convolutional neural network and a formula-based speech synthesis engine. The application of 

a unique deep learning architecture is employed to facilitate the mapping of tongue ultrasound 

(US) pictures obtained from a US probe positioned beneath the chin of a participant. This 

mapping process transforms the data into a specific format known as ultrasound2formant 

(U2F). 
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The improvements that have been made in deep learning and cross-modal mapping have 

motivated, H. Liu et al. [13] established a connection between these two disparate entities 

through self-supervised learning. This involves training a deep neural network to forecast 

tongue movements in a sequence of ultrasound images, relying on a corresponding sequence of 

lip images. Hence, the model has the capability to utilize temporal alignment information 

between two routes. 

Videos—series of static images—are utilised as input in the study of L. Tóth et al. [14]. 

Processing multiple neighbouring video frames at once can reveal tongue movement time-

course information in this clip. There are numerous time series processing network structures.  

Suggested M . Mozaffari et al. [15] RetinaConv is an innovative convolutional module that 

draws inspiration from human peripheral vision. It extracts features using dilated and standard 

convolutions. They tested their findings on a difficult tongue ultrasound dataset. Experimental 

results show that their completely autonomous models can make reliable, real-time predictions 

on different tongue ultrasound datasets because of their excellent generalization capabilities. 

L. Tóth.et al. [14] Employed a video, or a series of images, as input rather than a single still 

image. Multiple video frames can be processed simultaneously to take advantage of the 

sequence's additional information regarding the timing of tongue movement. Developing a 

network architecture for processing time series can be done in a number of ways. Recurrent 

neural networks are commonly utilized for this kind of information. They are often layered on 

top of a 2D convolutional neural network (CNN) that aims to process individual frames, much 

like Long Short Term Memory (LSTM) networks. 

By tracking the movement of the tongue as it pronounces consonants, P. Padmini et al. [16] 

expanded previous work on statistical approaches for vowel shape frequencies and brought 

them up to date. The tongue-based statistical model of the oral cavity was combined with the 

larynx model and compared to vocal tract model of speech. The grammatical expression-based 

algorithm was used to create vowels and consonants for males, females, and nine-year-olds. 

Using the model in this article to focus on tongue gestures simplifies voice production device 

creation. 
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Experiments using an electroencephalogram (EEG) and ultrasound imaging of the tongue, as 

well as acoustic-to-articulatory inversion, were conducted by T. Csapó.et al.[16] The goal of 

this study was to draw attention to the fact that EEG has trouble predicting patterns of 

articulatory movement. They show that EEG input is only adequate for distinguishing between 

a neutral tongue position and articulated speech by comparing the actual articulatory data with 

Deep Neural Network DNN-predicted ultrasound, and that melspectrogram-to-ultrasound can 

also predict articulatory trajectories of the tongue. 

L.Tóth.et al.[17] was trying out a Urinary Tract Infection UTI-based SSI network that could be 

directly adapted to the specific speaker or session. They add a spatial transformer network 

(STN) module to their network and retrain just that part of the network during the adaptation 

process to keep from having to retrain the whole thing. The STN uses an affine transformation 

that it learns from the input images to compensate for camera and speaker misalignment, and 

to a lesser degree, speaker differences. 

Research Methodology 

According to the results of surveys, which are presented in Table 1, there is no complete analysis 

of performance utilizing various AI models with regard to the estimation of tongue movement. 

This study's primary objective is to examine the accuracy of several artificial intelligence 

models in order to determine which models are the most accurate in terms of prediction and to 

demonstrate which models are the best. When it comes to modeling tongue movement 

estimation, this paper offers a comprehensive evaluation of the performance of several artificial 

intelligence models, which can serve as a guide for both researchers and practitioners. This 

assessment took into consideration the most widely used artificial intelligence models, 

including artificial neural networks (ANNs), deep neural networks (DNNs), classical neural 

networks (CNNs), and recurrent neural networks (RNNs). As can be seen in Figure (1), this 

type of systematic review is comprised of multiple steps. 
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Table 1: Studies Concerning AI Models with Estimating Tongue Movement. 

Ref. Type  Case Study Category Year  AI 

Techniques 

[18] Search of A 

Theory 

Face Motion Measurements Traditional 2007  

[19] Survey Audio Synthesis And Audio-Visual 

Multimodal Processing 

Traditional 2021  

[20] Review Mouth Interface Technologies Machine 

Learning 

2021  

[1] Review Tongue Contour Machine 

Learning 

2022  

[3] Review Speech Processing Machine 

Learning 

2023  

 

 
Figure 1: Methodology for Systematic Process 

In the first stage, we'll define the words we query and use them to find the important articles; 

this will involve using artificial intelligence techniques for tongue estimation in the speech 

process. To find relevant papers, the databases are searched using multiple keywords, such as 

"artificial intelligence" and "tongue" or "artificial intelligence" and "face motion" or "mouth 

interface" or "tongue contour" or "ultrasound" or "videos" or "real time" or (at least one word) 

"prediction," "estimation," or ("forecasting"). In order to find relevant publications, these 

keywords are the most important guidance on this topic. Thus, the publication status of the 

extracted research is not constrained. In addition, reputable databases such as IEEE, Springer, 

and Elsevier are used to determine the source research engine. 
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In the second stage, which takes place between 2017 and 2023, you'll need to download articles 

from Google Scholar that propose ML models for the public domain. Third Stage: Read the 

chosen articles and provide a brief overview; this will include information about the project's 

type, location or dataset, effectiveness, and AI techniques. New knowledge is generated from 

this data in order to evaluate the efficacy of existing AI models. Additionally, the present 

difficulties and potential trends for AI approaches in estimating Tongue Real Time movement 

are discussed. 

Observing the Tongue Movement in Real Time 

Whether in or out of a hospital, an ultrasound device is perfect for getting real-time images due 

to its portability, safety, and convenience. Researchers and clinical linguists have made 

extensive use of lingual ultrasonography for numerous purposes. Some examples of these uses 

include research on swallowing, 3D modeling of the tongue, and silent speech interfaces. Object 

recognition and segmentation are only two of the many medical imaging applications that make 

use of ultrasonic imaging analysis [1]. 

The image of the tongue is detected using an ultrasound system. The sonogram can be noisy 

due to signal noise and some parts of the tongue may be missed in the image in the case of rapid 

tongue movements during the ultrasound image acquisition Figure (2) displays a view of the 

tongue contour in the sagittal plane. A bright white concave arc represents the final image of 

the tongue contour on the ultrasound screen [21]. 

Real-time imaging of the tongue's movements is something that has been suggested for use in 

speech therapy by Faber et al. [22]. The brightness of each pixel was determined by employing 

the PCA-based decomposition method known as EigenTongue. They use a PCA-based tongue 

contour model that we've dubbed EigenContour in order to get a more compact representation 

of the annotated tongue surfaces. The third component is an artificial neural network that was 

created with the purpose of modeling the connections that exist between the two 

representations. Utilizing single-layer perceptrons, we model the training phase relationships 

between the EigenTongues and EigenContours parameters. In order to obtain the x and y 

coordinates of the tongue contour, the segmentation procedure projects the EigenContours 
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parameters onto the basis vector matrix. Segmentation can be done in real time since it is a 

frame-by-frame operation that doesn't require much computer resources [21, 22]. 

An approach was proposed by Wen et al. [26] for the purpose of extracting the contour of the 

tongue from ultrasound recordings in real time. The tongue's outline was divided using U-net 

and a simplified version of sU-net. They used data from two devices with different training 

strategies to compare the system's performance. On the other hand, the results of their work 

demonstrated that the technique that was proposed is extremely competitive in terms of both 

performance and accuracy. In response to this, they proposed the hypothesis that their deep 

learning model was only concerned with the spatial information contained within a single image 

frame, and that it did not take into account the temporal information that pertains to the entire 

speech that was contained within a video sequence. In addition to this, it advised the utilization 

of data augmentation in order to improve the training of models by taking into account variances 

and changing images in order to cope with various scenarios at various granularities [4, 23]. 

 
 

Figure 2: View of Tongue Contour in the Sagittal Plane [1]. 
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Deep Learning Techniques In Real –Time Tongue Movement’s Estimation 

Ultrasound tongue contour tracking is one of many computer vision jobs that has aggressively 

taken advantage of deep learning's progress [26]. Ultrasound is a popular tool for researching 

articulation and tongue movement in speech due to its attractive features, such as imaging at a 

reasonably fast frame rate, which enables researchers to see quick and delicate gestures in real-

time [27]. 

1. Convolutional Neural Networks 

When it comes to deep neural architectures, convolutional neural networks (CNNs) are a subset 

that uses alternating convolutional and pooling layers. In place of the more common practice of 

simply multiplying matrices in one of its layers, this "convolutional neural system" employs a 

mathematical linear operation known as convolution. Like any conventional multi-layer neural 

network, a CNN would have a convolutional layer first, followed by a fully connected layer. 

They are undeniably significant in data science and of the many popular approaches used in 

computer vision and image recognition frameworks [28]. 

All the way across the input space, a convolution layer adds filters that process tiny local bits 

of the input. Moving over the activation map, a pooling layer takes the maximum filter 

activation inside a specific window and transforms it into low-resolution activations from a 

convolution layer. Grid-like data processing is facilitated by CNNs, which are variations of 

fully connected neural networks. Examples of data structures with grid-like properties include 

time-series data (1D grid) with samples spaced at regular intervals and two-dimensional grid 

images using pixels [29]. 

The voice spectrogram is superior to hand-crafted features for capturing speaker characteristics 

such as vocal tract length variations, varied speaking styles that lead formants to undershoot or 

overshoot, etc. It has also clarified the frequency domain manifestations of these features. Time 

and frequency are highly correlated in the spectrogram. For a convolutional neural network 

(CNN) processing pipeline that needs to maintain locality in both the frequency and time axes, 

the spectrogram is an ideal input because of these properties. One intriguing use of CNNs is the 

representation of local correlations in audio sounds. Additionally, convolutional neural 

networks (CNNs) can efficiently share weights to simplify the model and extract structural 
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information from spectroscopy. Here we'll go over the insides of 1D and 2D convolutional 

neural networks (CNNs), which are utilized for various speech-processing jobs. 

2. Recurrent Neural Networks (RNNs) 

Given the intrinsic dynamic nature of the input speech signal, it is only reasonable to 

contemplate using Recurrent Neural Networks for a variety of speech processing applications. 

Regular neural networks (RNNs) are able to simulate time-varying (sequential se) patterns that 

would have been difficult for traditional feedforward neural networks to grasp. At first, RNNs 

and HMMs worked together; the former would model the sequential data, and the latter would 

do localized categorization. Nevertheless, the drawbacks of HMMs are often carried over into 

such a hybrid model. As an example, HMMs necessitate observations of states that are 

independent of one another and task-specific information. There was a rise in using RNN-based 

end-to-end systems for sequence transduction applications such as text and speech recognition 

as a means to avoid the limitations of the hybrid technique [29]. 

The information derived from time series through the use of concealed states that act as Regular 

RNNs are an upgrade over feedforward deep neural networks used to represent time series and 

natural language sequences, both of which produce sequential data. Its memory's temporal 

dynamics, which are influenced by both past and present states, are captured by its recurrent 

patterns. Two well-known variants of gated RNNs, the Long Short-Term Memory (LSTM) and 

the Gated Recurrent Units (GRU), were created to circumvent the vanishing gradient issue and 

capture both short-term and long-term dependencies. To deal without of the ordinary data, the 

following imputation-focused models employ several approaches involving traditional 

forward-directional gated RNN units. Among these methods, you can find estimates for missing 

values using RNN next-step prediction, higher-order series with latent temporal dynamics 

generated by deep learning, and exponential decay towards the mean or last value [30]. 

3. Long Short-Term Memory 

In order to get a more accurate extraction of long-term dependencies within the input sequence, 

it is recommended to utilize a form of the recurrent network known as the Long-Short Term 

Memory (LSTM). To better manage long-distance interactions between time-related properties, 

these networks' internal implementations use specific gates [3, 29, 30]. 
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The main point is that every cell should have a recurring edge with a weight of 1. The vanishing 

gradient problem is thus resolved, since recurrent multiplication by 1 does not diverge nor 

converge to zero [31]. 

Also, the feature gates in LSTM blocks are responsible for deciding which bits of data from one 

stage to be transferred to the next. As a result, the network can figure out when to cut the 

gradient short. This drastically cuts down on the amount of time required to train for 

dependencies that persist across time. The forget gate, the input gate, and the output gate are 

the three gates that comprise an LSTM block. One of the gates is the forget gate [33]. 

In addition, the hidden state and cell state are the building blocks of an LSTM block. Both the 

input gate and the forget gate play a role in controlling the updating and forgetting of values, 

respectively, in a cell. The input and forget gate are used to calculate the new cell state. The 

output gate is responsible for carrying out calculations in order to ascertain which bits ought to 

be transmitted to the subsequent node, or the hidden state of the cell. A representation of the 

LSTM cell's structure may be found in Figure (3) [31]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Initial Long Short-Term Memory (LSTM) Structure [31]. 
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4. Transfer Learning with Tongue Movement’s Estimation 

Methods that are based on deep learning have been increasingly prevalent in recent years, 

particularly in the areas of silent speech detection and ultrasound image classification of the 

tongue. However, as supervised learning algorithms, neural networks necessitate a mountain of 

labeled data, which would be difficult to collect for studies involving ultrasonic speech [34]. 

One interesting machine learning approach to the aforementioned problem is transfer learning, 

which centers on transferring knowledge between domains, as shown in Figure (4) [35]. 

Various concepts and ambiguities appear in the literature on transfer learning. The terms 

"domain adaptation" and "transfer learning" both describe quite comparable procedures. When 

it comes to transfer learning, domain adaptation is all about making one or more source domains 

more conducive to transferring information in order to help a target learner perform better. The 

goal of domain adaptation is to change the distribution of the source domain to be more like the 

target domain's distribution. When given the choice between labelled and unlabeled data, there 

are several discrepancies in the literature over how to characterize the transfer learning process 

[36]. 

 

Figure 4: The Original Transfer-Learning Structure [34]. 

The impact of transfer learning in ultrasound image categorization has received limited attention 

in ultrasound image processing and has not been thoroughly studied for a significant duration. 

Using transfer learning—which excels with sparsely labeled data—Feng and Wang [34] 

investigated the ultrasound tongue classification challenge. Various convolutional neural 

network (CNN) designs were evaluated for their ability to classify ultrasound images. Regarding 
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the impact of TL on ultrasound picture categorization, it has so far received little attention in 

the field of ultrasound picture processing. 

Teriyaki et al.[37] employed transfer learning to classify lesion categories such as fissure tongue 

(FT), coated tongue (CT), geographic tongue (GT), and moderate rhomboid glossitis (MRG), 

as well as normal/normal tongue (NT) pictures, utilising distinct DCNN images. Majority voting 

was also used for the first time in the literature to increase tongue lesion categorization accuracy. 

Zhang, Jing-Xuan, et al. [38] Introduced TaLNet, a model that utilizes transfer learning from 

text-to-speech to recover audio based on tongue and lip movements. TaLNet utilizes an 

encoder-decoder framework, where tongue and lip movies are analyzed by specialized encoders 

that employ three-dimensional (3D) convolutional neural networks (CNNs). The study also 

suggested merging the concealed outputs from the tongue and lip encoders, along with the 

speaker code, and inputting them into the decoder to anticipate acoustic characteristics. The 

process of transfer learning involved initially training the multi-speaker Tacotron 2 model on a 

substantial text-to-speech (TTS) ensemble. Subsequently, the decoder for this model was 

transferred to the TaLNet module. 

5. Evaluation Measures for Tongue Movement’s Estimation 

The accuracy of the estimated tongue movement is assessed in various ways. These methods 

base their work on retrieved tongue contours, which can be done manually or automatically. 

The most reliable and conventional approach to comparing findings is to measure the difference 

between the extracted ground truth contour and the segmented tongue contour using the 

suggested methods. 

 Mean Sum of Distances (MSD) 

In two steps, the system automatically extracts tongue contours and compares them to ground-

truth contours to get the mean sum of distances. The minimal distance between each algorithm-

extracted contour element and the nearest ground truth element is established first. The closest 

point to the ground truth contour that each point can be evaluated is compared to the algorithm-

extracted contour. In order to standardize the results, the ground truth element count is split by 
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the total of the minimal distances from these two stages, and automatically extracted contours 

are used. The MSD formula is given by Equation (1). 

𝑀𝑆𝐷(𝑢, 𝑣) =  
1

𝑚 + 𝑛
(∑ 𝑚𝑖𝑛𝑖𝑗

𝑛

𝑖=1

( |𝑣𝑗 − 𝑢𝑖|  ) + ∑ 𝑚𝑖𝑛𝑖𝑗

𝑚

𝑗=1

(|𝑢𝑖 − 𝑣𝑗|  ))                              (1)                   

In which (n) is the ground truth contour length, (𝑚) is the automatically extracted contour 

length, (𝑣𝑗) are the ground truth data points for the manually extracted contour, and (𝑢𝑖) are the 

datasets for the automatically extracted contour. The closest distances between each point on 

the contour and the nearest point on the opposite contour are shown by (𝑚𝑖𝑛𝑖) and (𝑚𝑖𝑛𝑖𝑗), 

respectively [2]. 

 Mean Absolute Error (MAE) 

One way to evaluate the amount of error that occurs between paired observations that describe 

the same phenomenon is to take the average of all absolute faults [39]. The formula is as shown 

in Equation (2): 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑥𝑖 − 𝑥|

𝑛

𝑖=1

                                                                                              (2) 

 Mean Square Error (MSE) 

It represents the average of the square of the difference between the values that were initially 

predicted and those that were actually observed [40]. The formula is as shown in Equation (3): 

𝑀𝑆𝐸(𝑦, �̂� ) =  
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑦𝑖 − �̂�𝑖)

2

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

                                                    (3) 

 The Structural Similarity Index (SSIM) 

Assuming that HVS is competent at extracting structural information from scenes, the structural 

similarity index (SSIM) becomes a full-reference image quality assessment (FR-IQA) metric. 

By making this feature an inherent part of an IQA metric, the authors were able to beat not just 

MSE-based metrics but also current top-tier perceptual image quality metrics, showing a 

stronger relationship with the subjective assessment given by humans, like the mean opinion 

score (MOS) and differential MOS (DMOS), on different IQA datasets. Because of its 
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improved performance, simple mathematical formulation, differentiability, and a high degree 

of computational parallelization, SSIM has become one of the most popular FR-IQA measures 

in the scientific community. It has been used as a proxy evaluation for human assessment in 

various image processing (IP) and computer vision (CV) applications. The next section 

showcases a multitude of real-life examples utilizing SSIM across several domains [41]. 

Which evaluates the presence of three distinct types of visual impact caused by variations in 

luminance   𝑙 , contrast  𝑐 , and structure  𝑠  between two images the formula is as shown in 

Equation (4): 

𝑆𝑆𝐼𝑀(𝑦, �̂�) = [𝚤(𝑦, �̂� )]𝛼[𝑐(𝑦, �̂�)]𝛽[𝑠(𝑦, �̂� )]𝛾                                     (4) 

 Complex Wavelet Structural Similarity (CW-SSIM) 

This innovative method extends the SSIM approach to the complex wavelet domain, allowing 

for a picture similarity measurement that is resistant to minute distortions. 

An extensively utilized metric for assessing image similarity is the Complex Wavelet Structural 

Similarity Index (CW-SSIM). However, its application in picture categorization is still in its 

early stages. The Structural Similarity Index Measure (SSIM) approach for the complex wavelet 

domain is improved by the CW-SSIM index. The goal was to create a measurement that was 

unaffected by "non-structural" geometric aberrations. This metric produces a value ranging 

from 0 (least similar) to 1 (most similar) [42]. The formula is as shown in Equation (5): 

𝐶𝑊𝑆𝑆𝐼𝑀(𝑦, �̂� ) =  
2|∑ 𝑤𝑦,𝑙,𝑤�̂�,𝑙

∗𝐿
𝑙=1 |+𝐾

∑ |𝑤𝑦,𝑙|
2𝐿

𝑙=1 +∑ |𝑤�̂�,𝑙|𝐿
𝑙=1

2
+𝐾

                                                        (5) 

 Word Error Rate (WER) 

Among ASR metrics, the word error rate (WER) is now by far the most popular. WER works 

with the Edit Distance 2 idea. In a sentence, the WER (𝑤) can be determined for any number 

of insertions (𝑖), deletions (𝑑), and substitutions (𝑠) with a total of 𝑁𝑡 tokens as follows the 

formula is as shown in Equation (6) [43]: 

𝑊 =  
(𝑖+𝑑+𝑠)

𝑁𝑡
                                                                                                         (6) 
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 𝐑 𝐬𝐪𝐮𝐚𝐫𝐞: 

It is the percentage of 𝑦′𝑠 variance that can be explained by the model's free parameters. It is a 

measure of the model's likelihood of correctly predicting unseen samples and acts as an 

indicator of model goodness of fit via the proportion of explained variance [44]. The R-squared 

(𝑅2) coefficient of determination is written as in Equation (7): 

𝑅2 = 1 − (
𝑆𝑆𝐸

𝑆𝑆𝑇
)                                                                                                   (7) 

In this context, the sum of squares of the residuals is denoted by SSE, whereas the total sum of 

squares is denoted by SST. (Worst value = −∞; Best value = +1) 

6. Analysis and Discussion 

Significant advancements in speech synthesis, speaker identification, and speech recognition 

have been made possible by deep learning algorithms, which have completely transformed 

speech processing jobs. First, the paper provides a historical context of significant 

developments in speech processing. Then, it quickly goes over the fundamentals of deep 

learning and how they might be applied to the prediction of tongue movements. We also 

illustrate the most current and significant deep learning research, describe the primary tasks of 

voice processing, and highlight the datasets used for these tasks. In the field of estimating 

tongue movements by taking advantage of diverse data sets, which may be signals or ultrasound 

images, video sequences can be employed in real-time. 

Choosing the right data collection is one of the most crucial phases in developing a prediction 

model with artificial intelligence techniques. This research explored the many sorts of data sets 

that may be employed and how they impact the prediction model's accuracy. Figure )5( depicts 

the various forms of data sets utilized a combination of the three types which is considered 

being the most effective in the realm of tongue and lip motions as well as speech processing, 

according to the majority of research. Real-time video sequences have not been employed in 

any of the current studies. 



  

 

122 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 3, July 2025 

 
 
 
 

 

Figure 5: Dataset Type Studies. 

Different tools are used to estimate tongue movements with high precision as shown in Figure 

(6); thus, the decision must be made based on the type of data as well as how accurately these 

tools handle the process of extracting tongue movements from video sequences in real time. An 

analysis of papers indicated that artificial intelligence approaches, represented by deep learning 

algorithms, It is the greatest in this sector; however, it is recommended to integrate many 

technologies to get the maximum potential accuracy. 

 

Figure 6: Studies Methodology Tools.  
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The method for comparing extracted and reference data remains the same, and the provided 

metrics demonstrate the accuracy of the process, regardless of whether reference data is 

mechanically or manually extracted. Some measures are relevant for both artificial and 

conventional intelligence approaches, while others are solely applicable to artificial intelligence 

techniques. The most regularly utilized measures in recent years were examined, demonstrating 

how accurate the prediction model is in practice. The Figure (7) demonstrates that the criteria 

for assessing accuracy are the most widely employed since they are critical in determining the 

model's appropriateness to work in practice. Similarly, criteria for assessing inaccuracy are 

likely to be applied to speech processing algorithms. 

 

Figure 7: Most Evaluation Measures.  

Although there is a dearth of research that makes use of data from real-time video sequences, a 

meta-analysis of numerous studies indicates that choosing the right data type for estimating 

tongue movements from lip movement images can be beneficial for ML and DL prediction 

models. To the significance of measuring tongue motions in anticipating letters and words, 

particularly for those who have had laryngectomies. During the research, it was discovered that 

the deep learning approaches employed were nearly identical in the majority of experiments, 

and no more than one methodology was combined. The investigation also discovered that many 

earlier studies used ready-made algorithms, as seen in Table 2. 

0 5 10 15 20

MSE

MSD

SSIM

CW-SSIM

WER

Accuracy

Evaluation Measures

No. of Research Study



  

 

124 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 3, July 2025 

 
 
 
 

 

Ref. Year Method Dataset Dataset Type Error Rate Accuracy 

Signal Video - 

Image 

[45] 2017 A conventional DNN-

based TTS 

(DM-DNN) 

(AM-DNN) 

Articulatory (tongue and 

lip) and acoustic data 

  RMSE in log-f0= 

0.156 

Voiced/Unvoiced 

Error= 16.01 

BAP 

Distortion= 

1.275 

MCD 

Distortion= 

5.244 

[46] 2017 DNN tongue movements + face 

motion 

  ______ (between 13.9 

and 33.2% 

[47] 2018 PVIRA 

PCA 

speech MRI data   ______ ______ 

[48] 2018 Snake Algorithm The ultrasound image data   ______ ______ 

[11] 2018 3DCNN 1. “WSJ0” data, 60 frames 

per second. 

2. “TJU” data, 30 frames 

per second. 

  MSE for 

WSJ0 = 21.7 

TJU = 32.6 

Cross = 154.9 

______ 

[49] 2018 CNN 

LSTM 

GRID audio-visual corpus   ______ Correlation 

=98% 

[50] 2018 DNN ultrasound images data   ______ correlation 

rate of 0.74 

[51] 2019 ConvLSTM TJU datasets   ConvLSTM-10th 

MSE=4.35 

ConvLSTM-11th 

MSE=61.38 

CW-

SSIM=0.928 

CW-

SSIM=0.904 

[52] 2019 CNN The NS test data 

The Ultrax test data 

The UltraSpeech test data 

  MSD = 5.52 

(1.65)(Ultrax) 

MSD = 5.72 

(2.88) 

UltraSpeech 

_______ 

[53] 2019 DCAE Silent Speech Challenge 

dataset. 

  Word Error Rate 

of 6.17% 

_______ 

[54] 2019 DNN Permanent magnet 

localization (PML) 

  Q3 = 1.8 

median 

error = 1.4 mm. 

_______ 

[20] 2019 CNN 

LSTM 

audio-visual  database   ______ 88.2% 

[55] 2019 (DNNs) PPSD database   ______ _______ 

[56] 2020 SVM LIBSVM Data   ______ Sensitivity 

(41.5%), 

Specificity 

(70.9%), 

Balanced 

accuracy 

(58.0%). 

Table 2: Methods of Different AI-techniques for Tongue Movement Estimation. 
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[26] 2020 conv+ReLU 

+BatchNorm 

Iris Net + Tongue Net   TongueNet MSE= 

4.87 

IrisNet MSE= 

4.21 

______ 

[57] 2020 DNN adaptation ultrasound images data    95% 

confidence 

intervals 

[58] 2020 The 3D ResNet18 

the LipNet architecture 

usetemporal 

augmentation and 

Dropout 

1- (LRW) dataset 

2- the GRID 

audiovisual corpus 

  WER 

2.9% 

CER 

1.2% 

85.02% 

45.24% 

 

[59] 2020 ______  

1- Hungarian 

children’ dataset. 

2- Ultra Suite 

dataset . 

  MSC 

(mean /std) = 

(178/91) 

SSIM = 

(mean/std)(0.28/0.

15) 

CW-

SSIM=(mean/std)

(0.41/0.01) 

______ 

[60] 2020 CNN 

BowNet 

wBowNet 

ultrasound tongue images 

(Dataset I) 

Seeing Speech project 

(Dataset II) 

  MSE= 0.01 L (BCE) 

=0.03 

L(Dice)=0.06 

 

[61] 2021 FMLLR Tal1 + tal80    silent speech 

is 

substantially 

lower than on 

modal 

speech( 

(WER)) 

[62] 2021 Encoder-decoder 

architecture. 

TaL1 + TaL80   WER of 

0.5% and 3.5% 

for TaL1 and 

TaL80 

Accuracy 

(TaL1) = 

98.5% 

Accuracy(Ta

L80)= 97.6% 

[38] 2021 encoder-decoder 

architecture 

TaL Data   (WER)= 36.5 ______ 

[63] 2021 (TAS) Synthetic and real 

ultrasound tongue imaging 

dataset 

  NRMSE of < 

0.15ms 

______ 

[13] 2021 CNN 

LSTM 

 

Silent Speech Challenge 

(SSC) data 

  (MSD)= 4.953 

(SSIM) =  0.728 

(CW-SSIM)= 

0.765 

______ 

[64] 2021 DNN-TTS the UltraSuite-TaL80 

database 

 

  F0 –RMSE = 10 - 

54 

F0-CORR = 0.2 – 

0.7 

Mel-Cepstral 

Distortion, 

MCD) = 5.5–

6.2 dB 
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F0-VUV = 6.8 – 

26.6 

BAF = 0.2 – 

0.6 

[10] 2021 (CNNs) real ultrasound tongue 

imaging dataset 

  Lower MSD 

=2.243±0.026 

______ 

[65] 2021 1- Encoder and 

Decoder 

2- residual 

convolution-and-

attention (RA) Block 

 

Three public datasets are 

used 

1- DNS Challenge 

2- Voice Bank + 

DEMAND 

3- TIMIT Corpus 

  ______ Conv-TasNet 

SDRi(dB)= 

7.57 

PESQ2= 2.14 

Ours 

SDRi(dB)= 

8.39 

PESQ2= 2.14 

2.50 

[66] 2021 DNN-TTS 

PCA- 

 

(FC-DNNs LSTM) 

UltraSuite-TaL80 

database 

  FC-DNN, the test 

error is 

2.9, while with 

LSTM, the test 

error is 3.1. 

______ 

[14] 2021  The ultrasound data   MSE = 0.315 R2 = 0.683 

[67] 2022 

 

MLP 

LSTM 

GRU 

Tongue Mocap Data   prior weight is 

0.01 

______ 

[68] 2022 The U-Net model 

(CNN) 

The Natural Scenes 

Dataset (NSD) 

  ______ 98.22% 

[32] 2022 2D-CNN  and 3D-CNN  

and CONVLSTM 

The ultrasound data _____

_ 

______ MSE=0.276 ______ 

[69] 2022 AAA v2.18 software High-speed UTI data were 

acquired using a Micro 

machine 

  ______ ______ 

[70] 2023 RetinaConv  

ultrasound data 

  ______ IOU = 98.4 

tIOU = 51.5 

[71] 2023 FC – DNN speech signal 

ultrasound images data 

  MSE = 0.0055 ______ 

[72] 2023 KD-based 

SE 

TaL80   ______ ______ 

[73] 2023 FC-DNN EEG, ultrasound and 

speech 

PPBA database 

  ______ ______ 

[74] 2023 employ a method built 

on pseudo target 

generation and domain 

adversarial training 

with an iterative 

training 

( encoder and the 

decoder) 

TaL 

( The Tongue and Lip ) 

dataset 

  ______ ______ 

[75] 2023 (STN) module ultrasound images data   ______ accuracy = 

92% 

[76] 2023 CNN UltraSuite-TaL corpus   ______ ______ 
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Conclusion 

With differing degrees of effectiveness, many techniques have been applied to estimate tongue 

motions from signals, ultrasound pictures, or real-time video. Every methodology has benefits 

and drawbacks. This research introduced artificial intelligence approaches for estimating 

tongue motions from ultrasound waves, pictures, and video. Because it gives the researcher a 

comprehensive quantitative and qualitative assessment of methods for computing real-time 

tongue movements in ultrasound imagery, this review study is significant. The analysis 

concluded that the best way to achieve more accurate results is to use a combination of AI 

techniques. Machine learning works well as a method for segmenting the tongue in real time. 

Conversely, interactive user segmentation tools integrated into traditional training and post-

processing procedures can enhance a machine learning model's output. 
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