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Abstract 

For the past ten years, copper-based quaternary chalcogenide semiconductor materials have 

also been studied and classified in a variety of ways. The majority of research and academic 

works on quaternary chalcogenides are devoted to solar cell PV studies, where, as the material 

first gained popularity as a less expensive option in contrast to Si for Solar PV systems. . Such 

components have all of the desirable characteristics for becoming an effective PV material in 

the thin films or nanomaterials configuration, like effective and non-toxic unique materials, 

effective charge carrier, best possible energy band, as well as higher adsorption co-

effectiveness. Cu2MIMIIX4 (where X = S or/and Se; MII = Si, Sn, and Ge; MI = Zn, Mn, Fe, 

Co, Ni, Cd, and Hg) is a new class of quaternary materials that has just emerged and found use 

in electrochemistry, thermal, sensor systems, power banks, and some other technologies. The 

unique combination characteristics of this class of chalcogenides, like optoelectronic and 

electrical; magnetic and optoelectronic; as well as thermo-electric, make their potentially useful 

importance for a variety of usages. Even though many of the papers have already covered the 

PV characteristics of such quaternary chalcogenides, this material has many various uses that 

remain investigated. This article touches on the multi-functional systems of novel dissimilar 

quaternary copper-based chalcogens, including the fabrication, the doping impact on their 

physical and chemical characteristic, and their use in many applications, including solar cells. 
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 تركيب وخصائص  المواد النانوية  الكلوكوجينية الرباعية: دراسة مرجعية

 2علي عبد ، محمد1، نبيل علي بكر1هدى طالب جليل

 ديالى جامعة  –كلية العلوم – قسم الفيزياء  1

 المديرية العامة للتربية في ديالى  2

 الخلاصة

على مدار السنوات العشر الماضية، تمت دراسة وتصنيف مواد أشباه الموصلات الرباعية المعتمدة على الكالكوجينيدات 

بحثية حول الكالكوجينيدات الرباعية مكرسة لدراسة الخلايا الشمسية النحاسية بطرائق عدة. ان غالبية الاعمال الاكاديمية ال

الكهروضوئية، اذ اكتسبت المادة شعبية لاول مرة كخيار اقل تكلفة على عكس انظمة االخلايا الشمسية الكهروضوئية المعتمدة 

الاغشية  لة في تكوين تركيبعلى السليكون. تتمتع هذه المكونات بجميع الخصائص المرغوبة لتصبح مادة كهروضوئية فعا

الرقيقة او المواد النانوية، مثل المواد الفريدة غير السامة، وحامل الشحنة الفعالة، وافضل حزمة طاقة ممكنة، فضلا عن 

 Mnو  MI = Zn؛  Geو  Snو  MII = Si؛  Seأو / و  X = S)حيث  Cu2MIMIIX4الكفاءة المشتركة للامتصاص. 

( هي فئة جديدة من المواد الرباعية التي ظهرت للتو وطبقت في تطبيقات التحفيز الحراري Hgو  Cdو  Niو  Coو  Feو 

الكهربائي، وانظمة الاستشعار وبنوك الطاقة وبعض التقنيات الاخرى. الخصائص المركبة الفريدة لهذه الفئة من 

لكترونية والبصرية؛ فضلا عن الكالكوجينيدات، كخصائصها الالكترونية البصرية والكهربائية؛ المغناطيسية الا

الكهروحرارية والكهربائية، تجعل اهميتها مفيدة لمجموعة متنوعة من الاستعمالات. على الرغم من ان العديد من البحوث قد 

غطت بالفعل الخصائص الكهروضوئية لمثل هذه الكالكوجينات الرباعية، الا انه لم يتم دراسة العديد من الاستعمالات المختلفة 

هذه المواد. يتطرق البحث الحالي الى الانظمة متعددة الوظائف للكالكوجينات النحاسية غير المتشابهة الجديدة القائمة على ل

النحاس، بما في ذلك التصنيع، وتاثير التشويب على خصائصها الفيزيائية والكيميائية ومجالات استعمالها مع مجموعة متنوعة 

 يا الكهروضوئية.من لتطبيقات، بما في ذلك الخلا

 .كالكوجينيد الرباعي ، أشباه الموصلات الرباعية، هيكل ستانيت ، هيكل كيستريت  :كلمات مفتاحية

Introduction 

Photovoltaics with a low cost are necessary to improve the efficiency of today's thin-film solar 

power cells. As a result, most solar cells made of chalcopyrite thin film (CuInxGa1-xS (Se)2 

(CIGS) are theoretically compared to conventional silicon PV cells. [1–3]. It is important to 
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remember that these materials are only effective at 23.35% [4]. Furthermore, these materials 

have grown prohibitively expensive, causing scarcity and significant environmental impact.. 

Quaternary chalcogenide semiconductors are an uncommon and potentially useful replacement 

for the absorbent layers found in traditional unsafe solar cells (I2-II-IV-VI4). I: copper and 

silver; II: zinc, cadmium, iron, and manganese; IV: silicon, germanium, and tin; VI: sulfur and 

selenium. Their greatest attribute is their non-toxicity and ease of accessibility on Earth. These 

semiconductors, which have already shown an astounding 10% efficiency in solar cells, have 

many more applications and other uses [5–13]. In-depth research has been conducted on the 

classification of the constituents, kesterites such as Cu2ZnSnS4 (CZTS); as well as stannites 

such as Cu2FeSnS4 (CFTS) [14, 15]. Cu2MnSnS4 (CMTS), a fabricated stannite-type material, 

has also experienced wide characterization. As feasible photovoltaic systems, CMTS and CFTS 

are recommended due to their more suitable energy band gap and optical characteristics [16]. 

To produce these materials, many methods were developed [17–28]. An earlier review study 

discussed many methods for doing this [29], may require various lengths of time for synthesis 

(the liquid reflux process, for instance, needs 6–12 hours) [21], Microwave-based synthesis 

requires five minutes of irradiation [18], while Sonochemical synthesis requires three 

hours[30]. Several of these methods necessitate further thermal treatment [30]. Fig. 1 depicts 

the formation of tertiary and quaternary chemicals by a zinc buckle [31]. 

 

Figure 1: Formation of quaternary and tertiary compounds from zinc buckle. 
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Considering the discovery of numerous chemical and physical formulation technologies for 

fabrication of the mass bulk, powder, layers of thin film, as well as nanostructures, the 

preparation of these complex quaternary chalcogenides has developed. Simplified methods 

concerning film development like as a successive ionic layer, vapor deposition, and 

nanostructured ink deposition; have similarly developed alongside more complicated physical 

techniques [32–35]. Fig. 2. illustrates several of these methods to manufacture a quaternary 

crystalline chalcogenide nanomaterial on the substrates. These techniques can use to create a 

wide range of photovoltaic and sensor devices, as well as photocatalyst electrodes. Over time, 

several methods of chemistry fabrication, including Microwave-reactions produce, sol-gel, 

high-pressure homogenization, hydrothermal processes, and sophisticated thermally resistant 

colloid formation technologies have constituted. 

 

Figure 2: Shows how to deposit quaternary chalcogenides in thin films. (a) a diagram for a 

solar cell with CZTS, ITO, i-ZnO, CdS, NiAl, and Mo-coated glass substrate, using an air-

stable molecule preparatory ink. (b and c) CZTS film analyzed via surfaces and cross-section 

morphologies; insets show proportionally enlarged SEM images. (d) CZTS thin films are 

synthesized utilizing SnS2, CuS, and ZnS nanopowders and imaged with a scanning electron 

microscope after annealing at 400°C. (e) The level surface view displays the CZTS thin film 
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that has been prepared. (f) Cross-sectional image presentation view. (g) A diagram depicting 

the flexible photovoltaic modules made of CZTS material mounted on a sheet of Mo foil. (h) 

An example ink made using CZTS nanocrystals production with a suggestion for stabilizing 

the nanocrystals' dispersion in formamide. (i- j) A film of CZTS FA nanocrystals is shown in 

SEM images from both the top and cross-section. [32–35]. 

Currently, chemical synthesis techniques are preferred method for manufacture the 

nanocrystalline structures of such materials particularly quaternary chalcogenides.. The high-

temperature colloidal production method and its hydro/solvothermal technologies are generally 

used for the production of morphologically and chemically diverse nanostructured quaternary 

chalcogenides. Fig. 3 illustrates various chemical production techniques used to manufacture 

quaternary chalcogenides. Naturally, Nanoparticles can be synthesized using a high-thermal 

colloidal method, (Figure 4 illustrates the process of creating thermal-resistant colloids 

schematically). The process involves heating different material components such as acetates, 

nitrates, acetylacetonates, or chlorides to a high reflux temperature (usually 200-300 °C). 

Organic ligands or capping agents such as oleylamine, octadecene, or oleic acid are used to 

increase the melting and boiling points of the solutes. Long-chain thiols, amines, and 

phosphonic acids with comparable structures, such as trioctylphosphine (TOP), 

trioctylphosphine oxide (TOPO), and others are also used. The size and shape of the 

nanoparticles can be controlled using a capping agent. The quantum captivity system of 

nanoparticles exhibits substantial optical tuning on size change [36, 37]. To achieve high purity 

levels of nanomaterials, it is customary to use inert conditions. The Quaternary CZTX (where 

X can be Se or S) nanoparticles were initially produced through a colloidal synthesis method. 

Shannon et al., Riha et al., Steinhagen et al., and Ibaez et al. were among the researchers who 

employed this technique  [9, 38-39]. First, using a colloidal synthesis technique, Shavel et al. 

produced Cu2ZnxSnySe1+x+2y formatting non-asymmetrical [10]. Fig. 5. shows some of the 

intriguing nanoscale materials produced for different uses using the colloidal synthesis 

technique. 
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Figure 3: Various techniques used to produce quaternary chalcogenides chemically. 

 

Figure 4: The fabrication of thermal-resistant colloids procedure schematically. 
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Figure 5: Characteristic TEM images of Cu-based quaternary chalcogenide nanostructures as 

they were discovered (a) Cu2HgSnSe4, (b) Cu2.3Hg0.7SnSe3.8, (c) non-stoichiometric 

polytypic Cu2Zn0.5Sn0.9Se2.8S0.3 (d) Cu2.3Hg0.7Ge1.0Se4 (e) Cu2HgGeSe4 (f) 

Cu2ZnSnS4 nanorods (g) Cu2CdSnSe4, (h) Cu2ZnSnSe4 and (i) Cu2ZnSnS4 NPs(An inset 

of a, b, d, e, and g displays a histogram of the matching NPs particles size) [9, 40-44]. 

1. The structure of crystals  

The reactivity of cationic precursors varies, making it difficult to stoichiometrically control 

the generation of many compositional phases by quaternary nanocrystals during the primary 

phases of the reaction. 

 

Figure 6: (a) The kesterite design, (b) the stannite design (the colors are blue for Cu; orange 

for Zn; red for Sn; and yellow for Se/S). 
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Copper zinc tin sulfide (CZTS) and copper zinc tin selenide (CZTSe) are researched as possible 

alternatives to CIGS in solar cells. Their crystalline structure consists of alternating CuSn and 

CuZn layers along the c-axis orientation. CZTS and CZTSe are synthesized tetragonal kesterite 

structures (spatial group I 4; Fig. 6). They exhibit spin around a c-axis and contain pure Cu and 

SnZn layers in a stannite structure (space group I-42m).  The identical scattering ability of the 

isoelectronic cations Cu+ and Zn2+ makes it difficult to distinguish between them using  X-ray 

diffraction. However, because of the differences between respective neutron scattering 

wavelengths, a structural investigation using neutron diffraction is possible [45]. According to 

production methods revealed for various binary and ternary metallic chalcogenide 

nanoparticles, comparable approaches have recently been discovered for CZTS, CZTSe, and a 

few more materials. According to Hirai et al. in 1967, the figure in Scheme 7 clearly illustrates 

the cross-replacement of group IV elements to produce quaternary chalcogenides [46]. 

 

Figure 7: Diagrammatic that illustrates how quaternary chalcogenides are formed [46]. 

The quaternary chalcogenides are known for their versatility in terms of physical attributes, 

owing to their greater degree of structure and chemical freedom. It has been well-documented 

that these chalcogenides crystallize within kesterite and stannite crystalline phases, with only 

minor differences in their formation energies. Specifically, the formation energy is 1.3 meV per 

atom based on S molecules, while it is 3.3 meV/atom based on Se molecules [47, 48]. Steady-

state growth conditions lead to the formation of the kesterite structure, in which a CZTX 

consists of consecutive Cu-Sn and Cu-Zn cationic layers. Kesterite and stannite have similar 

characteristics, so they can coexist depending on the synthesis conditions. The c-axis-oriented 
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stannite structure, which consists of pure copper and tin-zinc layers, is displayed in Fig. 7. A 

recent discovery includes the wurtzite phase of quaternary chalcogenides. [49–54]. Due to the 

minor energy difference that results in the disordered thermodynamic orthorhombic phase, the 

arrangement of having Cu and Zn as cation locations remains   similarly susceptible to 

randomness [1, 55]. Fig. 8 illustrates the crystal phases that quaternary chalcogenides can form. 

Due to the same scattering energies of isoelectronic Cu+ and Zn2+, the enormous mass XRD 

patterns for CZTX, the kesterite and stannite phases, are identical. Even so, because the various 

crystal phases' neutron scattering wavelengths varied, it was possible to distinguish between 

them utilizing neutron diffraction technology [45].  

 

Figure 8: The CZTS conventional unit cells, including the crystal construction of (a) 

kesterite,(b) stannite, and (c) wurtzite [45]. 

In relation with its bonding properties, crystallite, and electrical conductivity, CZTX is similar 

to and descended from CuMIIIX2 (M is In, Ga, while X is S, Se) [56–58]. Therefore, it is 

thought that the CZTX has a p-type conductivity, which is derived from its prevalent Cu 

vacancy (VCu), such analogous to how CuMIIIX2 behaves [31–66]. Nonetheless, Chen et al.'s 

first-principles calculations for several intrinsic defects and defect complexes in CZTX provide 

several intriguing findings [47, 31, 59–61, 66]. They proposed that the production energy of a 

CuZn crystal lattice defect, which predominates over VCu a steady-state chemical potential 

region among some of the numerous defects generated as it relates to the CZTX, including 

VCu, VZn, in addition, to crystal lattice disorder  CuZn, CuSn, and ZnSn flaws, appear to have 

the lowest value among those formed [59, 49, 67]. The role of electrically neutral defect 
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complexes for example, [Cu− Zn − Zn+ Cu], [V− Cu − Zn+ Cu] and [Zn2−Sn − 2Zn+ Cu] is 

predicted to be important, energy sources and electronic passivation massive levels within the 

band gap energy at reducing loss of production [68]. Due to the many acceptor defects having 

low formation energies, such systems are inherently p-type, making n-type doping extremely 

challenging and uncommon [31, 60]. Groups IV and VI, as well as Cu(X) element energetic 

states have a significant impact on the optical characteristics. The valence band orbitals with 

SP produced via the orbital S of an elements IV group as well as X's 3P orbitals make up the 

majority of the edge states of the conduction band (CB) in chalcogenides for a quaternary 

component. Lowering the CB minimal level and splitting are caused by weaker hybridization 

between these orbitals, which reduces the binding energy. As a result, molecules containing 

Sn's energy gap are narrower than those containing Ge for the reason that the CB minimal is 

lower and attributed to hybridization being weaker. Transitions of XP and Cu 3d make up the 

majority of the valence band (VB) states. Smaller band gaps produced by hybridization of these 

transitions are relatively weak, which also causes fewer splits and a higher greatest VB. Because 

of the greater CB maximum caused by the weaker hybridization, materials at sea exhibit narrow 

band gaps relative to those at S [50, 69]. The figure illustrates various hybridization states used 

to form VB and CB (Fig. 9) [70]. 

 

Figure 9: Depicts the chemical interactions, intensities of one electron per atom, and CZTS 

band structure. The hybridization of forming bands at cation-S is noticed, as well as the 

creation of bonding linear combinations (A), and antibonding linear combinations  (A*). The 

atomic levels determine the vacuum level alignment. [70]. 
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Defect generation energy in complex semiconductors made of four elements is determined by 

a theory based on thermodynamics and excess atomic chemical potential. The Cu2ZnSnX4 

(CZTX) as an example, requires a specific chemical potential of Cu, Zn, Sn, and X, achieved 

by following a specific relation: 

2μCu + μZn + μSn + 4μX = ΔHf (CZTX)                                                                    (1)  

The limited constrained stability of the phase zone having CZTX has a significant impact 

mostly on the synthesis process., This requires extreme vigilance to prevent the formation of 

six solid sets, which include : Cu2SnX3, ZnX, Cox, Cu2X, SnX, and Cu2X [71]. 

The values of μCu, μZn, μSn, and μX should be less than zero in order to prevent the formation 

of FCC (face-centered cubic) structures utilizing pure metal lattices of Copper (Cu), Zinc (Zn), 

Tin (Sn), and any other metal (X). Additionally, the equation ΔHf (CZTX) - ΔHf 2(CuX) - ΔHf 

(ZnX) - ΔHf (SnX) should be less than zero in order to make CZTX (Copper-Zinc-Tin-X) with 

a formation enthalpy (ΔHf) that is lower than the enthalpy of production of CuX, ZnX, and 

SnX. To avoid the formation of an alternative structure, the equation ΔHf (CZTX) - ΔHf 

(Cu2X) - ΔHf (ZnX) - ΔHf (SnX2) should also be smaller than zero. The synthesis of CZTS 

phase can be achieved by combining binary compounds 2CuX + ZnX + SnX and Cu2X + ZnX 

+ SnX2 at high temperatures [38, 72, 73, 74-100]. The depicted Fig. 10 CZTS phase diagram 

for the stable CZTS formation region and parameters to prevent new binary and ternary phases. 

2. Energy Band Structure. 

The lack of understanding of the fundamental composition and crystal structure of solar cell 

materials makes it challenging to research their electrical and optical properties, as well as their 

energy bandwidth, state density, doping behavior, and transport properties. For Cu2ZnSnS4 

and Cu2ZnSnSe4, numerous theoretical results indicate that the sulfide's band gap is greater 

than the selenide's [98]. remarkably, a variety of Cu-based quaternary chalcogenide chemical 

compounds have recently surfaced and are described as having a variety of uses. Examples of 

these materials are Cu2MIMIIX4, where MI = Zn, Ni, Co, Fe, Mn, Cd, and Hg; MII = Si, Sn, 

and Ge; and X = S and/or Se [76-81]. 
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Figure 10: (a) A schematic of the observed phases in the CZTS quaternary system. The figure 

is a schematic of two pseudo-ternary planes intersecting at the ZnS-Cu2ZnSnS4-Cu2SnS3 tie 

line. (b) On the pseudo-ternary diagram, the boundaries of the Cu-, Sn-, and Zn-rich zones are 

established by the Cu/Sn = 2; Cu/Zn = 2; and Zn/Sn = 1 tie lines. Lastly, the text describes the 

trends in the crystalline structures of the Cu2SnS3 on films produced at 325 °C, which 

coexists with CZTS and ZnS within these various compositional zones. [71]. 

3. Preparation Methods 

3.1 Electrochemical Deposition Method 

To decrease the number of cations in a liquid substance or product, one effective strategy is 

using electrochemical precipitation or hot-plunge liquid at the cathode by utilizing the power 

of the external circuit. In the 1970s, people began experimenting with semiconductor material 

electrochemical explanations [82, 83].Electrodeposition is presently utilized to produce solar 

cells, such as CIGS solar cells manufactured by France's CISEL [84] and CdTe cells 

manufactured by BP plc [85]. However, employing thiourea as an alternative for CdS in the 

electrodeposition process has proven difficult in identifying areas of strength for this source 

[86]. CZTS, a material used in solar cells, was deposited at Bath University in Britain in 2008 

utilizing the procedure of covering and constructing Cu/Sn/Zn, resulting in a conversion 
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efficiency of 0.8% [87-88]. In 2010, an improved development obtained a 3.2% conversion 

efficiency employing a natural environment of powder S and 10% H2 in an N2 conveyance gas 

prepared for two hours at 575°C [89]. In 2009, Nagaoka University of Technology used 

electrodeposition on Cu/Sn/Zn cover and in this way kept up with it for two hours in the carrier 

gas with sulfur powder at 600 °C to achieve a change limit of 0.98% percent. To deal with the 

substrate's adherence, they added a Pb layer deposited onto a surface Mo before 

electrodeposition [90]. They succeeded in obtaining solar-powered devices with a 3.16% 

change limit percent. Following two hours of treatment at 600 °C in a sulfur-containing carrier 

gas, CuZnSn was co-deposited in a single-process blend [91]. 

Ennaoui in Germany and HZB developed a CZTS photovoltaic with a photovoltaic efficiency 

of 3.4% around the same time. They used a one-time co-deposition process comprising 30mm 

Sn2+, 3mm Zn2+, and 3mm Cu2+ to make CZTS films employing Cu of it with the CuxS in 

the KCN build result in scratching with 3.5% thickness. Later, they planned it after 10 minutes 

of light treatment, and its sensitivity was 3.6% [8, 92]. 

In 2012, IBM devised a method for generating CuZnSn alloy by heating a copper, zinc, and tin 

cover in N2 for 30 minutes at 350°C. The cover was then heated for 12 minutes at 585°C in an 

N2 atmosphere containing sulfur. CdS and ZnO were combined to produce CZTS solar cells 

with a capacity of 7.3%. [93]. 

Utilizing a systematic Slow Ionic Layer Adsorption and Reaction (SILAR) mechanism on an 

SLG glass substrate, Shinde et al. have recently found a new technique for producing CZTS 

films. To make CZTS thin films, the substrate is immersed in a 1:1:1 ratio of cationic precursor 

solutions (0.1M CuSO4, 0.05M ZnSO4, 0.05M SnSO4) and anionic precursor solution (0.2M 

thioacetamide). The films were then heated for four hours at 400°C. This technique yielded a 

low-cost CZTS film with a photoluminescence sensitivity of 0.12%, which is appropriate for 

use in solar cells that use photovoltaic [94, 95]. Miao et al. used an electrochemical technique 

to develop film solar energy cells, which were then post-sulphurized at 500°C and 550°C. The 

crystallinity of the models improved as the sulfurization temperature increased, revealing that 

the CFTS small films contain a stannite structure. Raman and X-ray photoelectron spectroscopy 
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were used to identify the constituent molecules as copper (I), iron (II), tin (IV), and sulfur (II). 

Band-broadening enhancements of 1.35 eV and 1.40 eV were seen after sulfurization treatments 

at 500°C and 550°C, respectively [96].The application of a thin coating on a substrate at low 

temperatures is recognized when employing the electrochemical deposition process since it 

doesn't add any additional thermal strain. It is also guaranteed by this procedure that the film 

may be consistently placed on soft and complicated surfaces and adhere well to the substrate. 

The film is a flexible alternative for a range of applications because its thickness, structure, and 

porosity can all be carefully regulated. The final film has improved material characteristics and 

is cost-effective. 

3.2. Mix of nanoparticles by substance and genuine strategies. 

Various practical and feasible procedures are employed in the manufacturing of CFTS thin 

films. Chemical spray deposition and spray pyrolysis systems are two non-vacuum-based 

technologies used to create CFTS thin films. Vacuum-based technologies, such as sputtering 

and vacuum co-deposition, are also utilized to create inexpensive and high-quality CFTS thin 

films for solar cells. The CFTS thin film experiment has two stages: covering the substrate and 

hardening the material. The first stage is critical for creating thin and homogeneous films on 

substrates such as Mo-coated glass, while the second stage enhances grain structure and 

orientation. This section describes easy and efficient approaches for producing miniaturized 

CFTS thin films.  

3.2.1 Nanoparticles by substance structures 

New materials technologies without a vacuum are appealing due to their speed, cost, and low-

temperature requirements. It may be less costly to get Copper Ferrite Tin Sulfide as a result of 

these integrated methods. Adsorption, surface dispersion, reaction, production, and 

improvement are among several of the many phases that reactant particles can be effectively 

transported through by the simple chemical process known as film distillation [111]. Through 

a relatively easy chemical method, Guan et al. developed Copper Ferrite Tin Sulfide (CFTS) 

thin films. The CuSnS film was treated with sulfur and coated with FeS2 to form CFTS. Cu2S 
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and SnS2 reacted to form Cu2SnS3, which in turn reacted with FeS2 to produce Cu2FeSnS4. 

Before the start of treatment, SEM images showed significant micro-aggregates; nevertheless, 

the film surface developed into a nanorod-like structure following 500 °C treatment. The 

bandgap energy of the first film decreased as a result of the CFTS treatment [97]. 

3.2.2. Nanoparticles by compound frameworks by ensured structures 

 Utilizing post-sulfurization and RF magnetization, Meng et al. produced inexpensive CFTS 

films on glass substrates coated with Mo. Blending materials with high iron content and low 

copper content improved solar energy conversion efficiency. Photovoltaic energy reliant on 

CFTS was obtained by sputtering filming an annealed Cu-Fe-Sn in an atmosphere containing 

precursor sulfur powder. To develop a CFTS-dependent solar cell, they eventually used glass, 

CFTS, MO, CdS, AZO, and I-ZnO. (Jsc) of 2.5 mA/cm2, (Voc) of around 110 mV, and a fill 

factor (FF) of roughly 26.3% were the measurements of the solar cells [98]. 

3.3. The Spraying of Chemical Pyrolysis 

During the spray pyrolysis process, a substrate's surface is heated to around 600°C. Next, one 

or more metal salt solutions are sprayed over the substrate surface. Pyrolysis caused by the high 

temperature spray coating will leave a thin film on the substrate's surface. The substrate 

temperature affects the composition and function of spray pyrolysis thin films. If the substrate 

temperature is too low, the film's crystallization quality decreases. Maintaining a temperature 

between 500°C and 650°C can improve the optical properties of the CZTS thin film.Kamoun 

vulcanized CuCl2, ZnCl2, and SnCl2 by spray pyrolysis in a SC(NH2)2 solution. After reacting 

for an hour at 340°C (the substrate temperature), the materials were annealed at 550°C for 120 

minutes. This led to the formation of 1.5 eV band gap CZTS thin films. The experimental 

technique is simple to implement because it does not require a vacuum or gas protection 

apparatus. Thin-film materials are low-cost and function well [99]. 

3.4. Solvo-hydrothermal nanoparticle production 

Both solvothermal and hydrothermal processes are well known to synthesize nanostructures 

that are advantageous for the environment [100]. The best method for producing fine 
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nanoparticles of huge, higher-quality crystals with an exact control over the product's 

composition is the solvothermal process. The single distinction between hydrothermal and 

solvothermal reactions is the precursor solution [101]. Gui et al. used a hydrothermal method 

at a low temperature to manufacture flaky-shaped CFTS nanostructures.  Because longer 

treatment periods have minimal influence on final product quantities or crystallinity, 

the reaction temperature is essential. Lower than 220 °C cannot be Cu2FeSnS4 and Cu2CoSnS4 

prepared [21]. A hydrothermal reaction technique was created by An et al. to produce Cu- and 

Ag-based nanocrystallites with polydispersed nanoparticles that had a diameter of 10–20 nm 

[102]. 

3.5. Sol-Gel Method 

Sol-gel is a material chemistry formed by hydrolyzing and polycondensing metal compounds, 

such as salts or alkoxides, in particular solvents. This method can be done by dipping or spin-

coating. Once gelatinized, the Sol-gel is heated to form either amorphous or crystalline sheets. 

To manufacture Sol-gel, a precursor solution containing the required ions is prepared and spin-

coated onto a glass surface, forming a thin film. Finally, the obtained thin films are annealed at 

the controlling environmental conditions. Tanaka et al. at Nagaoka University of Technology 

developed a sol-gel gelatin in 2007 by combining cupric acetate, zinc acetate, and tin chloride. 

They used dimethyl alcohol as the solvent and ethanolamine as the stabilizer to coat the gel on 

Mo glass. Spin coating had to be repeated five times to achieve the desired thickness. The gel 

was spin-coated Mo glass after a five-minute burning in the air at 300°C and an hour of 

annealing at 500°C in an N2 gas atmosphere containing 5% H2S. They were eventually able to 

improve the components and crystallinity of the CZTS thin film [103]. Spin-coating and 

regularly drying the sol resulted in a CZTS film with 1.01% efficiency in 2009 [6]. Efficiency 

increased to 2.03% in 2011 because of enhanced film components [104]. The method described 

here uses simple equipment and requires no vacuum to provide a complete thin film overlay on 

a variety of substrates. Quantitative doping allows for the production of homogeneous 

multicomponent oxide films with varying compositions and microstructures. However, there 

are certain difficulties, such as longer manufacturing times for some organic raw materials and 
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the development of micro-gel pores in the gelatin, which allows gas and organics to escape 

during drying. By using a sol-gel method and dip-coating deposition of copper, cobalt, tin, and 

sulfur, Ziti et al. created Cu2CoSnS4 sorbents. They evaluated and examined the impact of 

annealing temperature (280°C to 340°C) on the optical, electrical, structural, and morphological 

characteristics of the material in the absence of sulfur. The band gap decreased from 1.72 to 1.5 

eV upon annealing [105]. 

3.6. Nanoparticles by microwave method 

It has been discovered that using microwave-assisted technology produces better, more reliable, 

high-purity, and size-adjustable results than common synthesis techniques. It is also more 

economical, time-efficient, and not harmful to the environment [106]. Microwaves can create 

nanoparticles. Using this method, Guan and his colleagues produced Cu2CdSnS4 (CCTS) 

nanoparticles. Following their production, the CCTS nanoparticles were examined utilizing a 

range of methods, including as UV-Vis-NIR absorbance spectra, X-ray diffraction, EDS, SEM, 

and TEM. The spherical shape and respectable bandgap (Eg = 1.26 eV) of the CCTS 

nanoparticles led the researchers to conclude that they would be useful as absorber layers for 

thin-film solar cells [107]. 

4. Quaternary Chalcogenide Applications 

4.1. Applications of Photovoltaic 

The effectiveness, crystallization, and layer thickness of the materials that are used for 

manufacturing and constructing solar cells all influence a PV solar cell system's efficiency. 

𝜂 = (𝑃 𝑚𝑎𝑥 𝐸 ∗ 𝐴𝑐) ∗ 100⁄                                                                       

The information below describes the several elements that influence solar panel efficiency. E 

(incoming radiation flux in Wm-2); Ac (collector area in square meters); Voc (open circuit 

voltage in volts); Jsc (short circuit current density); and FF (fill factor), Pmax is the maximum 

power output (in watts). Many binary chalcogenides, such as CdS, CdSe, PbSe, GaAs, Cu2S, 

and ternary CuMIIIX2, have seen significant improvements in solar efficiency [108–120]. 
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However, these chalcogenides have the potential to be unstable and contain hazardous (Pb, As, 

and Cd) and costly (Ga, In) elements, posing a considerable danger [121–125]. Lead perovskite 

elements have achieved record effectiveness of 22.1%; however, their Pb-based structure is 

challenging [122]. While avoiding operational instability, quaternary chalcogenides, in 

particular kesterite, have the potential to achieve high solar efficiencies comparable to 

commercial thin-film PV systems or hybrid perovskites. Straight band gaps and optical 

absorbance values greater than 10-4 cm-1 are characteristics of Cu-based quaternary 

chalcogenides [126]. Their band gap energies are in the red end of the solar spectrum, therefore 

long-term excitation does not affect them [127-129].Because of its band gap adjustability and 

optical qualities [130–137], CZTX is a viable alternative for PV applications. Nevertheless 

[138,139], because of their high defect density and compositional inhomogeneities, quaternary 

chalcogenide-based solar cells perform poorly and have a low open-circuit voltage (Voc). Even 

with their advantages, several quaternary chalcogenides only yield limited PV efficiencies 

[160,141-143]. According to photon balance calculations, the maximum efficiency of CZTS 

and CZTSe thin film solar cells, respectively, is 32.4% and 31.4%[139, 140]. Most recently, 

advances have proved the use of quaternary chalcogenide thin-film and nanocrystal ink for solar 

technologies, as illustrated in Figure 11, which illustrates the extraction of both charge 

capacities and losses. Table 1 illustrates the various methods utilized to create quaternary 

chalcogenide nanocrystals. 

4.2. Troubles and future perspectives 

Using both vacuum and non-vacuum techniques, a study examined the development of CFTS-

based solar cells by incorporating CFTS material into nanoparticles and thin film structures. 

Vacuum-based methods, such as sputtering and PLD, can increase the efficiency of solar 

conversion. Solvothermal systems, microwaves, and hot implantation are examples of non-

vacuum techniques. The technique for connecting sunlight to a cell's device using a nanoparticle 

combination consists of three steps: joining the nanoparticles, coating the substrate with 

nanoparticle-based ink, and setting. To improve CFTS-based solar cells, monodisperse 

nanoparticles with excellent optoelectric properties must be regulated in size and shape. When 

combining CFTS nanoparticles, the solvent used in each reaction step must be carefully chosen. 
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Instead of expensive and harmful solvents, eco-friendly ones should be utilized when producing 

CFTS nanoparticles. For dealing with difficulties such as inconsistent grain formation and 

volume reduction, a variety of film coating processes can be used to provide a uniform 

protecting layer. The first step in building a solar cell is to manage the sulfur-rich air 

environment. Annealing high temperatures can cause structural flaws in the barrier layer, 

lowering the performance of TFSCs. High-temperature laying out also causes the creation of a 

thick and tough MoS2 layer at the CFTS/Mo interacting with each other. Recently, a CIGS-

based cell achieved a 22.6% limit [121]. Compared to CZTS and CZTSSe-based solar cells, 

which exhibit efficiencies of 9.5% and 10.8%, respectively, CFTS-based solar cells are less 

efficient [162, 163]. There is little research on CFTS in thin-film solar cells. It is essential to 

continually track the crystallization of the barrier layers inhibiting CFTS. For solar cell 

applications, CFTS material is still a good choice in spite of these difficulties. 

 

Figure 11: (a) illustrates the solar radiation spectrum and the solar radiation available for 

photovoltaic applications in addition to different losses. (b)  Illustrates the CZTS and CZTSe's 

fundamental loss mechanism, which was established by meticulous balancing calculations.  

Voc = 1.21 V; Jsc = 29.6 mAcm-2; FF = 89.9%; and 32.4% efficiency are the ideal 

performance values for CZTS. Voc = 0.71 V; Jsc = 51.4 mAcm-2; FF = 84.8%; and 31.0% 

efficiency are the ideal values for CZTSe [140]. 
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Table 1: Methods of substance blend of quaternary chalcogenide nanocrystals. 

COMPOUND 

NAME 

METHOD CRYSTAL 

STRUCTURE 

BAND 

GAB 

(EV) 

REFERENCES 

Cu2CoSnS4 Chemical spray pyrolysis 

Sol-Gel 

Sol-Gel 

deposited by vacuum thermal evaporation 

on heated substrates 

Chemical spray pyrolysis 

produced via co-electrodeposition of 

precursors for Cu, Co, S, and S on a 

molybdenum substrate. 

Stannite   

Stannite  

Stannite 

 

 

Stannite 

 

 

1.42 – 

1.79 

1.45 

1.5-1.72 

1.40-

1.43 

 

1.52-

1.56 

 

1.4-1.5 

[141] 

[142] 

[143] 

[144] 

[145] 

 

[146] 

Cu2CdSnS4 Chemical spray pyrolysis 

 

deposited by ultrasonic spray  

method at various substrate temperatures 

 

CdSn(OH)6 prepared by co-precipitation 

method as the precursor 

 

Stannite 

 

1.39-1.5 

 

1.37 

[147] 

 

[148] 

 

 

[149] 

 

 

 

 

Cu2FeSnS4   the co-electrochemical deposition stannite 1.1-1.55 [150] 

 

Cu2FeSnS4 chemical bath deposition process 

Chemical spray pyrolysis 

chemical pyrolysis technique 

Kesterite 

 

Stannite 

Stannite 

1.41-

1.19 

 

1-1.5 

1.77-

1.92 

[151] 

 

[152] 

[153] 

Cu2ZnSnS4 Chemical bath deposition (CBD) is used on 

soda-lime glass substrates with magnetron 

sputtering (MS) and pulsed laser deposition 

(PLD). Via the SILAR technique with 

various dipping periods and deposited over 

the conducting and non-conducting 

surfaces. 

 

 

 

 

wurtzite and 

kesterite 

 

Kesterite 

 

1.40 

 

 

 

 

1.46-

1.82 

 

 

1.62 

[154] 

 

[155] 

 

 

[156] 

 

 

[157] 

Cu2NiSnS4 Chemical pyrolysis technique.    

sol-gel 

 

 

cubic 

1.57-

1.82 

1.2-1.7 

[158] 

[159] 

Cu2CrSnS4 Solvothermal Stannite 1.35-

1.54 

[160] 

Ag2ZnSnS4  chemical spray pyrolysis Stannite 2-2.08 [161] 
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Conclusions 

Materials that were formerly plentiful and inexpensive are now exceedingly expensive and 

undesirable for the ecosystem due to the growing demand for materials utilized in numerous 

and multifunctional applications. As a result, the quaternary chalcogenides of I2-II-IV-VI4 

family previously used in photovoltaic applications have piqued the curiosity of many 

researchers. With regard to the morphology, chemical stoichiometric, and composition of the 

material, these quaternary materials offer a wide range of options for achieving unique features. 

These quaternary chalcogenides, which are classed as semiconductors, contain a number of 

different compounds. The functions and properties of commonly used compounds like 

Cu2ZnSnS/Se4, Cu2FeSnS4, Cu2MnSnS4, Cu2NiSnS4, and Cu2CoSnS4 are highlighted in 

this study because they excite the interest of researchers. In addition to the finding of a newly 

devised crystal structure represented by the wurtzite phase, the quaternary chalcogenides were 

found to have a common crystal structure that includes the Kesterite and stannite phases. The 

optical energy gap in these quaternary compounds is smaller than that of the two- and three-

compounds because of the relatively small energy gap in the quaternary case and the fact that 

the band gap of quaternary compounds containing sulfide is larger than that of quaternary 

compounds containing selenium. Most such compounds revealed a wide range of applications, 

providing a strong motivation to further investigate these materials and learn more about their 

applications. 
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