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Abstract 

The purpose of this paper is to find a practical method with simple arithmetic operations to 

solve the first type of Volterra's integral equation. Using of the piecewise functions and the 

improved operationally matrix of their integration, the integrally equation of the first type can 

be decreased to a lower linear sparse relation that should be easily solved directly by replacing 

from forward. Numerical examples show that the approximate solution has an acceptable and 

appropriate value. 

Keywords: Block pulse functions, Volterra's integral equation of the first type, improved 

operationally matrices. 

Introduction 

We know that one of the important ill-posed problems are first type integrally equations. [1, 2]. 

In addition,the Volterra's integral equation of the first type appears in the several problems in 

the scientific aspects. Therefore, studying such issues is very important in application. Many 

ways such as expansion way, regularization way [3], Galerkin method [4] and other methods 

have been found and suggested. 

In recent papers [4, 5], delayed integral equations (DIEs) and delayed integro-

differential equations (DIDEs) and stability of nonlinear neutral these are solved by different 

methods. Collocation methods for solving special kind of integral equations are obtained [6]. 
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The methods of numerical solution of different types of ordinary and partial differential 

equations have also been studied in recent years [7-10]. 

Integral equations have many applications in other sciences. For example, in [11] Fredholm's 

integral equations are used in plasma physics calculations. Many studies have been done on the 

numerical solution of these equations and many types of numerical methods have been 

developed to quickly and accurately obtain the approximation of y(x). Literature reviews and 

references of many existing methods are available in [12]. Collocation methods [13], since 

methods [14-16], and general spectral methods [17, 18] are also considered. 

In the past years and up to now, orthogonally functions or polynomials like orthogonal Block 

pulse functions, Hat functions, wavelets, Legendre polynomials, Genocchi polynomials and 

Lager polynomials estimation some systems such as integral equations are solved. 

Previously, orthogonally functions or polynomials, like hyperbolic mass orthogonal functions, 

Hat functions, wavelets, Legendre polynomials, Genocchi polynomials and Laguerre 

polynomials, firstly introduced the multi constant simple orthogonally functions (block pulse 

functions), its attributes and it’s operational and improved operationally matrices. Then by 

improved operationally matrix we convert the Volterra's integral equation of the first type to a 

less spare linear relationship. 

Finally, in[19,20] we can explain the Spline-collocation method, it has evolved as valuable 

techniques for the solution of a broad class of problems covering ordinary and partial 

differential equations, functional equations,integral equations and integro-differental equations, 

also this method involves the determination of an approximate solution in a suitable set of 

functions, sometimes called trial functions,by requiring the approximate solution to satisfy the 

boundary conditions and the differential equation at certain points,called the collocation points. 

 Preliminaries    

Here is the interpretation of the symbols and the feature of the (block-pulse functions), which 

are fully described in [9]. 

 Definition 1. The m term of block pulse funs- can be written as follows: , 

(m)

i

1 (i 1)h t ih
(t)

0 otherwise.

  
  


                                                                         (1) 
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 Where 
T

t [0,T), i 1, 2,..., m and h . 
m

    

Its main primary attributes of these functions are disjoint from each other and orthogonality of 

them that can be expressed as follows: 

(m) (m) (m)

i j ij i(t) (t) (t),      

T
(m) (m)

i j ij
0

(t) (t)dt h , i, j 1,2 ,...,m                                                               (2) 

Function approximation 

A functionally 2f (t) L [0,T) , that is real and bounded can be written and expanded in the form 

of( block pulse series) as, 

m
(m)

m i i

i 1

ˆf (t) f (t) f (t),


                                                                                  (3) 

 where 
T

(m)

i
0

i

1
f (t) (t)dt .f

h
   

Also we can see, 

T T

m
ˆf (t) f (t) F (t) (t)F,    

or 

     
T

1 2 m

T

1 2 m , t (t) (t) ... (t) .F f f f     
 

and  

T T Tk(s, t) (s)K (t) (t)K (s),      

Where 

ij 1 2 ,K (k ), i 1,2,...,m , j 1,2,. ..,m  
1 2

1 2
T T

(m ) (m )

ij i j
0 0

1 2

1
k k(s, t) (s) (t)dtds.

h h
     

Integration operationally matrix 

 After some computing, 
t

(m)

i
0

(s)ds and simplifying it, we will have:  

t

0
(s)ds P (t),                                                                                               (4) 

where the operationally matrix of integral is given by 
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1 2 2 2

0 1 2 2
h

P 0 0 1 2
2

0 0 0 1
m m

 
 
 
 
 
 
 
 

 

As a result, for the arbitrary function f(x), we can write: 

0 0
( ) ( ) ( )

t t
T Tf x dx F x dx F P t      

 

Improved operationally matrix 

If we set 

 

where 

1 2 1( .... )
2

i i i

h
g h f f f f      

using previous relations ,we can write ig  as follows: 

2 ( 1)

0 ( 2) ( 1)

( 1)

0 ( 1)

1 1 1 1
( ) ( ) ( ) ( )

2

1
( ) ( )

2

( ) (( 1) ) (( 1) ) ( )
(( 1) )

2 2



 





   
       

   

 

   
   

   

 

h h i h ih

i
h i h i h

i h ih

i h

h
g h f t dt f t dt f t dt f t dt

h h h h

f t dt f t dt

g ih g i h g i h g ih
g i h

 

With the aim of improving the scheme of block pulse coefficients resulting one of the rules 

integrated operation, we should firstly attain a little simple better approximation of g(t), by use 

1 2

0

( ) ( ) ( ) ( ... ) ( )

t

T

mg t f d F P t g g g t     
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of the formula of Lagrange’s interpolation, with 3 points 𝑡0 = (𝑖 − 2)ℎ, 𝑡1 = (𝑖 − 1)ℎ  and 

𝑡2 = 𝑖ℎ, we can attain g(t) for values of t in the interval [(𝑖 − 1)ℎ, 𝑖ℎ) as: 

2

2 2

( ( 1) )( )
( ) (( 2) )

2

( ( 2) )( ) ( ( 2) )( ( 1) )
(( 1) ) ( )

2

t i h t ih
g t g i h

h

t i h t ih t i h t i h
g i h g ih

h h

  
 

      
  

 

and then we attain the 𝑖𝑡ℎ block pulse coefficient of g(t) from this approximation ( )g t  as a 

progress: 

( 1)

1 1 8 5
( ) ( ( 2) ) ( ( 1) ) ( )

12 12 12

ih

i
i h

g g t dt g i h g i h g ih
h 

        

Finally, after some computations the operationally improved matrix P  will be: 

13
1 2 2 2

6

5 13
0 2 2

6 6

5 13
0 0

h 6 6
P

52
0 0 0 2

6

13

6

5
0 0 0 0

6 m m

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
    

Volterra's integral equation of the first type 

It is considered following Volterra's integral equation of the first type, 

𝑓(𝑥) = 𝜆 ∫  
𝑥

0
𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡,  0 ≤ 𝑥 < 1,                                                                      (5) 

In (5), 𝑓 and 𝑘 are known and 𝑦 is not known. 
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 Also, we have, (𝑥, 𝑡) ∈ ℒ2([0,1) × [0,1)), 𝑓 ∈ ℒ2[0,1). Approximation the relations 𝑓, 𝑦, and 

𝑘 with respect to BPFs give 

𝑓(𝑥) ≃ 𝐹𝑇Φ(𝑥)  ≃ Φ𝑇(𝑥)𝐹,

𝑘(𝑥, 𝑡) ≃ Φ𝑇(𝑥)𝐾Ψ(𝑡)  ≃ Ψ𝑇(𝑡)𝐾𝑇Φ(𝑥),

𝑦(𝑡) ≃ 𝑌𝑇Ψ(𝑡)  ≃ Ψ𝑇(𝑡)𝑌

 

by the previous relations, we know that 𝐹𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 𝑌, and 𝐾matrix are BPFs coefficients of 

𝑓(𝑡), 𝑦(𝑡) , and 𝑘(𝑥, 𝑡) , respectively. 𝑦  is an unknown vector. 

Replace previous relation in above equation gives: 

𝐹𝑇Φ(𝑥) ≃ 𝜆𝑌𝑇∫  
𝑥

0

Ψ(𝑡)Ψ𝑇(𝑡)𝑑𝑡𝐾𝑇Φ(𝑥), 

Assume that in matrix 𝐾𝑇 , we show the ith row of it by 𝐾𝑖  and in modified integration 

operationally matrix 𝑃‾ , jth row be 𝑅𝑗, by the previous equations and relations and supposition 

𝑚1 = 𝑚2 = 𝑚 we will have, 

 ∫  
𝑥

0

 Ψ(𝑡)Ψ𝑇(𝑡)𝑑𝑡𝐾𝑇Φ(𝑥) = ∫  
𝑥

0

 Φ(𝑡)Φ𝑇(𝑡)𝑑𝑡𝐾𝑇Φ(𝑥)

 = (

𝑅1Φ(𝑥) 0 … 0

0 𝑅2Φ(𝑥) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑅𝑚Φ(𝑥)

)(

𝐾1
𝐾2
⋮
𝐾𝑚

)Φ(𝑥)

 

= (

𝑅1Φ(𝑥)𝐾1Φ(𝑥)
𝑅2Φ(𝑥)𝐾2Φ(𝑥)

⋮
𝑅𝑚Φ(𝑥)𝐾𝑚Φ(𝑥)

) =

(

 

𝑅1Φ(𝑥)Φ
𝑇(𝑥)𝐾1

𝑇

𝑅2Φ(𝑥)Φ
𝑇(𝑥)𝐾2

𝑇

⋮
𝑅𝑚Φ(𝑥)Φ

𝑇(𝑥)𝐾𝑚
𝑇)

 =

(

 

𝑅1𝐷𝑘1
𝑅2𝐷𝑘2
⋮

𝑅𝑚𝐷𝑘𝑚)

 Φ(𝑥) 

so, we have, 

𝐹𝑇Φ(𝑥) ≃ 𝜆𝑌𝑇𝐵Φ(𝑥), 

where 
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𝐵 =

(

 

𝑅1𝐷𝑘1
𝑅2𝐷𝑘2
⋮

𝑅𝑚𝐷𝑘𝑚)

 =

(

 
 
 
 
 
 
 
 

ℎ

2
𝑘1,1

13ℎ

12
𝑘2,1 ℎ𝑘3,1 … ℎ𝑘𝑚,1

0
5ℎ

12
𝑘2,2

13ℎ

12
𝑘3,2 ⋱ ⋮

0 0
5ℎ

12
𝑘3,3 ⋱ ℎ𝑘𝑚,𝑚−2

⋮ ⋮ ⋱
13ℎ

12
𝑘𝑚,𝑚−1

0 0 ⋯ 0
5ℎ

12
𝑘𝑚,𝑚 )

 
 
 
 
 
 
 
 

 

We can also write 

𝐹𝑇 ≃ 𝜆𝑌𝑇𝐵, 

Or, by substituting ≃ by = we will have it 

𝐹 = 𝜆𝐵𝑇𝑌, 

The matric 𝐵𝑇 can be formulated as follows: 

𝐵𝑇 = ℎ

(

 
 
 
 
 
 

1

2
𝑘1,1 0 0 ⋯ 0

13

12
𝑘2,1

5

12
𝑘2,2 0 ⋮

𝑘3,1
13

12
𝑘3,2

5

12
𝑘3,3 0

⋮ ⋱ ⋱ 0

𝑘𝑚,1 ⋯ 𝑘𝑚,𝑚−2
13

12
𝑘𝑚,𝑚−1

5

12
𝑘𝑚,𝑚)

 
 
 
 
 
 

 

If desired equation has one solution after that obtained equation will have a good-condition 

inferior the linear trigonometric system of 𝑚  algebraic equations for the unknowns  

𝑦1, 𝑦2, ⋯ , 𝑦𝑚, which can be easily solved by anterior replacement. As a result, the approximate 

solution could be calculated to desired equation without using any projection ways. So, form of 

𝐵𝑇 show that we do not need to evaluate 𝑘𝑖𝑗 for 𝑗 > 𝑖. 
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Numerical examples 

Some examples have been selected from various new references, therefore these may be the 

numerical results that we have here to compare with both of the exact solution with other 

numerical achieved results. The calculations of these examples have been done use Matlab 7. 

Ex.1 Let the first following integral equation 

∫  
𝑡

0

cos (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡 = 𝑥sin (𝑥) 

With the exact solution𝑦(𝑡) = 2sin (𝑡), for 0 ≤ 𝑡 < 1. The numerically results achieved are 

presented in Table 1. That results have well accurate in compared to the other numericaly results 

obtained by using combination of Spline-collocation method and Lagrange interpolation. 

Ex.2 Let the second following integral equation 

∫  
𝑡

0

exp (𝑥 + 𝑡)𝑦(𝑡)𝑑𝑡 = 𝑥exp (𝑥) 

With exact solution 𝑦(𝑡) = exp (−𝑡) for 0 ≤ 𝑡 < 1, Table 2 We note the numerical achieved 

results. 

Table 1: The results obtained for Ex.1 

𝑡 Exact solution Approximate solution (𝑚 = 32) Approximate solution (𝑚 = 64) 
0 0 0.026819 0.016710 

0.1 0.199666 0.200317 0.194916 

0.2 0.397329 0.403089 0.399220 

0.3 0.591042 0.585165 0.604607 

0.4 0.778834 0.761575 0.779028 

0.5 0.958848 0.986410 0.987823 

0.6 1.129279 1.143686 1.116140 

0.7 1.288428 1.298688 1.290559 

0.8 1.434721 1.402992 1.413414 

0.9 1.566649 1.693591 1.641487 
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Table 2: The results obtained for Ex. 2 

t Exact solution Approximate solution (m = 16) Approximate solution (m = 32) 
0 1 0.975721 0.987874 

0.1 0.904829 0.907888 0.895958 

0.2 0.818727 0.802365 0.816203 

0.3 0.740821 0.755727 0.743096 

0.4 0.670318 0.668008 0.676617 

0.5 0.606527 0.592751 0.597174 

0.6 0.548809 0.544154 0.543308 

0.7 0.496579 0.491203 0.496524 

0.8 0.449331 0.466475 0.443770 

0.9 0.406568 0.375927 0.404181 

 

Conclusion 

Using orthogonal piecewise functions as a base to answer the Volterra integral equation of the 

first kind is very easy with few arithmetic operations and effective in comparison with others 

with 𝒪(𝑚2) operations. Its numerical application and efficiency have been checked in several 

examples, we find the approximate solution is abbreviation compared with exact solution only 

at 10 particular points and we see that the precision will increase as 𝑚 increases.  

Source of Funding:  This research received no external funding. 
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Ethical clearance: This research doesn’t required any ethical approval. 

References 

[1] S. Patel, B. L. Panigrahi, Discrete Legendre spectral projection-based methods for Tikhonov 

regularization of first kind Fredholm integral equations, Applied Numerical Mathematics, 198, 

75-93(2024), DOI(https://doi.org/10.1016/j.apnum.2023.12.008)  

[2] P. Das, G. Nelakanti, Convergence analysis of discrete legendre spectral projection methods for 

hammerstein integral equations of mixed type, Applied Mathematics and Computation, 265(15)  

574-601(2015), DOI(https://doi.org/10.1016/j.amc.2015.05.100)  

[3] B. Li, H. Kang, S. Chen, S. Ren, On the approximation of highly oscillatory Volterra integral 

equations of the first kind via Laplace transform, Mathematics and Computers in Simulation, 

214, 92-113(2023), DOI(https://doi.org/10.1016/j.matcom.2023.06.019)  

https://doi.org/10.1016/j.apnum.2023.12.008
https://doi.org/10.1016/j.amc.2015.05.100
https://doi.org/10.1016/j.matcom.2023.06.019


  

 

284 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 4, October 2025 

 
 
 
 

[4] L. Wen, W. Wang, Y. Yu, Dissipativity and asymptotic stability of nonlinear neutral delay 

integro-differential equations, Nonlinear Analysis, 72, 1746–1754(2010), 

DOI(https://doi.org/10.1016/j.na.2009.09.016)  

[5] B. Xu, R. Yuan, On the positive almost periodic type solutions for some nonlinear delay integral 

equations, J. Math. Anal. Appl., 304, 249–268(2005), 

DOI(https://doi.org/10.1016/j.jmaa.2004.09.025)  

[6] S. S. Allaei, Z. W. Yang, H. Brunner, Collocation methods for third-kind VIEs, IMA Journal of 

Numerical Analysis, 37(3), 1104-1124(2016), DOI(https://doi.org/10.1093/imanum/drw033)  

[7] G. S. Gebremedhin, S. R. Jena, Approximate Solution of Ordinary Differential Equations via 

Hybrid Block Approach, Int J Emerg Technol., 10(4), 210-211(2019)  

[8] S. R. Jena, M. Mohanty, S. K. Mishra, Ninth step block method for numerical solution of fourth 

order ordinary differential equation, Advanced Model of Analysis, 55, 45-56(2018), 

DOI(https://doi.org/10.18280/ama_a.550202)  

[9] G.bS. Gebremedhin, S. R. Jena, Approximate solution of a fourth order ordinary differential 

equation via tenth step block method, Int J Comput Sci Math., 11, 253-262(2020), 

DOI(https://doi.org/10.1504/IJCSM.2020.106695)  

[10] S. Kazem, M. Dehghan, Application of finite difference method of lines on the heat equation, 

Numerical Methods for Partial Differential Equations, 34(2), 626-660(2018), 

DOI(https://doi.org/10.1002/num.22218) 

[11] S. R. Jena, D. Nayak AK. Paul, SC. Mishra, Numerical Investigation, Error Analysis and 

Application of Joint Quadrature Scheme in Physical Sciences, Baghdad Sci J., 20(5), 1789-

1796(2023), DOI(https://doi.org/10.21123/bsj.2023.7376)  

[12] S. R. Jena, A. Singh, A Mathematical Model for Approximate Solution of Line Integral, J Comp 

Math Sci., 10(5), 1163-1172(2019) 

[13] S. S. Allaei, Z. W. Yang, H. Brunner, Collocation methods for third-kind VIEs, IMA Journal of 

Numerical Analysis, 37(3), 1104-1124(2016), DOI(https://doi.org/10.1093/imanum/drw033)   

[14] W. Qiu, D. Xu, J. Zhou, J. Guo, An efficient Sinc-collocation method via the DE transformation 

for eighth-order boundary value problems, Journal of Computational and Applied Mathematics, 

408, 114136(2022), DOI(https://doi.org/10.1016/j.cam.2022.114136)  

[15] M. Ghasemi, K. Mohammadi, A. Alipanah, Numerical solution of system of second-order 

integro-differential equations using non classical sinc collocation method, Bound Value Probl. 

, 38, (2023), DOI(http://dx.doi.org/10.1186/s13661-023-01724-3)  

https://doi.org/10.1016/j.na.2009.09.016
https://doi.org/10.1016/j.jmaa.2004.09.025
https://doi.org/10.1093/imanum/drw033
https://doi.org/10.18280/ama_a.550202
https://doi.org/10.1504/IJCSM.2020.106695
https://doi.org/10.1002/num.22218
https://doi.org/10.21123/bsj.2023.7376
https://doi.org/10.1093/imanum/drw033
https://doi.org/10.1016/j.cam.2022.114136
http://dx.doi.org/10.1186/s13661-023-01724-3


  

 

285 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 3, Issue: 4, October 2025 

 
 
 
 

[16] A. Alipanah, K. Mohammadi, M. Ghasemi, Numerical solution of third-order boundary value 

problems using non-classical sinc-collocation method, Comput Methods Differ Equ., 11, 643–

63(2023), DOI(https://doi.org/10.22034/cmde.2022.52725.2218)  

[17] A. Kayal, M. Mandal, G. Nelakanti, Super convergence of Legendre spectral projection methods 

for m-th order integro-differential equations with weakly singular kernels, Journal of 

Computational and Applied Mathematics, 439(15), 115585(2024), 

DOI(https://doi.org/10.1016/j.cam.2023.115585)  

[18] W. Zheng, Y. Chen, J. Zhou, A Legendre spectral method for multidimensional partial Volterra 

integro-differential equations, Journal of Computational and Applied Mathematics, 436(15), 

115302(2024), DOI(https://doi.org/10.1016/j.cam.2023.115302)  

[19] G. Fairweather, D. Meade, A survey of Spline collocation methods for the numerical solution 

of differential equations, In, Mathematics for Large Scale Computing, (Taylor Francis, CRC 

press, 2020), 297-341 

[20] G. Schmidt, & W. Wendland, On spline collocation methods for boundary integral equations 

in the plane, Mathematical methods in the applied sciences, 7(1), 74-89(1985) 

https://doi.org/10.22034/cmde.2022.52725.2218
https://doi.org/10.1016/j.cam.2023.115585
https://doi.org/10.1016/j.cam.2023.115302

