

New Fixed Point Theorem for Expansive Maps on a Two – Metric Space

Sami Abdullah Abed

College of Administration and Economics-University of Diyala

samiaabed@uodiyala.edu.iq

Received: 10 February 2023 Accepted: 25 June 2023

DOI: https://doi.org/10.24237/ASJ.02.01.759A

Abstract

In this paper new theorems a bout fixed point are given for applications in 2- metric space. The common fixed points of two operators exhibit a shared periodicity in their occurrences. The theorem demonstrates that, certain conditions, there exists a specific pattern or sequence of operators where the fixed points exhibit a common periodicity.

Keyword: Two – Metric Space, fixed point, applications in 2- metric space, theorems in Two – Metric Space

نظريات جديدة للنقطة الثابتة لتطبيقات معرفة على الفضاء المتري الثنائى

سامي عبدلله عبد

كلية الادارة والاقتصاد - جامعة ديالي

الخلاصة

هدفت الدراسة لعرض نظريات جديدة ، للتطبيقات نقطة ثابتة في 2- الفضاء مترية. مثل النقاط الثابتة الدورية المشتركة بين عمليتين ، ، او سلسلة من العمليات تحت شروط نظريات موضوع البحث.

الكلمات مفتاحية: الفضاء المتري الثنائي ، النقطة الثابتة ، تطبيقات في الفضاء المتري الثنائي، نظريات في الفضاء المتري الثنائي

Introduction

A metric space (X, d) is familiar for B.Sc. Students in mathematic where the metric function d is not unique and if (X, d_1) and (X, d_2) are matrices spaces with X as finite dimensional than (X, d_2) and (X, d_2) are equivalent. In initial value problem we use the complete metric space (X, d) where X consists of the solution and d as contraction to get unique fixed point that is to get unique solution.

There are some generalization for a metric space and the fixed point , such as D-metric space, complex value metric space , G.metric space and 2-metric space[4,19,525,26,27,28,29,30], 2-metric space and ordinary metric are not topologically equivalent. Therefor the relationship between the obtained results is not easy in 2-metric space and metric space. Also the themes of fixed point between there the kinds of metric spaces are not related easily in general [4, 19, 27].

Extensive research has been carried out in the field. Duo 1963 and Gahler were the first to work in this space. A number of applications such as game theory, medicine, economic etc. The fixed point theorem in mathematics can be considered as a consequence for studing functions or operators on a spaces. A point x_0 is called fixed point for a function f(x) if $f(x_0) = x_0$. Remember that functions can have no or one or finite or infinite a fixed point [1]. Such that $f(x) = x^2 + 1$, $f(x) = \sin x$, f(x), x^2 , and f(x) = x respectively, Banach and Brauer are the pioneers of this field. One can use fixed point theorem for proving the uniqueness of the set. of a given initial value problem under certain conditions. That it is used frequently in many fields such as dynamical system, physics, energy, etc. [2, 3]

Metric Space

Definition 1:

2- Metric space [7]: Suppose X is non empty set and suppose d: $X * X \rightarrow R$ satisfies the following conditions :

1. For a pair of points $x, y \in X$ there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.

- 2. For each $x, y, z \in X$ then d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x)
- 3. For all x, y, z, t \in X then the inequality $d(x, y, z) \le d(x, y, t) + d(x, y, t) + d(y, z, t)$ holds
- 4. For all $x, y, z \in X$ then d(x, y, z) = 0 iff

$$x = y = z$$

Definition 2[1]:

Convergence in 2 – metric space: Suppose (x_n) is a sequences in a 2- metric space (X, d) then we say that (x_n) converges to $x \in X$ if satisfies the following condition: For all $a \in X$ then $\lim_{n \to \infty} d(x_n, x, a) = 0$.

Definition 3[6]:

Cauchy sequence in 2 – metric space (x_n) is cauchy sequence in 2 – metric space if satisfies the following conditions:

for all: $a \in X$, $n, m \in N$ then $\lim_{n,m \to \infty} d(x_n, x_m, a) = 0$

Theorems for fixed points in 2 – metric space

```
Theorem 1 [21]:
```

Suppose X is a complete 2 – metric space and suppose $f: X \to X$ satisfy for all:

x, y, a ∈ X ,

d(f(x), f(y), a)

$$\leq \alpha[d(x, f(x), a) + d(y, f(y), a)] + \beta d(x, y, a)$$

+ $\gamma \max\{d(x, f(y), a), d(y, f(x), a)\}$.

s.t. $\alpha,\beta,\gamma\geq 0$, $2\alpha+\beta+2\gamma<1$ then the function f has a fixed point z and $\underset{n\rightarrow\infty}{\lim}f^n(x_0)=z$, $\forall\;x_0\in X$.

Theorem 2 [12]:

Suppose X is complete 2- metric space and suppose f_1 and f_2 are two mappings in X then for all $x, y, a \in X$:

 $\begin{aligned} &d(f_1(x), f_2(y), a) \leq a_1 d(x, f_1(x), a) + a_2 d(y, f_2(y), a) + a_3 d(x, f_2(y), a) + \\ &a_4 d(y, f_1(x), a) + a_5 d(x, y, a) \\ &\text{such that } a_{1,a_2, a_3, a_4} \text{ and } a_5, \quad \text{are non-negative numbers satisfy } \sum_{i=1}^5 a_i < 1 \\ &\text{and } (a_1 - a_2), (a_3 - a_4) \geq 0 \text{ then } f_1 \text{ and } f_2 \text{ have a common fixed point .} \end{aligned}$

Theorem 3 [21]:

Suppose (X, d) is complete 2-metric space and suppose f is continuous mapping from X s. t. f: X \rightarrow X and satisfy the following conditions $d^{2}(fx, fy, a) \leq \alpha d(x, fx, a) d(y, fy, a) + \beta d(x, fx, a) d(y, fx, a) + \gamma d(y, fy, a) d(y, fx, a) + \delta d(x, fy, a) d(y, fx, a),$

for all x, y, $a \in X$ and $\alpha, \beta, \gamma, \delta \ge 0$ and $max(\alpha, \delta) < 1$ then f has fixed point in X.

Theorem 4[21]:

Suppose (X, d) is complete 2-metric space and suppose f, T are two continuous identical mappings from X and satisfy the following conditions:

- 1. $fT = Tf; f(X) \subset T(X)$
- 2. $d^{2}(fx, fy, a) \leq \alpha d(Tx, fx, a)d(Ty, fy, a) + \beta d(Tx, fx, a)d(Ty, fx, a) +$ $\gamma d(Ty, fy, a)d(Ty, fx, a) + \delta d(Tx, fy, a)d(Ty, fx, a).$

For all x, y, $a \in X$ and α , β , γ , $\delta \ge 0$ with max $(\alpha, \delta) < 1$ then f, T has a common fixed point in X.

Theorem 5[21]:

Suppose (X, d) complete 2-metric space and suppose E, T, F continuous functional from X and satisfy the following conditions:

- 1. ET = TE; FT = TF; E(X) \subset T(X); F(X) \subset T(X)
- 2. $d^{2}(Ex, Fy, a) \leq \alpha d(Tx, Ex, a)d(Ty, Fy, a) + \beta d(Tx, Ex, a)d(Ty, Ex, a)ET + \gamma d(Ty, Fy, a)d(Ty, Ex, a) + \delta d(Tx, Fy, a)d(Ty, Ex, a)$

For all $x, y, a \in X$ and $\alpha, \beta, \gamma, \delta \ge 0$ with $\max(\alpha, \delta) < 1$ then E, T, F have a commu fixed point in X.

Convergence theorems of sequences of mappings in a 2-metric space and their fixed points:

Theorem 1 [18]

Suppose X is complete 2-metric space and d is continuous and suppose

 $\{f_n\}$ sequence of mappings. Defined by $f_n: X \to x$ and satisfy the following conditions:

$$d(f(x), f(y), a) \le \alpha[d(x, f(x), a) + d(y, f(y), a)] + \beta d(x, y, a)$$

+ $\gamma \max\{d(x, f(y), a), d(y, f(x), a)\}$

For $n \in N$ and the numbers $\alpha, \beta, \gamma \in \mathbb{R}^+$ also $\{f_n\}$ converges point wise to f, then f has a fixed point z and such that $z_n \to z$ then z_n is the fixed point of f_n .

Theorem 2 [21]

Suppose X complete 2-metric space and suppose $\{f_n\}$ sequence of functions $f_n: X \to X$ has fixed point z_n with the following conditions:

$$\begin{aligned} d(f(x), f(y), a) &\leq \alpha [d(x, f(x), a) + d(y, f(y), a)] + \beta d(x, y, a) \\ &+ \gamma max \{ d(x, f(y), a), d(y, f(x), a) \} \end{aligned}$$

has fixed points z and such that $f_n \rightarrow f$ there regularly $z_n \rightarrow z.$

Main Results

Through the following five theorems we prove the existance of fixed points of operators defend on 2- metric spaces and also a common fixed point for operators under certain conditions as shown in these theorems

Theorem 1

Suppose X is complete 2-metric space and suppose $T: X \rightarrow X$ satisfies:

$$d(Tx, Ty, a) \ge \sqrt{d(x, Tx, a)d(y, Ty, a)}$$

For all, y, a $\,\in X\,$, then T has periodic point and T continuous functional.

Proof:

Define a sequence (x_n) from X such that $x_n = T^n x_0$

for some value x_0 suppose $x_n \neq x_m$ whatever m, n then:

 $d(x_n, x_{n+1}, a) = d(Tx_{n-1}, Tx_n, a) \ge \sqrt{d(x_{n-1}, Tx_{n-1}, a)d(x_n, Tx_n, a)}$

 $=\sqrt{d(x_{n-1}, x_n, a)d(x_n, x_{n+1}, a)}$

or $d(x_n, x_{n+1}, a) \ge d(x_{n-1}, x_n, a)$.

Similarly: $d(x_{n-1}, x_n, a) \ge d(x_{n-2}, x_{n-1}, a)$ and so we find:

$$d(x_n, x_{n+1}, a) \ge d(x_{n-1}, x_n, a) \ge \cdots \ge d(x_0, x_1, a)$$

and so for all positive numbers r, n we find:

$$d(x_n, x_{n+r}, a) \ge \sqrt{d(x_{n-1}, x_n, a)d(x_{n+r-1}, x_{n+r}, a)}$$
$$\ge d(x_0, x_1, a) > 0$$

That is $d(x_n, x_{n+r}, a) \ge 0$

This shows that the sequence (x_n) is not convergent and this is a contradiction so $x_n \neq x_m$ is not for all values of m, n so we have $x_n = x_{n+r}$ for some values of $n \ge 0, r \ge 1$ then $x_n = T^r x_n$.

Now let's say n is the smallest non-negative integer such that $x_n = x_{n+r}$ so we'll choose the smallest number r, let's say $n \ge 1$ then the sequence $x_0, x_1, \dots, x_{n+r-1}$ consists of different points.

Now we have:

$$0 = d(x_n, x_{n+r}, a) \ge \sqrt{d(x_n, x_{n-1}, a)d(x_{n+r}, x_{n+r-1}, a)}$$
$$\ge d(x_1, x_0, a) \ge 0$$

It is axiomatic that n = 0 so x_0 is a periodic point of T.

Let's say $T_x = T_y$ for some $x \neq y$ thus:

$$0 = d(Tx, Ty, a) \ge \sqrt{d(x, Tx, a)d(y, Ty, a)}$$

This gives that $x = T_x$ or $y = T_y$ and since y is periodic we have $T^m y = y$ for some values of > 0, now for $x = T_x$ and $y = T^m y = T^{m-1}T_y = T^{m-1}T_x = x$ that is x = y and this is a contradiction.

Similarly, $T_y = y$ leads to contradiction, which means that T is a discrete implementation.

Theorem 2:

Suppose S, T: X \rightarrow Xare continuous mappings on a complete 2-metric space X in which:

$$d(Sx, Ty, a) < \sqrt{d(x, Sx, a)d(y, Ty, a)}$$

So for all x, y, $a \in X$ and $x \neq y \neq a$ then S and T have a common fixed point and X is a singular space.

Proof:

Define the sequence (x_n) of X so that $x_{2n+1} = Sx_{2n}, x_{2n} = Tx_{2n-1}$ so X is a compact space so (x_n) has partial chains x_{nk} such that $x_{nk} \to x$ in X for some x of X. Now from the continuation S, T we have:

$$x = \lim_{k \to \infty} x_{n_{2k}} = \lim_{k \to \infty} Tx_{n_{2k-1}} = T\left(\lim_{k \to \infty} x_{n_{2k-1}}\right) = Tx \text{ or } x = Tx$$

Similarly $x = S_x$.

We will now prove that X is singular so let's put $y \neq x$ of X then for each a from X we have :

$$d(x, Ty, a) = d(Sx, Ty, a) < \sqrt{d(x, Sx, a)d(y, Ty, a)} = 0$$

Or $d(x, T_y, a) < 0$ for each a of X which is not possible therefore x = y

Theorem 3:

Assuming X is a 2-metric space and assuming $T: X \to X$, such that:

$$d(Tx, Ty, a) \ge \frac{d^2(Tx, x, a) + d^2(Ty, y, a)}{d(Tx, x, a) + d(Ty, y, a)}$$

and that for all $a \in X$ and $d(T_x, x, a) + d(T_y, y, a) \neq 0$ then every point x of X is a fixed point of T.

Proof:

Assuming x is some point of X then for each \in X :

$$0 = d(Tx, x, a) \ge \frac{d^2(Tx, x, a) + d^2(Tx, x, a)}{d(Tx, x, a) + d(Tx, x, a)} = d(Tx, x, a)$$

That is, d(Tx, x, a) = 0 for each $a \in X$ or Tx = x.

Theorem 4:

Suppose $S_n, T_n: X \to X$ are a sequences of mappings such that:

$$d(S_m x, T_n y, a) \le h \sqrt{d(S_m x, x, a) d(T_n y, y, a)}$$

This is for all x, y, $a \in X$ and 0 < h < 1 then for all values of m, n for which S_n and T_n have a common fixed point.

Proof: Let's define the sequence (x_n) of X, so that $x_{2n+1} = S_{n+1}x_{2n}, x_{2n} = T_nx_{2n-1}$.

If $x_{2n} \neq x_{2n+1}$ then for each a of X we have:

$$\begin{split} d(x_{2n+1}, x_{2n}, a) &= d(S_{n+1}x_{2n}, T_n x_{2n-1}, a) \\ &\leq h \sqrt{d(S_{n+1}x_{2n}, x_{2n}, a)d(T_n x_{2n-1}, x_{2n-1}, a)} \\ &= h \sqrt{d(x_{2n+1}, x_{2n}, a)d(x_{2n}, x_{2n-1}, a)} \\ \end{split}$$
That is: $d(x_{2n+1}, x_{2n}, a) &\leq \rho d(x_{2n}, x_{2n-1}, a); \ \rho = h^2 < 1$ Similarly: $d(x_{2n}, x_{2n-1}, a) \leq \rho d(x_{2n-1}, x_{2n-2}, a); \ \rho = h^2 < 1$ In general : $d(x_{n+1}, x_n, a) \leq \rho d(x_n, x_{n-1}, a)$ or : $d(x_{n+1}, x_n, a) \leq \rho^n d(x_1, x_0, a)$ Then $n \rightarrow \infty$ find $\lim_{n \rightarrow \infty} d(x_{n+1}, x_n, a) = 0$ so that $\rho < 1$. It is easy to prove that (x_n) is the Cauchy sequence in X and that $(x_n) \rightarrow x; x \in X$. Now let's take $d(x_{2n+1}, T_m x, a) = d(S_{n+1}x_{2n}, T_m x, a)$ $&\leq h \sqrt{d(S_{n+1}x_{2n}, x_{2n}, a)d(T_m x, x, a)}$ $&= \sqrt{d(x_{2n+1}, x_{2n}, a)d(T_m x, x, a)}$

When $n \to \infty$ we find $d(x, T_m x, a)$ or $x \in T_m x$ for all values of m and similarly $x \in S_m x$ this means that S_n , T_n has a common fixed point.

Theorem 5:

Assuming that X is a 2-metric space with two distance functions e, d if X satisfy the conditions:

- 1. X is a complete metric space with the distance e.
- 2. $e(x, y, a) \le d(x, y, a)$

3. S, $T_n: X \to X$ and S continuing and checking $(Sx, T_ny, a) \le \sqrt{d(Sx, x, a)d(T_ny, y, a)}$ So for all x, y, $a \in X$ and 0 < h < 1, then for all,S and T_n has a common fixed point.

Proof: Let us know the sequence (x_n) from X, so that $x_{2n+1} = Sx_{2n}, x_{2n} = T_n x_{2n-1}$ then according to the theorem (4), (x_n) will be a Cauchy sequence with a distance function d and only (2) in (x_n) is a Cauchy sequence with a space function e as well, so $(x_n) \rightarrow x$; $x \in X$. From the continuum of S we have $x = S_x$.

Put d(x, T_nx, a) = d(Sx, T_nx, a)
$$\leq h\sqrt{d(Sx, x, a)d(T_nx, x, a)}$$

= d(x, T_nx, a) = 0

That is for every $a \in X$ or $x = T_n x$ for every n, so S, T_n have a common fixed point.

Conclusion

From the proved five theorems 2.4.1..... 2.4.5 we conclude when the 2-metric space is complete then the operator under certain condition is continuous and each point is periodics. If two operators are continuous and satisfy a given condition then they have common fixed point. Similarly for a sequencesal operators.

References

- 1. M. Abramowiz, I. A. Stegun, eds. Hand book of Mathematical Functions, (Dover Publications, New York, 1965)
- 2. Alexander, Diagonally implicit Runge-Kutta methods for stiff ODEs, SIAMJ. Numer. Anal., 14(6), 1006-1021(1977)
- **3.** constantinides, Numerical Methods for Chemical Engineers with Matlab Applications, (New Jersey, 1999)
- 4. A. C. Simpson, Fixed points and lines in 2-metric spaces, Adv Math., 229, 668-600(2012)
- W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed., (Academic, Inc., 1992)
- 6. O. Axelsson, A class of A-Stable Methods, BIT., 9, 185-199(1969)
- 7. M. Bakker, Analytical aspects of a minimax Problem, (Mathematical center, Amsterdam, 1971)
- 8. J. C. Butcher, Implicit Runge Kutta Processes, Math. Comp, 18, 50-64(1964)
- J. C. Butcher, Z. Jackiewic, Implementation of Diagonally Implicit Multistage Integration Methods for Ordinary Differential Equations, SIAM J. Numer. Anal., 34(6), 2119-2141(1997)
- 10. J. C. Butcher, Z. Jackiewic, Areliable Error Estimation For Diagonally Implicit Multistage integration Methods, BIT, 41(4), 656-665(2001)

- **11.** J. C. Butcher, W. N. Wright, A transformation relating explicit and diagonallyimplicit general linear methods, J. APPL. Numer. Math, 44, 313-327(2003)
- 12. J. C. Butcher, Z. Jackiewic, Construction of high order diagonally implicit multistage integration methods for ordinary differential equations, J. APPL. Numer. Math, 27, 1-12 (1998)
- 13. J. C. Butcher, A stability Property of implicit Runge-Kutta methods, BIT, 15, 358-361 (1975)
- 14. K. Burrage, F. H. Chipman, The Stability Properties of Singly -implicit general Linear Methods, IMA J. Numer. Anal, 5, 287-295(1985)
- 15. K. Burrage, J. C. Butcher, Stability criteria for implicit Runge-Kutta Methods, SIMA J. Numer. Anal, 16(1), 46-57(1979)
- **16.** G. J. Cooper, J. C. Butcher, An Iteration scheme for implicit Runge-Kutta methods,IMA J. Numer. Anal, 3, 127-140(1983)
- 17. G. Dahlquist, A. Biorck, Numerical Methods, (Prentice-Hall, Inc., 1987)
- **18.** K. Dekker, J. C. Verwer, Stability of Runge-Kutta methods for stiff non-linear differential equations, Elsevier Science Publishers B. V, (1984)
- 19. B. Deshpande, S. Chouhan, Common fixed point theorems for hybrid pairs of mappings with some weaker conditions in 2-metric spaces, Fasc. Math. 46, 37-55(2011)
- 20. B. I. Ehle, One Pade Approximations for the exponential function and A-stable methods for the solution of initial value problems, Univ of waterloo, Dept. Applied Analysis and computer science, Research Rep. No. CSRR 2010, (1969)
- **21.** R.Frank, G. Kirlinger, A Note on convergence concepts for stiff problems, J. computing, 44, 197-208(1990)
- **22.** R. Frank, J. Schneld, W. Christopher, Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. Numer. Anal., 22(3), 515-534(1985)
- 23. R. Frank, J. Schneld, W. Christopher, Stability properties of implicit Runge-Kutta methods, SIAM J. Numer. Anal., 22(3), 497-514(1985)

- 24. R. Frank, J. Schneld, W. Christopher, The concept of B-Convergence, SIAM J. Numer. Anal., 18(5), 753-779(1981)
- 25. Y. Feng, W. Mao, The equivalence of cone metric spaces and metric spaces, Fixed Point Theory, 11(2), 259-264(2010)
- **26.** L. G.Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332, 1468-1476(2007)
- 27. K. Iseki, Fixed point theorems in 2-metric spaces Math Sem, Notes Kobe Univ., 3, 133-136(1975)
- **28.** M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Foxed Point Theory Appl. 2012, Article ID-201(2012)
- 29. Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, In: Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia, Spain, 189-198 (2001)
- **30.** Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J Nonlinear Convex Anal, 7(2), 289-247(2006)