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Abstract

In this paper, a meshless collocation method using a polynomial expansion is proposed to solve
a mixed fourth order differential boundary value problem. By employing the CGLS and PCG
algorithms to solve some examples with different exact solutions, and by introducing noise for

the input boundary data, the numerical stability of the suggested approaches is demonstrated.
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Introduction

Many applications of the fourth order differential equation exist in the domains of mathematics,
engineering mathematics, fluid and solid mechanics, and computer sciences. Many iterative and
non-iterative techniques that satisfy the Dirichlet and/or Dirichlet and Neumann conditions on
the boundary have been developed in recent years. While some authors chose to divide the
fourth order problem into two second order problems, i.e., two problems with the Laplace
equation, this allowed them to take advantage of the second order equation’s advantages and all
the results obtained for them. Other authors chose to treat the fourth order problem directly and
solve it in its original form. Boujaj et al. Finite difference method (FDM)-based numerical
approaches were proposed by various authors (see [4] Finite difference method-based
numerical approaches were proposed by certain authors (FDM).

By dividing the bi-harmonic issue into two decoupled Poisson equations, (see [1], [2]). Other
works based on the finite element method (FEM) include those by [2] and the references cited
therein). An iterative method based on the fixed point theory to solve bi-harmonic-type equation
with mixed boundary conditions see [6]. Many study have done to prove that the bi-harmonic
problem can be solved see ([3], [5], [7], [10], [11], [12], [13]).

In this work, we provide a mesh less collecting approach based on [15]'s method. With the help
of the provided Cauchy data, Mostafal et. al. [14]. A novel iterative technique has just been
developed, based on the transformation of the bi-harmonic due to the work of Mostafa et. Al
[14], them work was limited to an annular domain, but in this work, we study another kind of

domain with different types of non-accessible part of the boundary.

We construct a linear system, solve it using the CGLS and PCG algorithms by applying the
suggested method to a few cases with exact solutions that are either polynomial or not, and then

apply some noise to the provided data to check the stability of the numerical results.

The remainder of this article is organized as follows: in section 2, the bi-harmonic equation for

the inverse Cauchy problem is given. Using a numerical approach that approximates the
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solution by solving the boundary value problem of Bi-Laplacian differential equation using the

approximation of the solution as a polynomial expansion.

Inverse Cauchy problem bi-harmonic equation

We analysis the bi harmonic equation with an annular domain Q with
Q={(0):0<r<p.(0), 0< 6 < 2m}
For some given real function p,(6) , with the boundary 0Q = T; U T,
L={r0) :r=p,(0) 0 < 6<pm}
L={r6) :r=p.,(0) PBn < 6<2m}

The problem is given as follows:

A2y = F(x,y) in Q 1)
u(p,6) = u0(6) onT, 2)
3, u(p,6) = h0(6) onT, 3)
Mu(p,6) = wq onT, (4)
8, Au(p,0) = w} onT, (5)

The accessible section of the boundary is the one where the Cauchy data u,d,,u, Au, d,,Au are
given on I';; however, because there are no data on the boundary conditions in this part, the
accessible part of the boundary is over-determined (there are four boundary conditions in this

part). In fact, this problem is an inverse problem since it is ill-posed in the sense of Hadamard

[8], [9].

The boundary's under-determined or inaccessible portion is referred to as such. To find the
unknown function on the interior under-determined boundary, an inverse Cauchy problem for

the bi-Laplacian is formulated [9].
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As we remembered, d,, is the outer normal derivative in polar coordinates is given by:

B du(p,0) p' du(p,6) (6)
dnu(p,0) =n(6) i a8
With
p(6) (7)
9 =
N O TIOR

where is the derivative of the radius function with respect to 6, in our case we take the radius

a constant number.

Actually, the inner product of the gradient and the normal vector yields the normal

derivatives, i.e.g—Z:Vu.ﬁ, S0 we can express the normal derivate in terms of the derivative with

respect to x and y:

dpu =n(0) |cos () — g—;sin 6) l d,u+n(0)|sin (0) — Z—;cos (6) | 9, u. ®

Expression of Solution as a polynomial expansion

We consider that the solution(x, y) is expressed as the following polynomial expansion:

m i
u(x,y) :ZZCU xtTyi-1

i=1 j=1 (9)

Now, we express the problem in (1-5) in form of the expansion in (9). To do so, we find
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m i o - (10)
deu(ry) = D ) cy(i—j)xilyi
i=1j=1
m i o (11)
dy u(x,y) = ZZ cij G— 1) xTy/7?
i=1 j=1
From which the different degree of derivatives are calculated to find Au,0,,A,A%u
m i
BuCey) = Y eyli—jli = j = DIy 4 (= 1)
i=1 j=1
— 2)xi_jyj_3
(12)
Then
m i
ox(Au) = ZZ cijli—j(i—j—1DxtI-2i1yi=2
i=1 j=1
+ (-1 —2)xt Ty 3
(13)
m l
Dy = Y N eyl = )i = j = DxTIH2yI B 4 (= 1)
i=1 j=1
— Z)xl_]y]_4'
So
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0, Au = m

> ) [cos(e)

i=1j=1

"E;Sin(9)][(i-1)(i-j-— (i —j — 2)xii3yi-1

+ (= DG —2)( — i i3]

+1(6) [cos(e) - g—;sin(e)] [(—DE—j—-1(§ —DxiI~2y)~2

+( =10 =20 -3y

And

Ry) =D Y eyli=Pli=j =Dl =) = 2)(i - j = aiTHyi~?

i=1j=1

+2(i—NE—j-DG-DG —2)x"T2yI3 + (-1

= 2)( = 3)(j — HxyI

It is necessary to determine the coefficients cij and their total number is n=

To be able to present our problem as a linear system, the matrix c;; with Cy,

with k = XD
2

of variables, , say ¥, with a column of coefficient vector

(16)

m(m+1)

+ j, so the unknowns function can be expressed as an inner product of a row

(17)

u=vT.Cc
where
_Cl_
(&)
c
¥ =[1,xyx%,xy, y?, x3,x%y, xy?, y3 ..], C 3
LC)y
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Similarly, the normal derivative d,,u can be represented as a scalar product of a row of

variables, say ® , with a column of coefficient vector ¢ ,i.e. u = ®T.C where the
component of e are given by:
@, =n(6) [ — HxtT 7y 7! <cos 6) - %sinw)) + 0

, (18)
— Dxi-Tyl=2 <sin 6) — %cos(@))l

Another way to express the Laplacian is as the inner product of a row of variables, such as d.

with a column of coefficient vector c, i.e. Au = ©T.c where the component of d are given by
O = (1 =) —j = Dx' 72y 4+ (= DG - 2x' Ty (19)

and the normal derivative of the Laplacian can be expressed as an inner product of a row of
variables, say e , with a column of coefficient vector ¢ ,i.e.d, Au = ET. ¢ where the

component of e are given by

21 = 1(6) [c0s(6) = Zsin(®)] [G:= ) =) = DA =j =Dy
+( =G~ 2~ DIy ]
+7(0) |cos(6)
~ Lsin@)] =)= = DG = DI yi
+ (= DG =26 - xiTy|

Finally, a row of variables can be used to express the bi-Laplacian as an inner product.
Say Y,with a column of vector coefficients ¢, i.e. A>u = YT.c where the component of e are

given by
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Ve=0-DU—-j-DE~-j=-20~-j=-)x"((-j-Hy (-1
20 -NUE—j-DU-DU =2 x"(—j=2)y"(
=3)+0-DG-2)(-DU-HDx"E=Ny*(G—5))
(21)

We are now prepared to build the linear system.
AC =B (22)
is built so that A and B are matrices with five blocks:

1. To create the first one, use the formula in (17) for a given function uyand a few chosen
spots on the surface to meet the first boundary condition stated in (2). utilizing the
equation in (17) for a particular function and for a few chosen locations .

2. In order to meet the second boundary condition in (3) for any given functionh, and for
some chosen locations onI’;, the second block must use the formula in (18).

3. By meeting the third boundary condition in (4) using the formula in (19) for some
given functionw, and for some chosen locations onTI’, the third block is completed.

4. The formulain (20) is used to satisfy the fourth boundary condition in (5) for some
given functionw, and for a few chosen places onI; the fourth block.

5. By solving the bi-Laplacian differential equation in (1) using the formula in (21) for a
given function F and for a few chosen locations in the domain, the fifth block is
reached Q:

For this we select points on the boundaryT; ,say(xi, yi),i=2,....n; to satisfy the condition(2-5)
and we select n, point in the domain Q , say (xj,yj), j=1,....n, to satisfy the equation(1).So the

vector b is of order 4n, + n, and A is (4n; + n,) X n matrix.
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— ‘.ijl —
,5 (U (61)]
W, :
b, uy(61)
: h0(91)
o, 5
é)ll WO(:gl)
A=| b= '
6 wo(6n,)
o Wo(61)
.:41
-;:-: W0(9n1)
Zny 0
Y; :
5 0
¥,

In order to solve the inverse problem related to the boundary differential bi-Laplacian
differential equation, we need to solve the linear system given in (23).

Solving the linear system by using CGLS and PCG algorithms

An important consideration when beginning and ending a numerical method is the initial
guess which is assumed here to be the zero vector and the terminating criteria for these
algorithms is given by :

absolute error < Tol (24)
relative error < Tol (25)
where Tol is the tolerance, which is given as small as possible.

Numerical results and discussion

We take a look at a few cases with exact answers that are either polynomial or non-
polynomial to demonstrate the effectiveness of the suggested strategy. Calculations are made

using the precise solution provided:
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e the position it plays in the domain Q

e The exact solution's trace is equal to uyon I}

e the standard Derivative The precise response is equal to h, onl’;

e The exact solution's Laplacian is equal to w, on I}

e The Laplacian normal derivative is equal to w, on I}

We use these data along with the zero initial guess and the CGLS and PCG: Similar

techniques are employed together with certain appropriate tolerance and stopping

standards.

Example (1): Suppose that the exact solution is u,,qc: (%, ¥) = 6x%y? — x* — y* the

domain is bounded by p(8) =1 and is defined taking B = 1 the number of boundary

collection used for discretizing the boundary is taken to be n1=80 and the number of

internal collection is n2=400 .

Case 1: n1=80 and n2=400 with Tol= 101>

M NO.OF RELATIVE ERROR NO.OF RELATIVE ERROR
ITERATION FOR WITH CGLS ITERATION WITH PCG
CGLS FOR PCG
2 3 1.23045359E+00 3 1.23045359E+00
3 262 2.26243810E+15 1.58600200E+00
4 17 7.01342488E+00 15 7.01342488E+00
5 43 1.73958897E-14 46 3.30210077E-12
6 77 1.30191306E-13 112 3.74223534E-10
7 197 1.56788609E-12 313 1.59021906E-08
8 495 2.49907871E-11 838 9.57966992E-07
9 1322 2.43232513E-11 3031 3.69698855E-06
10 3066 3.09788058E-11 9621 2.86034216E-05

For m=5 the number of iteration is 43 and the relative error is equal 1.73958897E-14 for
CGLS and 3.30210077E-10 for PCG that is a good approximation.
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Approximate solution by CGLS and exact solution w40 (x, y) = 6x%y? — x* — y*(in the

right),error(in the left),for n1=80 and n2=400 with Tol= 107>

Case 2 : with n1=80 and n2=400, Tol=10"15

No. of Iteration

No.of Iteration for

Relative Error with

M CGLS Relative Error with CGLS CGLS CGLS
2 3 2.16871820E+00 3 2.16871820E+00
3 10 1.20872984E+00 8 1.20872984E+00
4 21 4.56326103E+00 19 4.56326103E+00
5 46 8.00066549E-14 63 7.81626640E-10
6 100 8.97886085E-14 162 4.23873567E-09
7 271 9.76607129E-13 407 2.04647232E-08
8 704 7.54719866E-12 1442 1.59651468E-06
9 1890 2.93418093E-11 5280 2.29215665E-05
10 4655 1.30082285E-10 22451 5.73572629E-05
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For m=5 the number of iteration =46 and the relative error is equal 8.00066549¢e-14 for CGLC
and 7.81626640e-10 for CPC that is a good approximation.
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Approximate solution by CGLS and exact solution u,,qc¢(x, ¥) = 6x2y? — x* — y*(in the

right),error(in the left),for n1=80 and n2=400 with Tol= 10715

Example (2): Suppose that the exact solution is u(x,y) = exp(—x”"2)the domain is

bounded by p(8) =0.5 and is defined taking g = 0.5 the number of boundary collection
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used for discretizing the boundary is taken to be n1=80 and nr=5 and the number of

internal collection n2=400.

Case 1: n1=80 and n2=400 with Tol= 10715

M | No.of Iteration for CGLS Relatl\éeGE[rSor with No.ofcl:tgrﬁtslon for Relatl\ét:eGI‘E[rSor with
2 3 5.93142786E-01 3 5.93142786E-01
3 8 9.00005112E-01 7 9.00005112E-01
4 16 3.37126055E-01 13 3.37126055E-01
5 35 1.30369360E+00 30 1.30369360E+00
6 98 9.78882346E-01 58 9.78882346E-01
7 242 2.80968384E-01 155 2.80968384E-01
8 792 1.90740910E-01 331 1.90740910E-01
9 1138 3.97901471E-02 874 3.97901480E-02
10 3474 6.04848209E-02 2097 6.04848249E-02

Similarly to the previous case, for m=9 the number of iteration =1138 and the relative error is
equal 3.97901471e-2 for CGLC and 3,97901480e-2 for CPC that is a good approximation.

o e Wi OGLS

......

Volume: 2, Issue: 3, July 2024
Manuscript Code: 772B

285

P-1SSN: 2958-4612
E-ISSN: 2959-5568



Academic Science Journal

Frret wth P0G

Exmt 0rdd apro

it souAons with COLE

Agprocrsste wnd sexct sobbons in fxdon of 4

0= Foct
0 Compues bty OGLS
Cooputed by PCO

Approximate solution by CGLS and exact solution u,,qc: (x,y) = exp(—x?) (in the
right),error(in the left),for n1=80 and n2=400 with Tol= 10~15

Case 2 : with n1=80 and n2=400, Tol=10"15

M No.of Iteration for Relative Error with No.of Iteration for Relative Error with
CGLS CGLS CGLS CGLS
2 3 2.94835693E-01 3 2.94835693E-01
3 8 1.36619542E-01 7 1.36619542E-01
4 22 1.59289805E-01 16 1.59289805E-01
5 41 1.32677152E-01 33 1.32677152E-01
6 89 2.72626648E-01 68 2.72626648E-01
7 197 2.19980949E-02 160 2.19980949E-02
8 597 1.15933050E-02 377 1.15933051E-02
9 991 1.13179460E-03 990 1.13179533E-03
10 2699 1.44363063E-03 2726 1.44362805E-03

For m=9 the number of iteration is 991 and the relative error is equal 1,13179460E-03 for
CGLS and 1.13179533E-03 for PCG that is a good approximation.
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Approximate solution by CGLS and exact solution u,,4c(x,y) = exp(—x?) (in the
right),error(in the left),for n1=80 and n2=400 with Tol= 10715

Conclusion

On an annular domain, we resolve the inverse Cauchy problem of the bi-Laplacian differential
equation. Unknown data are recovered for a portion of the boundary benefiting from the extra
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data on th other part of the boundary. A direct problem is obtained by replacing a polynomial
expansion of the solution in the inverse Cauchy problem. To demonstrate that the inverse
Cauchy problem is extremely ill-posed, many types of numerical examples with exact
polynomial and non-polynomial solutions are provided. Applying various noise values to the

procedure allows for the stability of the method to be evaluated Cauchy data.
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