

ic – Separation Axioms in Topological Spaces

Beyda S. Abdullah, Ruqayah N. Balo and Sabih W. Askandar*

Department of Mathematics - College of Education for Pure Sciences - University of Mosul, Mosul - Iraq

sabihqaqos@uomosul.edu.iq

Received: 28 August 2022

Accepted: 26 October 2022

DOI: https://dx.doi.org/10.24237/ASJ.01.01.673C

Abstract

A new class of separation axioms known as *ic*-separation axioms is introduced in this study. They rely on new extended open sets known as *ic*-open sets, and we describe the relationship between them and give several examples. Additionally, we define *ic*-generalized closed set concepts in a topological space in order to frame the another class of separation axioms called *ic*-generalized separation axioms. Among other things, the basic concern properties and relative preservation properties of these spaces are projected under *ic*-generalized irresolute mappings.

Keywords: *ic* – open sets, *ic* – continuous map, *ic*-irresolute map, Separation Axioms.

بديهيات الفصل من النمط - ic في الفضاء التبولوجي بيداء سهيل عبد الله، رقية نافع بلو وصبيح وديع استندر قسم الرياضيات – كلية التربية للعلوم الصرفة – جامعة الموصل، موصل – العراق الخلاصة:

تم تقديم فئة جديدة من بديهيات الفصل تعرف بديهيات الفصل من النمط - ic في هذة الدراسة. انها تعتمد على مجموعات مفتوحة موسعة جديدة تعرف باسم مجموعات مفتوحة من النمط – ic، ونحن نصف العلاقة بينها ونقدم العديد من الامثلة.

بالاضافة الى ذلك، نحدد مفاهيم المجموعة المعلقة المعممة من النمط – ic في القضاء التبولوجي من اجل خلق فئة اخرى من بديهيات الفصل تسمى بديهيات الفصل من النمط - ic المعمم. من بين اشياء اخرى، يتم عرض الخصائص الاساسية للمجموعة وخصائص النسبية لهذة الفضاءات في اطار التطبيقات المذبذبة.

الكلمات المفتاحية: المجموعات المفتوحة من النمط - ic ، التطبيق المستمر من النمط – ic ، التطبيق المذبذب من النمط - ic، بديهيات الفصل.

Introduction

By utilizing the idea of pre-open sets, Fatima, M. Mohammad [1] established pre-Techonov and pre-Hausdorff separation axioms in Intuitionistic Fuzzy Special Topological Spaces in 2006. Another sort of separation axioms dependent on i-open sets was presented in 2016 by Sabih W. Askandar [2]. The purpose of this study is to present a novel separation axiom that depends on ic-open sets., which we call *ic* – separation axioms such as (T_{0ic} , T_{1ic} , T_{2ic} , *ic* – *regular and ic* – *normal space*). This collection of separation axioms can be used in connection with others to compare and discover characteristics and features that are comparable. Also, the concept of an *ic*-generalized closed set has been coined and then *ic*generalized separation axioms have been framed with respect to *ic*-generalized open sets. We denoted the topological spaces (X, τ) and (Y, σ) simbly by X and Y respectively, open sets (resp. closed sets) by (*os*), (*cs*) and the phrase topological space by *TS*. (X, τ^{ic}) and (X, τ^{icg}) are always topological spaces throughout this work, where τ^{ic} and τ^{icg} represent the family of all *ic*-open and *icg*-open sets of X.

1. Preliminaries

Throughout this paper cl(E) and Int(E) respectively closure and the interior of the set E, where E is a subset of a topological space (X, τ) on which no separation axioms are assumed unless explicitly stated.

Definition 1.1: If *E* be a subset of a space *X*, then *E* is named

- (1) ic open set [3] is denoted by (ic-cs) if there exists closed set $F \neq \phi$, $X \in \tau^c$ such that: $F \cap E \subseteq Int(E)$, where Int(E) is the interior of E and τ^c is the family of all (cs), the complement of *ic*-open is said *ic*-closed and designated by (ic-cs).
- (2) g-closed set [4] is designated by (g-cs) if $cl(E) \subset U$ whenever $E \subset U$ and U is (os).
- (3) ico(X), icc(X) and gc(X) are family of *ic*-open, *ic*-closed and *g*-closed sets respectively.

Definition 1.2: (1) The ic – closure of a subset E of X [3] is the intersection of all (ic – cs) that contains E and is denoted by $cl_{ic}(E)$.

(2) The ic – interior of a subset E of X is the union of all (ic-os) subsets of

Χ

[3] that contained in *E* and is denoted by $Int_{ic}(E)$. **Definition 1.3:** A mapping $f: X \to Y$ is called:

- 1. "Continuous" denoted by (contm)[3], if $f^{-1}(F)$ is (cs) in X. $\forall F \in (cs)$ in Y.
- 2. "*ic*-continuous" denoted by (*ic*-contm) [3], if $f^{-1}(F)$ is (*ic*-cs) in $X. \forall F \in (cs)$ in Y.

Theorem 1.4. 1. Each (cs) in TS is (g-cs) [4]. **2.** Each (os) in TS is (ic-os) [3].

Definition 1.5: "A TS(X, τ) is said to be:

(1) T_{0ic} – space iff [3] to each set of unique points a, b of X, there exists an(*ic-os*) containing one but not the other.

(2) T_{1ic} – space iff [3] to each set of unique points *a*, *b* of *X*, there exists a pair of (*ic-os*), one containing *a* but not b, and the other with b. but not a".

(3) " T_{2ic} – space iff [3] to each pair of distinct points a, b of X, there exists a pair of disjoint(*ic-os*), one containing a and the other with b".

(4) $T_{1/2}$ -space [5] if each (g-cs) is (cs).

Theorem 1.6. [3] Each T_{2ic} – space is T_{1ic} and also is T_{0ic} .

2. *ic* – Separation Axioms in Topological Spaces.

In this section, we discuss and study new class of separation axioms by utilizing ic-open set.

Definition 2.1: A TS (X, τ) is said to be:

(1) *ic*-regular space: If for every (cs)F and each point p of X which is not in F, there exist disjoint (ic-os) H and G s.t. $p \in H$, and $F \subseteq G$.

(2) *ic*-normal space: If for every pair of disjoint (*cs*) F_1 and F_2 in X, there exists disjoint (*ic*-*os*) H and G such that $F_1 \subset H$ and $F_2 \subset G$.

Example 2.2:

Let = $\{5,7\}$, $\tau = \{\emptyset, X, \{5\}, \{7\}\}$, then

$$\tau^{ic} = \{\emptyset, X, \{5\}, \{7\}\} = c(\tau^{ic})$$

 (X, τ) and (X, τ^{ic}) are topological spaces.

- 1. $5,7 \in X \ (5 \neq 7) \exists \{5\}, \{7\} \in \tau^{ic}$, such that $5 \in \{5\}$, $7 \in \{7\}$. Therefore; (X, τ) is a $T_{1ic} space$.
- 2. $5, 7 \in X \ (5 \neq 7) \exists \{5\}, \{7\} \in \tau^{ic} \text{ s.t. } 5 \in \{5\}, 7 \in \{7\}, \{5\} \cap \{7\} = \emptyset$. Therefore; (X, τ) is aT_{2ic} .
- 3. {7} is an *ic*-closed set and 5∉ {7} there are two *ic*-open sets {5},{7} s.t. 5 ∈ {5}, {7} ⊆ {7}. Therefore; (X, τ) is a *ic*-regular space.
- 4. {5}, {7} are *ic*-closed sets there are two *ic*-open sets {5}, {7} s.t. {5} ⊆ {5}, {7} ⊆ {7}, {5} ∩ {7} = Ø. Therefore; (X, τ) is a *ic*-normal space.

Theorem 2.3: A space X is aT_{0ic} iff $cl_{ic}{x} \neq cl_{ic}{y}$ for each individual pair of points x, y of X.

Proof: The proof is obtained by the same way of proving (Theorem 4.3[2]).■

Theorem 2.4: A space X is T_{1ic} iff the singleton sets are ic-closed sets.

Proof: Let X be aT_{1ic} -space and let $m \in X$, to prove that $\{m\}$ is (ic-cs), we will show $X \setminus \{m\}$ is (ic-os) in X. Let $n \in X \setminus \{m\}$, implies $m \neq n$ and since X is a T_{1ic} -space then, their exist two *ic*-open sets W, Z s.t. $m \notin W$, $n \in Z \subset X \setminus \{m\}$. Since $n \in Z \subset X \setminus \{m\}$ then $X \setminus \{m\}$ is (ic-os). Hence $\{m\}$ is (ic-cs).

Conversely, let $m \neq n \in X$, and then $\{m\}, \{n\}$ are (ic-cs). That is $X \setminus \{m\}$ is (ic-os), clearly, $m \notin X \setminus \{m\}$ and $n \in X \setminus \{m\}$. Similarly, $X \setminus \{n\}$ is (ic-os), clearly, $n \notin X \setminus \{n\}$ and $m \in X \setminus \{n\}$. Hence X is a T_{1ic} -space.

Theorem 2.5: A space (X, τ) is a T_{2ic} -space iff (X, τ^{ic}) is a "Hausdorff-space".

Proof: Suppose that $s, r \in X$ with $s \neq r$. Since X is a T_{2ic} –space, there exist disjoint (*ic-os*) W and Z in X s.t. $s \in W$ and $r \in Z, W \cap Z = \emptyset$. Here W, $Z \in \tau^{ic}$, so, it is evident that (X, τ^{ic}) is no longer a Hausdorff space or a T_{2ic} -space.

Conversely, whenever (X, τ^{ic}) is a T_{2ic} -space, there exists a pair of members of τ^{ic} , say, K & F regarding two separate points s & r of X s.t. $s \in K \& r \in F \& K \cap F = \emptyset$. But $ico(X, \tau) = \tau^{ic}$. Combing all these facts (X, τ) is a T_{2ic} -space

Theorem 2.6: Every open subspace of a T_{2ic} -space is T_{2ic} .

Proof: Assume that (X, τ) be T_{2ic} – space and W be an open subspace of it. Let s and r represent any two separate points on W. Since X is a T_{2ic} –space and $W \subset X$, there is two separate "(*ic*os)" Q and L in X s.t. $s \in Q \& r \in L$. Let $I = W \cap Q \& J = W \cap L$. Then I & J are (*ic*-os) in W containing s and r. Also, $I \cap J = \emptyset$. Hence (W, T_u) is T_{2ic} .

Theorem 2.7: Each regular space is ic-regular.

Proof: Assume that (X, τ) be a regular space. Let $k \in X$ and F be any closed set on X, s.t. $k \notin F$, and let U, V be any (os) in X, s.t. $U \cap V = \emptyset$. Form Theorem 2.4 (2) each (cs) is (ic-cs). Then F is $(ic-cs) \& k \notin F$. Because every "(os)" is a "(ic-os),", then U and V is (ic-os). Hence (X, τ) is *ic*-regular because $F \subseteq V$ and $k \in U$.

Illustration 2.8.

Let $X = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{1\}, \{1, 3\}$. Then X is *ic* – regular space but not a regular space.

Theorem 2.9. Each normal space is a ic-normal – space but not conversely.

Proof: Suppose that (X, τ) be a normal space and F_1 , F_2 be disjoint (cs) in X and U, V are disjoint (os) in X, s.t. $F_1 \subset U$, $F_2 \subset V$ and $U \cap V = \emptyset$. Form Theorem 2.4(2) each (cs) is (ic-cs) and every (os) is (ic-os) in X. Then F_1 , F_2 are (ic-cs) and U, V are (ic-os). Hence (X, τ) is *ic*-normal.

If $X = \{1, 2, 3\}, \quad \tau = \{\emptyset, X, \{2\}, \{1, 2\}, \{2, 3\}\}.$

Then X is a ic - normal space but not a normal space.

3. Invariant property of T_{kic} spaces (k=0, 1, 2).

We, now, introduce the invariant property of the T_{kic} spaces in the following manner: **Definition 3.1:** A mapping $f: X \to Y$ is called *ic*-irresolute is designated by (*ic-irrem*), if f^{-1} (*F*)is (*ic-cs*) set in X. $\forall F \in (ic - cs)$ in Y.

Example 3.2: Let $X = Y = \{1, 2, 3\},$

 $\tau = \{ \emptyset, X, \{2\}, \{1, 2\}, \{2, 3\} \}, \quad \sigma = \{ \emptyset, Y, \{3\} \}$

Let $f: X \rightarrow$ be the identity map. Then *f* is *ic*-irresolute mapping.

Theorem 3.3: If $f: X \rightarrow Y$ be injective, (ic-irrem) and Y is T_{0ic} – space, then X is a T_{0ic} – space.

Proof: Assumes that $n, m \in X$, $n \neq m$. Because f is injective and Y is a T_{0ic} – space there exists (*ic- os*) U in Y s.t. $f(n) \in U$ and $f(m) \notin U$ or there exists (*ic- os*) G in Y s.t. $f(m) \in G$ and $f(n) \notin G$ with $f(n) \neq f(m)$. By (*ic-irrem*) of $f, f^{-1}(U)$ is (*ic-os*) in X s.t. $n \in f^{-1}(U)$ and $m \notin f^{-1}(U)$ or $f^{-1}(G)$ is (*ic-os*) in X s.t. $m \in f^{-1}(G)$ and $n \notin f^{-1}(G)$. This shows that X is T_{0ic} – space.

Theorem 3.4: If $f: X \to Y$ be injective, (ic-irrem) and Y is a T_{1ic} – space, then X is a T_{1ic} – space.

Proof: The argument is valid in the manner suggested by Theorem 4.3 with suitable changes.

Theorem 3.5: If $f: X \to Y$ is an injective and (ic-irrem) map and Y is T_{2ic} – space, then X is T_{2ic} – space.

Proof: Similarly to proof of Theorem 4.3 for the establishment of the statement of the theorem under proper changes according to the context.

Theorem 3.6:. If (X, τ) is assumed to be TS, then the subsequent arguments are related.

- 1- X is a T_{2ic} space.
- 2- Let $k \in X$ for every $k \neq p$, there exists(ic-os) U containing k s.t. $p \notin cl_{ic}(U)$.
- 3- For each $k \in X \cap \{cl_{ic}(U) : U \in ico(X) \& k \in U\} = \{k\}$

Proof:(1)→(2): Assumes (X, τ) is T_{2ic} – space, there exist disjoint (*ic-os*) U and G containing k and p respectively. So, $U \subset X \setminus G$. Therefore; $cl_{ic}(U) \subset X \setminus G$. So $p \notin cl_{ic}(U)$.

(2) \rightarrow (3): If possible for some $k \neq p$, we have $p \in cl_{ic}(U)$ for every (*ic-os*) U containing k, which is contradiction (2).

(3) →(1): Suppose *k*, *p* ∈ *X* & *k*≠ *p*. Then there exists (*ic-os*) *U* containing *k* s.t. *p* ∉ $cl_{ic}(U)$. Let *G*= *X*\ $cl_{ic}(U)$, then *p*∈ *G* and *k*∈*U* and also *U* ∩ *G*=Ø.

Definition3.7: A mapping $f: X \to Y$ is said to be point *ic*-closure 1-1 iff $n, m \in X$ such that $CL_{ic}\{n\} \neq CL_{ic}\{m\}$ then $CL_{ic}\{f(n)\} \neq CL_{ic}\{f(m)\}$

Example 3.8: Let $X = Y = \{2, 3\}, \quad \tau = \{\emptyset, X, \{2\}, \{3\}\}, \sigma = \{\emptyset, Y, \{2\}\}$

Let $f: X \to Y$ be the identity map. Then *f* is point *ic*-closure 1-1, because 2, $3 \in X$ such that $CL_{ic}\{2\} \neq CL_{ic}\{3\}$ then $CL_{ic}\{f(2)\} \neq CL_{ic}\{f(3)\}$

Theorem3.9: If $f: X \to Y$ is point ic-closure 1-1 and X is a T_{0ic} – space, then f is one to one mapping.

Proof: Suppose $n, m \in \chi$ with $n \neq m$. Since χ is T_{0ic} – space, then $CL_{ic}\{n\} \neq CL_{ic}\{m\}$ by Theorem 3.3. But f is point *ic*-closure 1-1 implies that $CL_{ic}\{f(n)\} \neq CL_{ic}\{f(m)\}$. Hence $f(n) \neq f(m)$ Thus, f is one to one mapping.

Theorem 3.10: A point ic-closure 1-1 mapping $f: X \to Y$ from T_{0ic} -space X into T_{0ic} - spac Y exists iff f is one to one mapping.

Proof: The necessity follows from the fact mentioned in Theorem 4.3 For sufficiency, let $f: X \to Y$ from T_{0ic} -space X into a T_{0ic} – spac Y be an 1-1 mapping. Now for every pair of distinct points $n \& m \in X$, $CL_{ic}\{n\} \neq CL_{ic}\{m\}$ as X is a T_{0ic} – space. Since, f is 1-1 mapping $f(CL_{ic}\{n\}) \neq f(CL_{ic}\{m\})$.i.e., $CL_{ic}\{f(n)\} \neq CL_{ic}\{f(m)\}$. Consequently, f is point *ic*-closure 1-1mapping. ■

4. *ic*-Generalized Separation Axioms.

Separation axioms using *ic* generalized-open sets and being more than *ic*-separation axioms are, here, framed due to the motivation of the existence & wide application of *ic*-generalized open sets.

Definition 4.1: (1) If *E* be a subset of a space *X* then *E* is supposedly an *ic*-generalized closed set is denoted by (icg-cs) if $cl_{ic}(E) \subset U$ whenever $E \subset U$ and *U* is (ic-os), the set of all family (icg-cs) denoted by icg c(X).

(2)The icg – closure of a subset *E* of *X* is the intersection of all (icg - cs) that contains *E* and is denoted by $cl_{icg}(E)$.

(3) The icg – interior of a subset E of X is the union of all (icg-os) subsets of that contained in E and is denoted by $Int_{icg}(E)$.

Example 4.2: Let $X = \{1, 2, 3\}$ and let $\tau = \{\emptyset, X, \{2\}, \{1, 2\}\}$. Then

 $c(X) = \{\emptyset, X, \{1, 3\}, \{3\}\}.$

 $ic \ o(X) = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}.$

 $ic c(X) = \{\emptyset, X, \{2, 3\}, \{1, 3\}, \{3\}\} = icg c(X).$

Theorem 4.3: Each (cs) in space X is (icg-cs).

Proof: Let *E* be (*cs*) in *X* s.t. $E \subset U$, where *U* is (*ic-os*). Since *E* is closed, then (*E*) = *E*, since $cl_{ic}(E) \subset cl(E) = E$, and $E \subset U$, therefore; $cl_{ic}(E) \subset U$. Hence *E* is (*icg-cs*) in *X*. From example (5.2).

Let $A = \{2, 3\}$. Here A is (*icg-cs*) but not (*cs*).

Theorem 4.4: *Each (ic-cs) in space X is (icg-cs) but not conversely.*

Proof: Let *E* be (*ic-cs*) in *X* s.t. $E \subset U$, where *U* is (*ic-os*). Since *E* is (*ic-cs*), then $cl_{ic}(E) = E$

, and $E \subset U$, therefore; $cl_{ic}(E) \subset U$. Hence *E* is (*icg-cs*) in *X*.

Illustration4.5.

Let $X = \{1, 2, 3\}$ and let $\tau = \{\emptyset, X, \{2\}, \{1, 2\}, \{2, 3\}\}$, then $c(X) = \{\emptyset, X, \{1, 3\}, \{3\}, \{1\}\}.$ $ic \ o(X) = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}\}.$ $ic \ c(X) = \{\emptyset, X, \{2, 3\}, \{1, 3\}, \{1, 2\}, \{3\}, \{1\}\}.$ $icg \ c(X) = \{\emptyset, X, \{2, 3\}, \{1, 3\}, \{1, 2\}, \{3\}, \{1\}, \{2\}\}.$ Let $A = \{2\}$. Then A is $(icg \cdot cs)$ but not $(ic \cdot cs)$. Χ

Theorem 4.6. *Each* (*g*-*cs*) *in space X is* (*icg*-*cs*) *but not conversely.*

Proof: Let *E* be (g-cs) in *X* s.t. $E \subset U$ and $cl(E) \subset U$, where *U* is (os). Since $cl_{ic}(E) \subset cl(E) = E$, we get $cl_{ic}(E) \subset U$, because every "(os)" is "(icg-os)", we conclude that *U* is (ic-os). Henceforth *E* is (icg-cs) in *X*.

Note 4.7.

Let consider Illustration 5.5. We have $icg c(X) = \{\emptyset, X, \{2, 3\}, \{1, 3\}, \{1, 2\}, \{3\}, \{1\}, \{2\}\}.$

 $gc(X) = \{ \emptyset, X, \{1, 3\}, \{3\}, \{1\} \}.$

Suppose $A = \{2, 3\}$. Then A is (*icg-cs*) but not (*gc-cs*).

Definition 4.8. A space (X, τ) is called

- (1) *ic*-generalized- T_0 (briefly written as T_{0icg}) iff to each pair of "distinct points" *a*, *b* of *X*, there exists an *icg*-open set containing one but not the other.
- (2) *ic*-generalized- T_1 (briefly written as T_{1icg}) iff to each pair of "distinct points" *a*, *b* of *X*, there exists a pair of *icg*-open sets, one containing *a* but not b, and their other containing b but not a.
- (3) *ic*-generalized-T₂ (briefly written as T_{2icg}) iff to each pair of "distinct points" *a*, *b* of *X*, there exists a pair of disjoint *icg*-open sets, one containing *a* and the other containing *b*".
- (4) *icg*-regular space: if for every (cs) *F* and each point *p* of *X* which is not in *F*, there exists disjoint (*icg*-os) *H* and *G* s.t. $p \in H$, and $F \subseteq G$.
- (5) *icg*-normal space: if for every pair of disjoint (cs) F_1 and F_2 in X, there is separated (*icg*-os) H and G s.t. $F_1 \subset H$ and $F_2 \subset G$.

Theorem 4.9. Each T_0 – space is T_{0icg} –space.

Proof: Let X be a T_0 –space. Let a, b be two distinct points in X. Since X is T_0 -space, there exists an (os) U in X s.t. $a \in U, b \notin U$. Because every "(os)" is "(icg-os)", U is an (icg-os) in X containing a not b. Hence X is T_{0icg} –space.

Let $X = \{n, m, k\}$ and let $\tau = \{\emptyset, X, \{n, m\}\}$. Then by Definition 5.1, we have *icg* $o(X) = \{\emptyset, X, \{n\}, \{m\}, \{n, m\}\}$.

Therefore (X, τ) is not a T_0 space, but icgo(X) is a T_{0icg} -space.

Theorem 4.10 Each T_1 -space is a T_{0icg} -space but not the opposite.

Proof: Since each T_1 -space is T_0 and every T_0 -space is a T_{0icg} . Therefore; every T_1 -space is a T_{0icg} .

We illustrate the above theorem by supposing $X = \{2, 3, 4\}$ and let $\tau = \{\emptyset, X, \{2\}, \{2, 3\}\}$. Then (X, τ) is not a T₁-space, but icgo(X) is T_{0icg}

Theorem 4.11. Each T_1 -space is a T_{1icg} -space but not the opposite.

Proof: Assumes X be a T_1 –space and a, b be two separate X points. Because X is a T_1 -space, there exists two (os) U, V in X s.t. $a \in U, b \notin U, b \in V, a \notin V$. Since each (os) is (icg-os), U, V are (icg-os) in X. Hence X is a T_{1icg} -space.

Example 4.12. Let $X = \{a, b, c\}$ and let $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$. Then (X, τ) is not a T₁-space, but icgo(X) is a T_{licg} -space.

Theorem 4.13. Each T_2 – space is T_{2icg} but not the opposite.

Proof. Suppose that X be a T_2 - space and a, b be two separate points in X. Since X is a T_2 -space. Then there are two disjoint (os) U and V containing a and b respectively. Since each (os) is an (*icg-os*). Then U and V are separated (*icg-os*) containing a and b respectively. Hence X is a T_{2icg} -space.

Example 5.14. Let $X = \{1, 2, 3\}$ and let $\tau = \{\emptyset, X, \{1\}, \{2, 3\}\}$. Then (X, τ) is not a T_2 -space, but ico(X) is T_{2icg} .

Theorem 4.15. Each T_2 -space is T_{1icg} .

Proof: Since each T_2 -space is T_1 and each T_1 -space is a T_{1icg} . Therefore; every T_2 -space is a T_{1icg} -space.

Theorem 4.16. A space (X, τ) is T_{2icg} -space iff (X, τ^{icg}) is Hausdorff -space.

Proof: Assumes $s, r \in X$ with $s \neq r$. Since X is T_{2icg} -space, there exists disjoint (*icg-os*) W & Z in X s.t. $s \in W$ & $r \in Z$, $W \cap Z = \emptyset$. Here W, $Z \in \tau^{icg}$, so, obviously (X, τ^{icg}) ceases to be a T_{2icg} -space i.e. a Hausdorff space.

Conversely, whenever (X, τ^{icg}) is a T_{2icg} – space, there exists a pair of members of τ^{icg} , say, M & N for a pair of distinct points s & r of X such that $s \in M \& r \in N \& M \cap N = \emptyset$. But $icgo(X, \tau) = \tau^{icg}$. Combing all these facts (X, τ) is T_{2icg} –space

Theorem 4.17. Each open subspace of a T_{2icg} -space is T_{2icg} .

Proof: Suppose W be an open subspace of a T_{2icg} -space (X, τ) . Let s and r be any two distinct points of W. Since X is T_{2icg} -space and $W \subset X$, there exists two disjoint $(icg \cdot os) Q$ and J in X such that $s \in G \& r \in H$. Let $Q = W \cap G \& J = W \cap H$. Then Q & J are $(icg \cdot os)$ in W containing s and r. Also, $Q \cap J = \emptyset$. Hence (W, T_u) is T_{2icg} .

Theorem 4.18. Each "regular spac" is icg-regular.

Proof: Assume that (X, τ) be a regular space. Let $k \in X$ and F be any (cs) set on X, s.t. $k \notin F$, and let U, V be any (os) in X, s.t. $U \cap V = \emptyset$. Form Theorem 5.3 each (cs) is (*icg-cs*). Then F is (*icg-cs*) & $k \notin F$. Since each "(os)" is "(*icg-os*)", then U and V are (*icg-os*). Hence (X, τ) is *icg-*regular. ■

Theorem 4.19. Each normal space is an icg-normal.

Proof: Suppose that (X, τ) is a normal space and F_1 and F_2 is disjoint (cs) in X. Let U and V be disjoint (os) in X, s.t. $F_1 \subset U$, $F_2 \subset V$ and $U \cap V = \emptyset$. Form Theorem 5.3 each (cs) is (icg-cs) and every (os) is (icg-os) in X. Then F_1 , F_2 are (icg-cs), also U and V are (icg-os). Hence (X, τ) is icg-normal.

Clearly, each T_{kic} -space is T_{kicg} -spaces (k=0, 1, 2) since each (*ic-os*) is (*icg-os*).

Remark 4.20. By the above results we have the following diagram.

Figure 2

The following theorems are related to the characterization & invariance nature for T_{kicg} -spaces (k=0, 1, 2).

Theorem 4.21. A space X is T_{0icg} iff $cl_{icg}\{x\} \neq cl_{icg}\{y\}$ for every pair of distinct points x, y of X.

Theorem 4.22. A space X is T_{1icg} iff the singletons are icg-closed sets.

Theorem 4.23. Let (X, τ) be TS then the following statements are equivalent.

- 1- X is a T_{2icg} space.
- 2- Let $k \in X$. For each $k \neq p$, there exists(icg-os) U containing k s.t. $p \notin cl_{icg}(U)$.
- 3- For each $k \in X \cap \{cl_{icg}(U): U \in \tau^{icg} \& k \in U\} = \{k\}$

Theorem 4.24. If $f: X \to Y$ be an injective (icg- irrem) and Y is T_{kicg} then X is T_{kicg} (k=0, 1, 2).

Definition 4.25. A mapping $f: X \to Y$ is said to be point *icg*-closure 1-1 iff $n, m \in \chi$ such that $CL_{icg}\{n\} \neq CL_{icg}\{m\}$ then $CL_{icg}\{f(n)\} \neq CL_{icg}\{f(m)\}$

Theorem 4.26. If $f: X \rightarrow Y$ is point icg-closure 1-1 and X is a T_{0icg} - space, then f is 1-1.

Theorem 4.27. A point icg-closure 1-1mapping $f: X \to Y$ from a T_{0icg} -space X into a T_{0icg} -space Y exists iff f is one to one.

Furthermore, we mention the concept of $T_{\frac{1}{2}ic}$ space in the same tune of $T_{\frac{1}{2}}$ space in topology.

Definition 4.28. A space (X, τ) is named

- 1. $T_{\frac{1}{2}ic}$ space if each (*icg-cs*) is (*ic-cs*)
- 2. T_{ic} space if each (*ic*-*cs*) in it is (*cs*).
- 3. T_{icg} space if each (*icg-cs*) in it is (*cs*).

Example 4.29. If $X = \{3, 4\}$ and $\tau = \{\emptyset, X, \{3\}\}, c(\tau) = \{\emptyset, X, \{4\}\}$ then $c(\tau) = ic c(X) = icg(X) = \{\emptyset, X, \{4\}\}$

Hence X is a T_{ic} -space and a T_{icg} -space. Also X is $T_{\frac{1}{2}ic}$.

Theorem 4.30. If (X, τ) is a T_{icg} -space then, for each $k \in X$, $\{k\}$ is (icg-cs) or open.

Proof: Let $TS(X, \tau)$ be a T_{icg} -space. Let $k \in X$, such that $\{k\}$ is not (icg - cs) in X. By Theorem 5.3 $\{k\}$ is not (cs) in X. So $X \setminus \{k\}$ is not (os) in X and X is the only (os) containing $X \setminus \{k\}$. So $X \setminus \{k\}$ is (icg - cs) in X, by hypothesis, $X \setminus \{k\}$ is (cs) in X, it means $\{k\}$ is (os) in X.

Theorem 4.31. Each T_{icg} -space is a T_{ic} -space but not the opposite.

Proof: Suppose (X, τ) is a T_{icg} -space and k is (ic-cs) in χ . Since each (ic-cs) is (icg-cs), therefore; k is (icg-cs) in X, by hypothesis, k is (cs) in X. This shows that X is a T_{ic} -space

Example 4.32. Let *X* = {a, b, c} and $\tau = \{\emptyset, X, \{c\}\}$ then

 $c(\tau) = \{ \emptyset, X, \{a, b\} \}.$ ic $o(X) = \{ \emptyset, X, \{c\} \}.$ ic $c(X) = \{ \emptyset, X, \{a, b\} \}.$ ic $g(X) = \{ \emptyset, X, \{a, b\}, \{a\}, \{b\}, \{a, c\}, \{b, c\} \}.$

Hence (X, τ) is T_{ic} - space. but (X, τ) is not T_{icg} , because {b}is (icg-cs) in (X, τ) but {b} is not (cs) in (X, τ) .

Theorem 4.33. Each T_{icg} -space is a $T_{1/2}$ -space but not the opposite.

Volume: 1, Issue: 1 Manuscript Code: 673C

Proof: Suppose (X, τ) be T_{icg} -space and let n be (g-cs) in X. Since each (g-cs) is (icg-cs), therefore; n is (icg-cs) in X, by hypothesis, n is (cs) in X. This shows that X is $T_{1/2}$.

Example 4.34. Let $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{2\}, \{1, 2\}, \{2, 3\}\}$, then

$$\begin{split} c(X) &= \{ \emptyset, X, \{1,3\}, \{3\}, \{1\} \}. \\ ic \ o(X) &= \{ \emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\} \}. \\ ic \ c(X) &= \{ \emptyset, X, \{2,3\}, \{1,3\}, \{1,2\}, \{3\}, \{1\} \}. \\ icg \ c(X) &= \{ \emptyset, X, \{2,3\}, \{1,3\}, \{1,2\}, \{3\}, \{1\}, \{2\} \}. \\ gc(X) &= \{ \emptyset, X, \{1,3\}, \{3\}, \{1\} \}. \text{ It is easy to see that } (X, \tau) \text{ is a } T_{1/2}\text{-space but not a } T_{icg}\text{-space} \\ space \end{split}$$

Remark 4.35. There is no relationship between a T_{icg} -space (T_{ic} -space, $T_{1/2}$ -space) and a $T_{\frac{1}{2}ic}$ -

space in a topological space (X, τ) as shown in the following example.

Example 4.36. If = $\{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$, then

 $c(X) = \{ \emptyset, X, \{c\} \}. \ ic \ o(X) = \{ \emptyset, X, \{a\}, \{b\}, \{a, b\} \}.$

 $ic c(X) = \{\emptyset, X, \{b, c\}, \{a, c\}, \{c\}\} = icg c(X).$

It is easy to see that (X, τ) is a $T_{\frac{1}{2}ic}$ -space but it is no at T_{icg} , T_{ic} -space and not a $T_{1/2}$.

Remark 4.37. From above we have the following diagram:0

Figure 3

Aknowledgment: The Authors are very grateful to the University of Mosul/ College of Education for Pure Sciences for their provided facilities, which helped to improve the quality of this work.

References

- 1. Fatima, M. Mohammad, Tikrit Journal of pure Science, 11(1),(2006)
- 2. S. W. Askandar, International Journal of Scientific & Engineering Research, 7(5), May (2016)
- 3. B.S. Abdullah, S.W. Askandar, A. A. Mohammed, Turkish Journal of Computer and Mathematics Education, 13(03), 247-256(2022)
- 4. N. Levine, Rend. Circ. Mat. Patermo, 2(19), 89-96(1970)
- 5. W. Dunham, Math. J., 17, 161-169(1977)