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Abstract

A new class of separation axioms known as ic-separation axioms is introduced in this study.
They rely on new extended open sets known as ic-open sets, and we describe the relationship
between them and give several examples. Additionally, we define ic-generalized closed set
concepts in a topological space in order to frame the another class of separation axioms called
ic-generalized separation axioms. Among other things, the basic concern properties and
relative preservation properties of these spaces are projected under ic-generalized irresolute
mappings.
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Introduction

By utilizing the idea of pre-open sets, Fatima, M. Mohammad [1] established pre-Techonov
and pre-Hausdorff separation axioms in Intuitionistic Fuzzy Special Topological Spaces in
2006. Another sort of separation axioms dependent on i-open sets was presented in 2016 by
Sabih W. Askandar [2]. The purpose of this study is to present a novel separation axiom that
depends on ic-open sets., which we call ic — separation axioms such as (Ty;c, T1icr T2icr i€ —
regular and ic — normal space). This collection of separation axioms can be used in
connection with others to compare and discover characteristics and features that are
comparable. Also, the concept of an ic-generalized closed set has been coined and then ic-
generalized separation axioms have been framed with respect to ic-generalized open sets. We
denoted the topological spaces (X, 7) and (Y, o) simbly by X and Y respectively, open sets (resp.
closed sets) by (0s), (cs) and the phrase topological space by TS. (X, %) and (X, t9) are
always topological spaces throughout this work, where ¢ and 9 represent the family of all

ic-open and icg-open sets of X.

1. Preliminaries

Throughout this paper cl(E) and Int(E") respectively closure and the interior of the set E,
where E is a subset of a topological space (X, t) on which no separation axioms are assumed

unless explicitly stated.

Definition 1.1: If E be a subset of a space X, then E is named
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(1) ic — open set [3] is denoted by (ic-0s) if there exists closed set F # ¢, X € 7€ such
that: F N E < Int(E), where Int(E) is the interior of E and ¢ is the family of all (cs),
the complement of ic-open is said ic-closed and designated by (ic-cs).

(2) g-closed set [4] is designated by (g-cs) if cl(E) < U whenever E < U and U is (0S).

(3) ico(X), icc(X) and gc(X) are family of ic-open, ic-closed and g-closed sets respectively.

Definition 1.2: (1) The ic — closure of a subset E of X [3] is the intersection of all (ic —
cs) that contains E and is denoted by cl;.(E).

(2) The ic — interior of a subset E' of X is the union of all (ic-0s) subsets of X
[3] that contained in E and is denoted by Int;.(E).
Definition 1.3: A mapping f:X— Vis called:

1. "Continuous" denoted by (contm)[3], if f (F) is (cs) in X. V F € (cs)in Y.
2. "ic-continuous" denoted by (ic-contm) [3], if f ™" (F) is (ic-cs) in X.V F € (cs) inY.

Theorem 1.4. 1. Each (cs) in TS is (g-cs) [4]. 2. Each (0s) in TS is (ic-0s) [3].

Definition 1.5: "A TS(X, 7) is said to be:
(1) Ty;c — space iff [3] to each set of unique points a,b of X, there exists an(ic-0s)
containing one but not the other.

(2) Ty;. — space iff [3] to each set of unique points a, b of X, there exists a pair of (ic-0s),
one containing a but not b, and the other with b. but not a".

(3) "Ty;c — space iff [3] to each pair of distinct points a,b of X, there exists a pair of
disjoint(ic-0s), one containing a and the other with b".

(4) Ty/p-space [9] if each (g-cs) is (cs).
Theorem 1.6. [3] Each Ty;. — space is T;;. and also is Ty;,

_ — > o,
TZiC .' < Tlic TUiC‘

-

Figure 1

2. ic — Separation Axioms in Topological Spaces.

In this section, we discuss and study new class of separation axioms by utilizing ic-open
set.

Definition 2.1: A TS (X, 7) is said to be:
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(1) ic-regular space: If for every (cs)F and each point p of X which is not in F, there exist

disjoint (ic-os) Hand Gst.p e H,and F € G.

(2) ic-normal space: If for every pair of disjoint (cs) F; and F, in X, there exists disjoint (ic-

os) Hand G suchthat F;, c Hand F, c G.

Example 2.2:

Let={57}, t={0,X, {5},{7}} then

T = {0, X,{5},{7}} = (™)

(X, ) and (X, 7¢) are topological spaces.

1. 57€X (5% 7)3{5},{7} €, such that 5 € {5} , 7€ {7}. Therefore; (X,7) is a
Tyic — space.

2. 57€X(5#7)3{5},{7} € tis.t.5€ {5},7 € {7}, {5} n {7} = @ . Therefore; (X, 1)
1S aTy;c.

3. {7} isanic-closed set and 5¢ {7} there are two ic-open sets {56},{7} s.t. 5 € {5},{7} <
{7}. Therefore; (X, t) is a ic-regular space.

4. {5}, {7} are ic-closed sets there are two ic-open sets {5}, {7} s.t. {6} < {5}, {7} < {7},
{5} n {7} = @. Therefore; (X, 1) is a ic-normal space.

Theorem 2.3: A space X is aTy; iff cl;.{x} # cl;.{y} for each individual pair of points x, y of
X.
Proof: The proof is obtained by the same way of proving (Theorem 4.3[2]).m

Theorem 2.4: A space X is Ty, iff the singleton sets are ic-closed sets.

Proof: Let X be aT,;. —space and letm € X, to prove that {m} is (ic—cs), we will show X\{m}
is (ic—os) in X. Let n € X\{m}, implies m # n and since X is a Ty;. —space then, their exist
two ic—open sets W,Z st. m ¢ W, n € Z c X\{m}. Since n € Z c X\{m} then X\{m} is
(ic—os). Hence {m} is (ic—cs).

Conversely, let m = n € X, and then {m}, {n} are (ic—cs). That is X\{m} is (ic—os), clearly,
m & X\{m}and n € X\{m}. Similarly, X\{n} is (ic—os), clearly, n € X\{n} and m € X\{n}.

Hence X isa T;;. —space. m
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Theorem 2.5: A space (X, 7) is a Ty;. —space iff (X, ) is a "Hausdorff —space".

Proof: Suppose that s, re X with s+ r . Since X is a T,;. —space, there exist disjoint (ic-os) W
andZinX st.s € Wandr € Z, WAZ=0. Here W, Z€ T, s0, it is evident that (X, t%°) is no
longer a Hausdorff space or a T,;. -Space.

Conversely, whenever (X, ) is a T,;, —space , there exists a pair of members of 7¢, say, K
& F regarding two separate points s & r of X st. seK & reF & KNnF = @. But

ico(X, 7)= 7. Combing all these facts (X, 1) is a T,;. —space m

Theorem 2.6: Every open subspace of a T,;. —space is Ty, .

Proof: Assume that (X, ) beT,;. — space and W be an open subspace of it. Let s and r represent
any two separate points on W. Since X isa T,;. —space and W c X, there is two separate "(ic-
0s)"QandLinXstseQ&rel. letl=WnNnQE&J=WnL.Thenl & Jare (ic-0s) in W
containing sand r. Also, I nJ = @. Hence (W, T,) iS Ty;.. m

Theorem 2.7: Each regular space is ic-regular.

Proof: Assume that (X, t) be a regular space. Let k € X and F be any closed set on X, s.t. k ¢

F,and let U, V be any (0s) in X, s.t. U~ V=@. Form Theorem 2.4 (2) each (cs) is (ic-cs). Then
Fis (ic-cs) & k & F. Because every "(0s)" is a "(ic-0s),", then U and V is (ic-0s). Hence (X, 1)
is ic-regular because FEVand k e U. m

Illustration 2.8.

Let X={1,2,3}, 7 ={0,X,{1},{1,3}. Then X is ic — regular space but not a regular space.

Theorem 2.9. Each normal space is a ic-normal— space but not conversely.

Proof: Suppose that (X, t) be a normal space and F, F, be disjoint (cs) in X and U, V are
disjoint (0s) in X , s.t. F,cU, F,cV and UnV=@ . Form Theorem 2.4(2) each (cs) is (ic-Cs)
and every (0s) is (ic-os) in X. Then F,, F, are (ic-cs) and U, V are (ic-0s). Hence (X, 7) is ic-
normal . m

If X={1,23}, t={0X{2},{1,2},{23}}

Then X is a ic — normal space but not a normal space.
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3. Invariant property of T;. spaces (k=0, 1, 2).

We, now, introduce the invariant property of the Ty;. spaces in the following manner:
Definition 3.1: A mapping f: X — ¥is called ic-irresolute is designated by (ic-irrem), if f

(F)is (ic-cs) setinX.V F € (ic —cs) inY.

Example 3.2: Let X =Y = {1,2,3},

T={0,X,{2},{1,2},{2,3}}, o={0,Y,{3}}

Let f: X — be the identity map. Then f is ic-irresolute mapping.

Theorem 3.3: If f: X — ¥ be injective, (ic-irrem) and Y is Ty;. — space, then X is a Ty;c —
space.

Proof: Assumes that n, m € X, n# m. Because f is injective and Y is a Ty;. — space there exists
(ic-os) Uin Y s.t. f(n) €U and f(m) €U or there exists (ic- 0s) G in Y s.t. f(m) €G and f(n) ¢G
with f(n) # f(m). By (ic-irrem) of f, f~1(U) is (ic-os) in X st.n€ f~1(U)and m¢ f~1(U) or
f7H(G)is (ic-os) in X st.m € f~1(G) andn & f~1(G). This shows that X is Ty;. — space. m

Theorem 3.4: If f: X — ¥V be injective, (ic-irrem) and Y is a T;;. — space, then X is a Ty;c —
space.

Proof: The argument is valid in the manner suggested by Theorem 4.3 with suitable changes.

Theorem 3.5: If f: X— Vis an injective and (ic-irrem) map and Y is T,;. — space, then X is
T»ic — space.
Proof: Similarly to proof of Theorem 4.3 for the establishment of the statement of the theorem

under proper changes according to the context.

Theorem 3.6:. If (X, 7) is assumed to be TS, then the subsequent arguments are related.
1- XisaT,;, — space.
2- Letk € X for every k& p, there exists(ic-0s) U containing k s.t. p& cl;.(U).
3- Foreachke X n{cl;(U): U € ico(X) & k eU}={k}
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Proof:(1) — (2): Assumes (X, 1) is T,;. — space, there exist disjoint (ic-os) U and G containing
k and p respectively. So, U < X\G. Therefore; cl;.(U) < X\G. So pé& cl;.(U).

(2) — (3): If possible for some i+ p , we have pe cl;.(U) for every (ic-0s) U containing Kk,
which is contradiction (2).

(3) — (1): Suppose k, p € X & k# p. Then there exists (ic-0s) U containing k s.t. p & cl;-(U).
Let G= X\cl;.(U), then pe G and keU and also U nG=0.m

Definition3.7: A mapping f: X — /s said to be point ic-closure 1-1 iff n,m € X such that
CLic{n} # CLi{m} then CL;{f (M)} # CL;{f (M)}

Example3.8: LetX =Y ={2,3}, ©={0,X,{2},{3}},0 = {0,Y,{2}}
Let f: X — Fbe the identity map. Then fis point ic-closure 1-1, because 2,3 € X such that
CLi{2} # CLi {3} then CL;{f (2)} # CL;{f (3)}
Theorem3.9: If f: X — Vs point ic-closure 1-1 and X is a Ty;. — space, then f is one to one
mapping.
Proof: Suppose n,m € y with n # m. Since y is Ty;. — space, then CL;.{n} # CL;.{m} by
Theorem 3.3. But f is point ic-closure 1-1 implies that CL;.{f (n)} # CL;.{f (m)}. Hence
f(n) # f(m) Thus, fisone to one mapping. m
Theorem 3.10: A point ic-closure 1-1 mapping f: X — ¥ from Ty;.-space X into Toic —
spac Y exists iff fis one to one mapping.
Proof: The necessity follows from the fact mentioned in Theorem 4.3 For sufficiency, let
f:X— Ffrom Ty;.-space X into a Ty;c — spacY be an 1-1 mapping. Now for every pair of
distinct points n & me X, CL;.{n} # CL;.{m} as X is a Ty;. — space. Since, f is 1-1 mapping
f(CLiAn}) # f(CL;{m}).i.e., CL;{f (n)} # CL;.{f (m)}. Consequently, f is point ic-closure
1-1mapping. =

4. ic-Generalized Separation Axioms.

Separation axioms using ic generalized-open sets and being more than ic-separation
axioms are, here, framed due to the motivation of the existence & wide application of ic-

generalized open sets.
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Definition 4.1: (1) If E be a subset of a space X then E is supposedly an ic-generalized closed
set is denoted by (icg-cs) if cl;.(E) < U whenever E c U and U is (ic-0s), the set of all family
(icg-cs) denoted by icg c(X) .

(2)The icg — closure of a subset E of X is the intersection of all (icg — cs) that contains E and
is denoted by cl;c4(E).

(3) The icg — interior of a subset E of X is the union of all (icg-os) subsets of X
that contained in E and is denoted by Int;.,(E).
Example 4.2: Let X = {1,2,3} and let 7 = {@, X, {2}, {1, 2}}. Then
c(X) ={0,X,{1,3},{3}}.
ico(X) =1{0,X,{1},{2},{1, 2}}.
icc(X) =1{0,X,{2,3},{1,3},{3}} = icg c(X).
Theorem 4.3: Each (cs) in space X is (icg-cs).
Proof: Let E be (cs) in X s.t. E < U, where U is (ic-0s). Since E is closed, then (E) = E , since
clic(E) c cl(E) =E ,and E c U , therefore; cl;.(E) < U. Hence E is (icg-cs) in X. m
From example (5.2).
Let A = {2,3}. Here A is (icg-cs) but not (cs).
Theorem 4.4: Each (ic-cs) in space X is (icg-cs) but not conversely.
Proof: Let E be (ic-cs) in X s.t. E c U, where U is (ic-0s). Since E is (ic-cs), then cl;.(E) = E
,and E c U , therefore; cl;.(E) € U . Hence E is (icg-cs) in X. m
llustration4.5.
Let X = {1,2,3}and let T = {0, X,{2},{1, 2}, {2, 3}}, then
c(X) =1{9,X,{1,3}, {3}, {1}}.
ico(X) ={0,X,{1},{2},{3},{1, 2}, {2,3}}.
icc(X) =1{0,X,{2,3},{1,3},{1,2}, {3}, {1}}.
icg c(X) ={0,X,{2,3},{1,3},{1,2}, {3}, {1}, {2}}.
Let A={2}. Then A is (icg-cs) but not (ic-cs).
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Theorem 4.6. Each (g-cs) in space X is (icg-cs) but not conversely.

Proof: Let E be (g-cs) in X s.t. E < U and cl(E) < U, where U is (0s). Since cl;.(E) c cl(E) =
E, we get cl;.(E) c U, because every "(0s)" is "(icg-0s)", we conclude that U is (ic-0s).
Henceforth E is (icg-cs) in X. m

Note 4.7.

Let consider Illustration 5.5. We have icg c(X) = {0, X,{2, 3}, {1, 3}, {1, 2}, {3}, {1}, {2}}.
ge(X) = {0, X,{1,3}, {3}, (13},

Suppose A= {2, 3}. Then A is (icg-cs) but not (gc-cs).

Definition 4.8. A space (X, 1) is called

(1) ic- generalized-T, (briefly written as Ty;.4) iff to each pair of "distinct points"a, b of X,
there exists an icg-open set containing one but not the other.

(2) ic- generalized-T; (briefly written as T;;.,) iff to each pair of "distinct points" a, b of X,
there exists a pair of icg-open sets, one containing a but not b, and their other
containing b but not a.

(3) ic- generalized-T, (briefly written as T5;) iff to each pair of "distinct points" a, b of X,
there exists a pair of disjoint icg-open sets, one containing a and the other containing
b".

(4) icg-regular space: if for every (cs) F and each point p of X which is not in F, there exists
disjoint (icg-os) Hand G s.t. p e H,and F € G.

(5) icg-normal space: if for every pair of disjoint (cs) F; and F, in X, there is separated (icg-
os)Hand Gs.t. F; c Hand F, c G.

Theorem 4.9. Each T, — space is Ty;.4 —Space.

Proof: Let X be a T, —space. Let a, b be two distinct points in X. Since X is T,-space, there
existsan (os) U in Xs.t.a € U, b & U. Because every "(0s)" is "(icg-0s)", U is an (icg-o0s) in X
containing a not b. Hence X is Ty;., —Space. m

Let X ={n, m, k}and let Tt ={@, X, {n, m}}. Then by Definition 5.1, we have

icg o(X) = {0, X, {n}, {m}, {n, m}}.
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Therefore (X, 7) is not a Tospace, but icgo(X) is a Toicg -Space.
Theorem 4.10 Each T;— space is a Ty;.,—Space but not the opposite.
Proof: Since each T;-space is T, and every To—space is a To;cg. Therefore; every T,—space is a

TOicg- u

We illustrate the above theorem by supposing X ={2, 3, 4}and let 7 ={@, X, {2}, {2, 3}}. Then
(X, 7) is not a Ty - space, but icgo(X) is Toicg

Theorem 4.11. Each T;-space is a Ty;.4—space but not the opposite.

Proof: Assumes X be a T; —space and a, b be two separate X points. Because X is a T;-space,
there exists two (os) U, Vin Xst.ae U,b € U,b € V,a ¢ V. Since each (0s) is (icg-0s), U,

V are (icg-os) in X. Hence X is a Ty;.,—Space. m

Example 4.12. Let X ={a, b, c}and let  ={@, X, {a}, {a, b}, {a, c}}. Then (X, 7) isnot a T;-
space, but icgo(X) is a Tuicg - SPace.

Theorem 4.13. Each T, —space is T;.4 but not the opposite.

Proof. Suppose that X be a T» - space and a, b be two separate points in X. Since X is a T»-
space. Then there are two disjoint (0s) U and V containing a and b respectively. Since each
(os) is an (icg-o0s). Then U and V are separated (icg-os) containing a and b respectively. Hence
X'is a Taicg-Space. m

Example 5.14. Let X ={1, 2, 3} and let z ={@, X, {1}, {2, 3}}. Then (X, 7) is not a T2 -space,
but ico(X) iS Taicg -

Theorem 4.15. Each T,—space is Ty ;¢ -

Proof: Since eachT,—space is T; and eachT;—space is a Ty;cg . Therefore; every T,—space is a
Tiicg—Space. m

Theorem 4.16. A space (X, 7) is Ty;cy —space iff (X, 7'°9) is Hausdorff -space.

Proof: Assumes s, re X with s# r . Since X is T,;., —space, there exists disjoint (icg-0s)
W&ZinXst.seW &r €Z, WnZ=0. Here W, Z€ 19, s0, obviously (X, ti°?) ceases to

be a T,;c4 —space i.e. a Hausdorff space. m
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Conversely, whenever (X, 7'9) isa T,icq — Space, there exists a pair of members of 79, say,
M & N for a pair of distinct points s &rof X suchthatse M &re N& M NN = @. But
icgo(X, 7)= 79, Combing all these facts (X, t) is T3icqg —Space m

Theorem 4.17. Each open subspace of a Ty;.y —space is Ty;cq -

Proof: Suppose W be an open subspace of a T,;., —space (X, 7). Let s and r be any two distinct
points of W. Since X is T;.; —space and W c X, there exists two disjoint (icg-os) Q and J in
X suchthat seG&reH. Let Q=WnNG&J]=WnH. Then Q & J are (icg-0s) in W
containing s and r. Also, Q N J = @. Hence (W, T,,) is Tpicq. M

Theorem 4.18. Each "regular spac” is icg-regular .

Proof: Assume that (X, t) be a regular space. Let k € X and F be any (cs) seton X, s.t. k& F,
and let U,V be any (os) in X, s.t. U~ V=@. Form Theorem 5.3 each (cs) is (icg-cs). Then F
is (icg-cs) &k ¢ F. Since each "(0s)" is "(icg-0s)", then U and V are (icg-0s). Hence (X, 7) is
icg-regular. m

Theorem 4.19. Each normal space is an icg-normal .

Proof: Suppose that (X, t) is a normal space and F,and F, is disjoint (cs) in X . Let U and V
be disjoint (0s) in X , s.t. F,cU, F,cV and U~V=@. Form Theorem 5.3 each (cs) is (icg-cs)
and every (0s) is (icg-0s) in X. Then F,, F, are (icg-cs), also U and V are (icg-0s). Hence
(X,7) isicg-normal . m

Clearly, each Ty c—space is Tyicg—spaces (k=0, 1, 2) since each (ic-0s) is (icg-0s).

Remark 4.20. By the above results we have the following diagram.
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The following theorems are related to the characterization & invariance nature for Tycg-
spaces (k=0, 1, 2).
Theorem 4.21. A space X is T4 iff clicg{x} # clic4{y} for every pair of distinct points x, y of
X.
Theorem 4.22. A space X is Ty;¢4 iff the singletons are icg-closed sets.
Theorem 4.23. Let (X, ) be TS then the following statements are equivalent.

1- XisaTy, — space.

2- Letk € X.For each k# p, there exists(icg-0s) U containing k s.t. p& cl;c,(U).

3- Foreachke X n{cl;.,(U): Ue 79 & k eU}={k}
Theorem 4.24. If f:X — Y be an injective (icg- irrem) and Y isTy;.4 then X'is Ty;c4 (k=0, 1,
2).
Definition 4.25. A mapping f: X — /s said to be point icg-closure 1-1 iff n,m € y such that
CLicg{n} # CLicg{m} then CLico{f ()} # CLicy{f (M)}
Theorem 4.26. If f:X — ¥is point icg-closurel-land X is a Ty;.4 — space,then fis 1-1.
Theorem 4.27. A point icg-closure 1-1mapping f: X — ¥ from a Ty;.4-space X into a Tp;cg —
space Y exists iff fis one to one.

Furthermore, we mention the concept of T+, . space in the same tune of T space in topology.
2 2

Definition 4.28. A space (X, t) is named
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1. T, space if each (icg-cs) is (ic-cs)
2

2. T;.-space if each (ic-cs) in it is (cs).

3. T;

icg~ Space if each (icg-cs) in it is (cs).

Example 4.29. If X ={3, 4}and = {9, X,{3}}, c(v) ={0,X,{4}} then c(z) = icc(X) =
icg(X) = {0, X, {4}}

Hence X is a Tj.-space and a T;.4-space. Also X is T, ..
2

Theorem 4.30. If (X, 7) is a T;.4-space then, for each k € X, {k} is (icg-cs) or open.

Proof: Let TS (X, 7) be a T;.4-space. Let k€ X, such that{k} is not (icg- cs) in X. By Theorem
5.3 {k} is not (cs) in X. So X\{k} is not (0s) in X and X is the only (os) containing X\{k}. So
X\{k} is (icg-cs) in X, by hypothesis, X\{k} is (cs) in X, it means {k} is (0S) in X. m

Theorem 4.31. Each T;.4-space is a T;.-space but not the opposite.

Proof: Suppose (X, 1) is a T;.4-space and k is (ic-cs) in y. Since each (ic-cs) is (icg-cs),

therefore; k is (icg-cs) in X,by hypothesis, k is (cs) in X. This shows that X is a T;.-space m

Example 4.32. Let X ={a, b, c} and 7 = {@, X, {c}} then
c(t) ={0,X,{a, b}}.
ico(X) = {(D,X, {C}}.
ic c(X) = {0, X,{a, b}}.
icg c(X) = {(23, X,{a, b}, {a},{b},{a,c},{b, c}}.

Hence (X, 7) is T;.- space. but (X, t) is not T;.,, because {b}is (icg-cs) in (X, t) but {b} is not

cg’
(cs) in (X, 7).

Theorem 4.33. Each T;.4-space is a T; ,-space but not the opposite.
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Proof: Suppose (X, 1) be T;.4-space and let n be (g-cs) in X. Since each (g-cs) is (icg-cs),

therefore; n is (icg-cs) in X, by hypothesis, n is (cs) in X. This shows that X is T; ,,. m

Example 4.34. Let X = {1,2,3}and © = {0, X, {2}, {1, 2}, {2, 3}}, then
c(X) ={0,X,{1,3}, {3}, {1}}.
ico(X) ={0,X,{1},{2}, {3}, {1,2},{2,3}}.
icc(X) =1{0,X,{2,3},{1,3},{1, 2}, {3}, {1}}.
icg c(X) =1{0,X,{2,3},{1,3},{1,2}, {3}, {1}, {2}}-
gc(X) = {0,X,{1,3}, {3}, {1}}. It is easy to see that (X, 1) is a T; ,-space but not a Tj.,-
space

Remark 4.35. There is no relationship between a T;.4-space (Ti.-space, Ty ,-space and a T, -
2

space in a topological space (X, z) as shown in the following example.
Example 4.36. If = {a,b,c}, T = {0, X, {a, b}}, then

c(X) = {0,X,{c}}. ic o(X) = {0, X, {a}, {b},{a, b}.

icc(X) ={0,X,{b,c},{a,c},{c}} = icg c(X).

It is easy to see that (X, 7) is a T, -space but itis no at Tj.g, T;.-space and not a T 5.
2

cg:r

Remark 4.37. From above we have the following diagram:0

Ticg -« Tic < T—ic
- — v
- L
~ * Ty
Figure 3
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