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Abstract 

In this paper, a posteriori error analysis has been examined and investigated for the 

continuous (conforming) Galerkin finite element method used for solving a general 

scalar linear second-order ordinary BVPs. Linear elements (piecewise linear 

polynomials) are used in space discretisation on non-uniform mesh. We derived 

optimal order a posteriori error bounds in the 𝐿2 norm using the duality approach and 

standard a posteriori error analysis techniques and tools. 

Keywords: A posteriori error analysis, finite element methods, ordinary differential equations. 

الخطية العامة من الدرجة الثانية تحليل الخطأ البعديلحل طريقة العناصر المحدودة للمعادلات التفاضلية  

 وهران حميد شاكر و محمد عبد محيميد

 جامعة تكريت –كلية التربية للبنات  –قسم الرياضيات 

 الخلاصة

في هذا البحث، تم فحص ودراسة تحليل الخطأ البعدي لطريقة جاليركين للعناصر المحدودة المستمرة )المطابقة( المستخدمة 

لحل مسائل القيمة الحدية العادية الخطية من الدرجة الثانية.. تسُتخدم العناصر الخطية )متعددة الحدود الخطية( في تقدير 

باستخدام نهج  L_2. لقد اشتققنا الترتيب الأمثل لحدود الخطأ الخلفي في معيار المساحة على الشبكات غير المنتظمة

 الازدواجية وتقنيات وأدوات تحليل الخطأ الخلفي القياسي.

 تحليل الخطأ البعدي، طرق العناصر المحدودة، المعادلات التفاضلية العادية الكلمات المفتاحية:

 

 

mailto:wahran.hameed523@st.tu.edu.iq
https://dx.doi.org/10.24237/ASJ.02.04.817B


  

 

199 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 4, October 2024 

Manuscript Code: 817B 

 
 
 

Introduction 

The Finite Element Method (FEM) is considered as the most powerful and flexible tool that is 

used for obtaining accurate solutions of simple and complicated ordinary differential equations 

(ODEs) and partial differential equations (PDEs). The starting point of the method can be traced 

back to the 1940s and the development of this method passed through many achievements and 

advancements during the last eight decades. Many of the realistic world problems are modelled 

by ODEs and PDEs and most of these equations are complicated and have no analytical 

solutions [17]. 

The interest in the study of the numerical solutions of ODEs has witnessed an increasing 

attention of researchers and significant advancements have made. In 1969, Argyris and Scharpf 

[2] presented and used the variational method for time discretisation for time dependent 

problems. Hulme [8] is considered the first to use the discontinuous Galerkin (DG) method for 

solving ODEs in 1972. Delfour et al in 1981 [4] derived a family of DG methods for solving 

ODEs. Estep [5] in 1995 examined the use of FEM for solving ordinary initial value problems 

(IVPs) and the author derived optimal order a posteriori and a priori error estimates. Estep and 

Stuart in 2001 [6] examined and studied the dynamical behaviour of the DG method for ODEs. 

In 2014, Janssen and Wihler [10] studied the existence of discrete solutions of the ℎ𝑝 - CG and 

DG time-stepping methods, which are used for solving nonlinear IVPs. In 2014, Zhao and Wei 

[16] considered and derived a unified DG framework for nonlinear ODEs. In 2016, Holm and 

Wihler [7] considered and investigated CG and DG time-stepping methods of arbitrary order 

for solving nonlinear IVPs. Adnan and Ahmed in 2018 in [1] used Galerkin method for solving 

a system of second order boundary value problems (BVPs) using Bernstein polynomials. 

Recently, Schmidt, Beyer, Hinze and Vandoros in 2020 [11] used FEM for solving first order 

ODEs. In 2022, Huynh [9] used DG method for solving ODEs using the idea of the correction 

function. Danet [3] in 2022 used the variational methods for solving sixth order ODEs and 

analysed the existence and uniqueness of their solutions. Sohel et al in 2022 [12] used Galerkin 

residual correction method for solving fourth order BVPs. Also, the researchers in 2022 in [13] 

considered using Galerkin residual correction method with modified Legendre polynomials for 
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approximating the solution of the linear and nonlinear second order BVPs of ODEs. Wang et 

al in 2023 [15] presented and examined ℎ𝑝-version CG methods for nonlinear second order 

IVPs of ODEs. In this paper, we derived optimal order a posteriori error estimates in the 𝐿2 

norm of the FEM solution of generic linear second-order ordinary BVPs using a conforming 

Galerkin linear finite element method. This paper is organized as follows: In section 2 we give 

the necessary notations and relevant preliminaries of the topic. Section 3 is devoted for the a 

posteriori error analysis for the general scalar linear second-order ordinary BVPs. The 

conclusions are given in section 4. 

Problem Setting and Notation 

We consider the problem of finding the solution of the generic scalar linear ordinary BVP: find 

𝑢: 𝐼 → 𝑅 such that 

  −𝑎𝑢′′ + 𝑏𝑢′ + 𝑐𝑢 = 𝑓,  𝑜𝑛 𝐼,                                               (1)          

      𝑢(𝛼) = 0, 𝑢(𝛽) = 0,        

where 𝐼 = (𝛼, 𝛽), 𝑎 < 0, 𝑏, 𝑐 ≥ 0 and 𝑓 ∈ 𝐿2(𝐼). For simplicity of notation let 𝐻 = 𝐻0
1(𝐼). The 

weak formulation of the problem in (1) as follows: find 𝑢 ∈ 𝐻 such that 𝜎(𝑢, 𝑣) = 𝑙(𝑣) for all 

𝑣 ∈ 𝐻, where 

𝜎(𝑢, 𝑣) = ∫
𝐼

  (𝑎𝑢′𝑣′ + 𝑏𝑢′𝑣 + 𝑐𝑢𝑣)𝑑𝑥, 

and 

𝑙(𝑣) = ∫
𝐼

 𝑓𝑣 𝑑𝑥 = (𝑓, 𝑣). 

Then, there exists a unique weak solution, 𝑢 ∈ 𝐻, where 𝜎: 𝐻 × 𝐻 → 𝑅 is the bilinear form, 

𝑙: 𝐻 → 𝑅 is the linear functional associated with this problem and (.,.) 𝑖𝑠 𝑡ℎ𝑒 𝐿2 inner product. 

The interval [𝛼, 𝛽] is subdivided into 𝑛 subintervals (elements) via partition 𝛱: 𝛼 = 𝑥0 < 𝑥1 <

⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝛽 . For simplicity and convenience of exposure, we consider the finite 

dimensional subspace 𝐻ℎ consists of continuous piecewise linear functions. The finite element 

approximation of the BVP in (1) is: find 𝑢ℎ ∈ 𝐻ℎ such that 𝜎(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ) for all 𝑣ℎ ∈ 𝐻ℎ. 

Defineℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1, 𝑖 = 1, … , 𝑛. 
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A Posteriori Error Analysis 

A posteriori error analysis is a very important and effective tool in designing efficient and 

effective adaptive methods. It is utilised in finding an estimate or a bound for the error 𝑒 = 𝑢 −

𝑢ℎ, which depends upon the approximate solution 𝑢ℎ, the source function 𝑓 and the data of the 

problem. Our aim is to find an a posteriori estimator function 𝐸 = 𝐸(𝑢ℎ, 𝑓; 𝑉) in terms of the 

functions 𝑢ℎ, 𝑓  and the space 𝑉 , such that 𝐸  satisfies the relation ∥ 𝑒 ∥𝑉=∥ 𝑢 − 𝑢ℎ ∥𝑉≤

𝐸(𝑢ℎ, 𝑓; 𝑉). The a posteriori error bounds are useful in reducing the computational cost of 

solving a problem using numerical methods. In this section, we derive the a posteriori error 

bounds for a generic scalar linear second-order ordinary BVPs using duality technique. 

A Posteriori Error Analysis for a Generic Scalar Linear Second- Order ODEs 

In this section, we explain how to derive and obtain a posteriori error estimates for general 

scalar linear second-order ordinary BVPs. 

Theorem ( 𝐿2 a Posteriori Error Bounds for Generic Scalar Linear Second-Order BVP 

ODEs) The finite element approximate solution 𝑢ℎ of the problem (1), satisfies the following 

a posteriori 𝐿2 error estimate 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)≤ 𝐶ˆℎ2 ∥ 𝑅(𝑢ℎ) ∥𝐿2(𝐼) ,                                                 (2) 

where 𝐶ˆ > 0 and 𝑅(𝑢ℎ) = 𝑓 + 𝑎𝑢ℎ
′′ − 𝑏𝑢ℎ

′ − 𝑐𝑢ℎ. 

Proof. We consider the following auxiliary dual or adjoint BVP 

−𝑎𝜓′′   − 𝑏𝜓′ + 𝑐𝜓 = 𝑢 − 𝑢ℎ ,  𝑜𝑛 𝐼,                                                           (3)  

    𝜓(𝛼)   = 𝜓(𝛽) = 0.  

We start the proof by writing the dual problem in the weak form by testing it with a test function 

𝑢 − 𝑢ℎ ∈ 𝐻 and performing integration by parts to obtain 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)
2   = (𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ) = (𝑢 − 𝑢ℎ , −𝑎𝜓′′ − 𝑏𝜓′ + 𝑐𝜓)    

= 𝜎(𝑢 − 𝑢ℎ, 𝜓),                                                                (4)  

noting that (𝑢 − 𝑢ℎ)(𝛼) = 0, (𝑢 − 𝑢ℎ)(𝛽) = 0. Using Galerkin orthogonality 



  

 

202 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 4, October 2024 

Manuscript Code: 817B 

 
 
 

𝜎(𝑢 − 𝑢ℎ, 𝜓ℎ) = 0, ∀𝜓ℎ ∈ 𝐻ℎ,                                                           (5) 

and choosing 𝜓ℎ = 𝐼ℎ𝜓 ∈ 𝐻ℎ, where 𝐼ℎ𝜓 is the continuous piecewise linear interpolant of the 

function 𝜓 on the partition 𝛱: 𝛼 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝛽, which results in 

𝜎(𝑢 − 𝑢ℎ, 𝐼ℎ𝜓) = 0. 

So, 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)
2   = 𝜎(𝑢 − 𝑢ℎ , 𝜓 − 𝐼ℎ𝜓) = 𝜎(𝑢, 𝜓 − 𝐼ℎ𝜓) − 𝜎(𝑢ℎ, 𝜓 − 𝐼ℎ𝜓)    

= (𝑓, 𝜓 − 𝐼ℎ𝜓) − 𝜎(𝑢ℎ, 𝜓 − 𝐼ℎ𝜓).                                           (6)  

Now, we consider the second term of the right-hand side of (6), 

 𝜎(𝑢ℎ, 𝜓 − 𝐼ℎ𝜓)

= ∑

𝑛

𝑖=1

  𝑎 ∫
𝑥𝑖

𝑥𝑖−1

  𝑢ℎ
′ (𝜓 − 𝐼ℎ𝜓)′𝑑𝑥   + ∑

𝑛

𝑖=1

  𝑏 ∫
𝑥𝑖

𝑥𝑖−1

  𝑢ℎ
′ (𝜓 − 𝐼ℎ𝜓)𝑑𝑥

+ ∑

𝑛

𝑖=1

  𝑐 ∫
𝑥𝑖

𝑥𝑖−1

  𝑢ℎ(𝜓 − 𝐼ℎ𝜓)𝑑𝑥.  

Performing the integration by parts on the first term of the right-hand side and observing that 

(𝜓 − 𝐼ℎ𝜓)(𝑥𝑖) = 0, 𝑖 = 0, … , 𝑛, which implies that 

𝜎(𝑢ℎ, 𝜓 − 𝐼ℎ𝜓) = ∑

𝑛

𝑖=1

 ∫
𝑥𝑖

𝑥𝑖−1

  (−𝑎𝑢ℎ
′′ + 𝑏𝑢ℎ

′ + 𝑐𝑢ℎ)(𝜓 − 𝐼ℎ𝜓)𝑑𝑥.                       (7) 

Also, 

(𝑓, 𝜓 − 𝐼ℎ𝜓) = ∑

𝑛

𝑖=1

 ∫
𝑥𝑖

𝑥𝑖−1

 𝑓(𝜓 − 𝐼ℎ𝜓)𝑑𝑥.                                                                    (8) 

Substituting (7) and (8) into (6), we arrive that 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)
2 = ∑

𝑛

𝑖=1

 ∫
𝑥𝑖

𝑥𝑖−1

 𝑅(𝑢ℎ)(𝜓 − 𝐼ℎ𝜓)𝑑𝑥,                                      (9) 

where the function 𝑅(𝑢ℎ) is the finite element residual and it used as an indicator of how the 

approximate solution 𝑢ℎ fails to satisfy the ODE −𝑎𝑢′′ + 𝑏𝑢′ + 𝑐𝑢 = 𝑓 on the interval (𝛼, 𝛽). 
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Noting that since 𝑢ℎ is a linear combination of continuous piecewise linear basis functions, 

then, 𝑢ℎ
′′ = 0 and actually, 𝑅(𝑢ℎ) = 𝑓 − 𝑏𝑢ℎ

′ − 𝑐𝑢ℎ. Utilising the Cauchy-Schwarz inequality 

on the right-hand side of (9) leads to 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)
2 ≤ ∑

𝑛

𝑖=1

  ∥ 𝑅(𝑢ℎ) ∥𝐿2(𝑥𝑖−1,𝑥𝑖)∥ 𝜓 − 𝐼ℎ𝜓 ∥𝐿2(𝑥𝑖−1,𝑥𝑖) .                               (10) 

Using the standard Interpolation Error Bounds [14], we have 

∥ 𝜓 − 𝐼ℎ𝜓 ∥𝐿2(𝑥𝑖−1,𝑥𝑖)≤ (
ℎ𝑖

𝜋
)

2

∥ 𝜓′′ ∥𝐿2(𝑥𝑖−1,𝑥𝑖), 𝑖 = 1, … , 𝑛,                                             (11) 

and by plugging (11) in (10), we find 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)
2 ≤

1

𝜋2
∑

𝑛

𝑖=1

 ℎ𝑖
2 ∥ 𝑅(𝑢ℎ) ∥𝐿2(𝑥𝑖−1,𝑥𝑖)∥ 𝜓′′ ∥𝐿2(𝑥𝑖−1,𝑥𝑖). 

Finally, we obtain 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)
2 ≤

1

𝜋2
(∑

𝑛

𝑖=1

  ℎ𝑖
4 ∥ 𝑅(𝑢ℎ) ∥𝐿2(𝑥𝑖−1,𝑥𝑖)

2 )

1
2

∥ 𝜓′′ ∥𝐿2(𝐼) .                               (12) 

Now, our aim is to remove 𝜓′′ from the right-hand side of (12). Notice that 

𝑎𝜓′′ = 𝑢ℎ − 𝑢 − 𝑏𝜓′ + 𝑐𝜓.                                                                                                      (13) 

Hence, 

∥ 𝜓′′ ∥𝐿2(𝐼)≤
1

𝑎
∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)+

𝑏

𝑎
∥ 𝜓′ ∥𝐿2(𝐼)+

𝑐

𝑎
∥ 𝜓 ∥𝐿2(𝐼) .                                   (14) 

Now, we want to bound ∥ 𝜓′ ∥𝐿2(𝐼) and ∥ 𝜓 ∥𝐿2(𝐼) in terms of ∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼) and consequently, 

∥ 𝜓′′ ∥𝐿2(𝐼) by utilising of (14). Consider that 

(−𝑎𝜓′′ − 𝑏𝜓′ + 𝑐𝜓, 𝜓) = (𝑢 − 𝑢ℎ, 𝜓). 

Integrating by parts results in 



  

 

204 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 4, October 2024 

Manuscript Code: 817B 

 
 
 

(−𝑎𝜓′′ − 𝑏𝜓′ + 𝑐𝜓, 𝜓) = 𝑎(𝜓′, 𝜓′) + 𝑏(𝜓, 𝜓′) + 𝑐(𝜓, 𝜓)  

= 𝑎 ∥ 𝜓′ ∥𝐿2(𝐼)
2 +

1

2
𝑏 ∫

𝐼

   (𝜓2)′𝑑𝑥 + 𝑐 ∥ 𝜓 ∥𝐿2(𝐼)
2 .  

observing that 𝜓(𝛼) = 0 and 𝜓(𝛽) = 0 and also, integrating by parts in the second term on the 

right implies 

(−𝑎𝜓′′ − 𝑏𝜓′ + 𝑐𝜓, 𝜓) = 𝑎 ∥ 𝜓′ ∥𝐿2(𝐼)
2 + 𝑐 ∥ 𝜓 ∥𝐿2(𝐼)

2 . 

Therefore, 

𝑎 ∥ 𝜓′ ∥𝐿2(𝐼)
2 + 𝑐 ∥ 𝜓 ∥𝐿2(𝐼)

2 = (𝑢 − 𝑢ℎ, 𝜓), 

and upon observing that 𝑐 ≥ 0, we have 

∥ 𝜓′ ∥𝐿2(𝐼)
2 ≤

1

𝑎
(𝑢 − 𝑢ℎ , 𝜓) ≤

1

𝑎
∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)∥ 𝜓 ∥𝐿2(𝐼) .                                      (15) 

Using the Poincaré-Friedrichs inequality [14], we have 

∥ 𝜓 ∥𝐿2(𝐼)
2 ≤ 𝐶𝑃𝐹 ∥ 𝜓′ ∥𝐿2(𝐼)

2 ,                                                                                              (16) 

where 𝐶𝑃𝐹 = (2/(𝛽 − 𝛼)2)−1. Hence, inserting (15) in (16) yields 

∥ 𝜓 ∥𝐿2(𝐼)≤
𝐶𝑃𝐹

𝑎
∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼) .                                                                                    (17) 

Substituting (17) in (15) results in 

∥ 𝜓′ ∥𝐿2(𝐼)≤
𝐶𝑃𝐹

1
2

𝑎
∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼) .                                                                                (18) 

Thus, inserting (17) and (18) into (14) to conclude that 

∥ 𝜓′′ ∥𝐿2(𝐼)≤ 𝐶 ∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼) ,                                                                      (19) 

where 

𝐶 =
1

𝑎
(1 + 𝑏𝐶𝑃𝐹

1/2
+ 𝑐𝐶𝑃𝐹). 
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Observe that 𝐶 is computable since it contains only known quantities, the coefficients in the 

differential equation and the domain of model problem. Inserting (19) into (12), we have 

∥ 𝑢 − 𝑢ℎ ∥𝐿2(𝐼)≤ 𝐶ˆ (∑

𝑛

𝑖=1

  ℎ𝑖
4 ∥ 𝑅(𝑢ℎ) ∥𝐿2(𝑥𝑖−1,𝑥𝑖)

2 )

1
2

,                              (20) 

where 𝐶ˆ = 𝐶/𝜋2. Further, let ℎ = 𝑚𝑎𝑥𝑖  ℎ𝑖, 𝑖 = 1, … , 𝑛, and using this in (20), consequently, 

we obtain our required a posteriori error bound in (2). 

Conclusions 

We studied the error analysis of the finite element solution of generic scalar linear second-order 

ordinary BVPs in 1D. Continuous Galerkin finite element method (CGFEM) with piecewise 

linear polynomials are used for the space discretisation. Optimal order a posteriori error bounds 

in 𝐿2 norm are obtained using the duality approach and standard a posteriori tools. 
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