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Abstract 

In this paper, we extended some numerical methods to solve fuzzy integro differential equations. 

The considered problem involves the fractional Caputo derivatives under some conditions on 

the ordered. As we combine Euler's method with composite Simpsons have been used to 

determine the solutions of these equations. We extend these numerical techniques to find the 

best solutions. Extended difference Euler technique is used for this. The results show that the 

extended Euler method is more accurate in terms of absolute error. Illustrative examples are 

given to demonstrate the high precision and good performance of the new class. 

Keywords: Euler method, exact solution, approximate solution, fuzzy parameter, Caputo 

Fractional. 

كسريةكابوتو ال ةمشتق ةتضمنالمدراسة عددية لحل المعادلات التفاضلية التكاملية الضبابية   

روكان خاجي  و عبداللهرؤى نجم   

جامعة ديالى –كلية العلوم  -قسم الرياضيات  

  الخلاصة 

التي تتضمن مشتقة كابوتو في هذا البحث، قمنا بتوسيع بعض الطرق العددية لحل المعادلات التفاضلية التكاملية الضبابية 

سون المركبة لحل هذه المعادلات.  وبينت النتائج حل اكثر دقة من حيث بحيث قمنا بدمج طريقة اويلر مع سيم كسريةال

 الخطأ المطلق. و لتوضيح ذلك قمنا بحل بعض الأمثلة التطبيقية لإثبات الدقة العالية و الأداء الجيد لهذه الطريقة الجديدة.

.طريقة اويلر ، الحل المضبوط ، الحل التقريبي ، معاملات ضبابية ، كابوتو الكسوري المفتاحية:الكلمات   
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Introduction 

The fuzzy theory and integro-differential equations of fractional order are of great importance 

since they can be used in analyzing and modeling real world phenomena. The fuzzy fractional 

integro- differential equations have been recently used as effective tools in the modeling of 

many phenomena in various fields of applied sciences and engineering such as acoustic control, 

signal processing, electroencephalogram classification EEG, electromagnetics, optics, 

medicine, economics, and statistical physics and other scieces. 

 Since Zadeh in 1972 [6], both types fuzzy differential equations and integro differential 

equations have been studied extensively. The fuzzy derivative and its generalizations was 

introduced [1]. On the other hand, the fuzzy integral was introduced [2], they showed that fuzzy 

differential equation is the following form:  

{
𝑧′(𝑡, 𝑟) = ℎ(𝑡, 𝑧(𝑡, 𝑟))

𝑧(𝑡0, 𝑟) = 𝑧0
                                                                                                                         (1) 

Has a unique solution in fuzzy case under the condition g satisfy the Lipschitz. Fuzzy Cauchy 

problem was studied [3],[4] investigated existence and uniqueness of solutions for fuzzy 

integro- differential equations with fuzzy kernel function[5],[11] proposed the extended of 

trapezoidal method to solve the fuzzy problem that has first order.[18] used fixed point theory 

to achieve the existence and uniqueness of Caputo -fractional fuzzy Volterra Fredholm integro-  

differential equation. The two-dimensional Legendre wavelet was studied [19]. They 

approximated the solution of Caputo-fractional fuzzy integro-differential equation.   

The study of fuzzy fractional integro -differential equations has been introduced as a new branch 

of fuzzy theory. The analytical methods for finding the exact solutions of fuzzy integro- 

differential equations is very difficult, so the numerical technique is the best way to resort to it. 

The aims of this study to improve the accuracy of the numerical solutions of fuzzy fractional 

integro-differential equations. The Euler method has been to be able to solve these equations, 

but current practice has less accuracy with error in approximating the solution for large step 

size. We proposed extended Euler technique to solve fuzzy fractional integro-differential 
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equations numerically.  The results are expected to be more accurate as compared to be existing 

method. The contributions of this paper as follows: we derive an efficient method for computing 

the approximate solutions of the proposed model, and discover some properties which related 

between fuzzy theory and integro-differential equations. Also, we show that the control 

parameters contributes effectively to determination of approximate solutions for fuzzy 

fractional equations.          

The paper is organized as follows: section 1. contains the Preliminaries. In section 2. 

methodology description for solving fuzzy integro-differential equations is given. In section 3, 

one example is presented. The conclusion of this paper is shown in Section 4.   

1. Preliminaries   

In this paper, we use the following notations: 𝑋(𝑡𝑛)  and  𝑋𝑛  are exact solution and 

approximate solution respectively in time 𝑡𝑛.  

Definition (1.1) [12]: A fuzzy number 𝞶 is a fuzzy subset of a real line which it satisfies the 

following conditions Convexity, normality and the membership of bounded support is upper 

semi continuous. 

Any fuzzy number 𝞶 can be represent by the following parametric forms (ν(𝑟), ν(𝑟)) , 0 ≤ 𝑟 ≤

1.  That satisfies  

a) ν(𝑟) is non-decreasing and bounded left over 0 ≤ 𝑟 ≤ 1  

b) ν(𝑟) is a bounded left continuous and non-increasing over 0 ≤ 𝑟 ≤ 1 

For each r∈ [0,1] then  ν(𝑟) ≤ ν(𝑟).  

 Definition (1.2) [7]: The r-level set is defined as  [𝑢]𝑟 = {𝑠; 𝑢(𝑠) ≥ 𝑟},   0 ≤ 𝑟 ≤ 1 

Consequently,  [𝑢]𝑟 can be written as close interval  

[𝑢]𝑟 = [𝑢 (𝑟),  𝑢(𝑟)] 
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Definition (1.3) [10]: A triangular fuzzy number is a fuzzy set V in X that is characterized by 

a tri-ordered (𝑎𝑙, 𝑎𝑐, 𝑎𝑟) in the space 𝑅3 with 𝑎𝑙 ≤ 𝑎𝑐 ≤ 𝑎𝑟 such that  [𝑉]0 = [𝑎𝑙, 𝑎𝑟]  and 

[𝑉]1 = {𝑎𝑐}.  The r-level set of a triangular fuzzy number V is given by :                              

[𝑉]𝑟 = [𝑎𝑐 − (1 − 𝑟)(𝑎𝑐 − 𝑎𝑙), 𝑎𝑐 + (1 − 𝑟)(𝑎𝑟 − 𝑎𝑐)]. 

Proposition (1.4) [8]: Let 𝒫: [𝑎, 𝑏] × [0,1] → 𝑋  be a fuzzy function  such that 𝒫(𝑡, 𝑟) =

(𝒫(𝑡, 𝑟),𝒫(𝑡, 𝑟)) , then,  If 𝒫  is differentiable then 𝒫(𝑡, 𝑟) 𝑎𝑛𝑑 𝒫(𝑡, 𝑟)  are differentiable 

functions and  𝒫′(𝑡, 𝑟) = (𝒫′(𝑡, 𝑟), 𝒫
′
(𝑡, 𝑟)) 

Definition (1.5) [9]: Let 𝜑: [𝑎, 𝑏] → 𝑋. Then for any partition 𝒫 = {𝑎 = 𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑚 = 𝑏 } 

and 𝜉𝑖 ∈ [𝑡𝑖, 𝑡𝑖+1]  , 𝑖 = 0,1,2, … ,𝑚  the definite integral of 𝜑  over [𝑎, 𝑏] is  

∫ 𝜑
𝑏

𝑎

(𝑡)𝑑𝑡 = lim
𝜗→0

ℳ𝒫 

Where, 𝜗 = max{|𝑡𝑖+1 − 𝑡𝑖|, 𝑖 = 0,1,2, … ,𝑚 } and  ℳ𝒫 = ∑ 𝜑(𝜉𝑖)(𝑡𝑖+1 − 𝑡𝑖)
𝑚
𝑖=1  

In the case 𝜑 is a fuzzy and continuous function then for each fuzzy parameter 0 ≤ 𝑟 ≤ 1,  its 

definite integral exists and [7] 

{
 
 

 
 (∫ 𝜑

𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡) = ∫ 𝜑

𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡

(∫ 𝜑
𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡) = ∫ 𝜑

𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡

                                                                                                (2) 

Definition (1.6) [10]: Let x = (x(𝑟), x(𝑟))  and y = (y(𝑟), y(𝑟)) , 0 ≤ 𝑟 ≤ 1  be fuzzy 

numbers. The distance between them is defined as follows:  

𝑑(𝑥, 𝑦) = [∫ (x(𝑟) − y(𝑟))
2

𝑑𝑟 + ∫ (x(𝑟) − y(𝑟))
21

0

1

0
𝑑𝑟]

0.5

                                                   (3) 

Definition (1.7) [13]: The α - Caputo fractional derivative of a real h ∈  C(a, b), is  
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DC
α h(t) =

1

Г(n−α)
∫

h(n)(τ)

(t−τ)α−n+1
dτ,   n − 1 < α < n ∈ N

t

a

h(n)(t) ,                                      α = n ∈ N                  
}                                                   (4) 

Definition (1.8) [13]: The α - Caputo fractional integral of  a real function h ∈  C(a, b) is  

IC
α h(t) =

1

Г(α)
∫

h(τ)

(t−τ)1−α
dτ,   0 < α                    

t

a

 h(t) ,                                      α = 0                  
}                                                               (5) 

Proposition (1.9)[15]: Assume that the Laplace transform of non-negative function φ exists on 

[a,∞) with some a ∈ R. Let  α > 0 and  n = ⌈α⌉. Then, for  s > max{0, a} we have 

 

ℒI0
αφ(s) =

1

sα
 ℒφ(s)                                                                                                                 (6) 

ℒD0
αφ(s) = sα ℒφ(s) − ∑ sα−kn

k=1 φ(k−1)(0)                                                                         (7) 

Definition (1.10) [14]: The Mittag-Leffler function Eα,β(τ) for any α, β > 0  is  

Eα,β(τ) = ∑
τn

Г(mα+β)
∞
n=1                                                                                                              (8) 

Proposition (1.11)[14]: For each  values α , t, η > 0, the following statements  are hold , λ ∈ C  

If  y(t) = Eα(− η t
α) then  ℒy(t) = λα−1(λα −  η)−1                                                                                (9) 

d

dr
Eα(− η r

α) = ∑
(− η)mrαm−1

Г(mα)
                                                                                                         

∞

m=1

 

Proposition (1.12)[17]: The following relation is hold for any α , β > 0 and λ ∈ C  

 If  y(t) = 𝑡𝛼−1 𝐸𝛽,𝛼(𝑎𝑡
𝛽)  then  ℒy(t) = λβ−α(λβ − 𝑎)

−1
   (10) 

Definition (1.13) [16]: let X(t) be a α - fractional differentiable function such that 0 < α ≤ 1. Then, 

fractional Euler method for  𝑋(t) at 𝑡𝑛,  can be written as:  
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𝑋𝑛 = 𝑋𝑛−1 + DC
α𝑋(𝑡𝑛−1)

ℎα∆𝑛−1

Г(α+1)
                                                                                           (11) 

Where,  ∆𝑛−1= (𝑛)
α − (𝑛 − 1)α 

2. Methodology Description  

The fuzzy fractional integro-differential equation is   

{
DC
α𝑋(𝑡, 𝑟) + 𝑃(𝑡, 𝑟) 𝑋(𝑡, 𝑟) = 𝑓(𝑡, 𝑟) + 𝛽 ∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

𝑋(𝑎) = 𝑋0(𝑟)
                                            (12) 

Where, DC
α is a Caputo fractional derivative of order 0 < α ≤ 1 which defined on  [𝑎, 𝑏] and is 

already given,  𝛽  > 0,   r∈ [0,1] is a fuzzy parameter, 𝑘(𝑡, 𝑠) over  𝑠, 𝑡 ∈ [𝑎, 𝑏] is the kernel 

of this equation. 

In parametric form, equation (12) is represented as follows:  

{
 
 

 
 DC

α𝑋(𝑡, 𝑟) + 𝑃(𝑡, 𝑟) 𝑋(𝑡, 𝑟) = 𝑓(𝑡, 𝑟) + 𝛽 ∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

DC
α𝑋(𝑡, 𝑟) + 𝑃(𝑡, 𝑟) 𝑋(𝑡, 𝑟) = 𝑓(𝑡, 𝑟) + 𝛽 ∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

𝑋(𝑎) = 𝑋0(𝑟)

𝑋(𝑏) = 𝑋0(𝑟)

                                          (13) 

In addition, 𝑃(𝑡, 𝑟) 𝑋(𝑡, 𝑟) = 𝑃(𝑡, 𝑟)𝑋(𝑡, 𝑟) , 𝑃(𝑡, 𝑟) 𝑋(𝑡, 𝑟) = 𝑃(𝑡, 𝑟)𝑋(𝑡, 𝑟) , 𝑃(𝑡, 𝑟) =

(𝑃(𝑡, 𝑟), 𝑃(𝑡, 𝑟))  , 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟) = 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟) , 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟) = 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)  

The formula of Euler method is:  

{
𝑋𝑛 = 𝑋𝑛−1 + DC

α𝑋(𝑡𝑛−1)
ℎα∆𝑛−1

Г(α+1)

𝑋𝑛−1 = 𝑋𝑛 − DC
α𝑋(𝑡𝑛)

ℎα∆𝑛−1

Г(α+1)

                                                                                          (14) 

Where Г  is a gamma function. Equations in (14) give the following formula:  

𝑋𝑛 = 𝑋𝑛−1 +
ℎα∆𝑛−1

2Г(α+1)
(DC

α𝑋(𝑡𝑛−1) + DC
α𝑋(𝑡𝑛))                                                                    (15) 



  
 

 

 

234 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 4, October 2024 

Manuscript Code: 780B 

 
 
 

To use the following notations in the equations (13)  

𝜓(𝑡, 𝑟, 𝑋(𝑡, 𝑟),∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

) = − 𝑃(𝑡, 𝑟) 𝑋(𝑡, 𝑟) + 𝑓(𝑡, 𝑟) + 𝛽∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 

𝜓(𝑡, 𝑟, 𝑋(𝑡, 𝑟),∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

) = − 𝑃(𝑡, 𝑟) 𝑋(𝑡, 𝑟) + 𝑓(𝑡, 𝑟) + 𝛽∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 

{
𝜓𝑛 = − 𝑃𝑛 𝑋𝑛 + 𝑓𝑛 + 𝛽 ∫ 𝑘(𝑡𝑛, 𝑠)𝑋𝑛𝑑𝑠

𝑏

𝑎

𝜓𝑛 = − 𝑃𝑛 𝑋𝑛 + 𝑓𝑛 + 𝛽 ∫ 𝑘(𝑡𝑛, 𝑠)𝑋𝑛𝑑𝑠
𝑏

𝑎

                                                                             (16) 

Where, 𝑃𝑛 𝑋𝑛 = 𝑃(𝑡𝑛, 𝑟) 𝑋(𝑡𝑛, 𝑟),  𝑓𝑛 = 𝑓(𝑡𝑛, 𝑟) .  𝑘(𝑡𝑛, 𝑠)𝑋𝑛 = 𝑘(𝑡𝑛, 𝑠) 𝑋(𝑡𝑛, 𝑟) , 𝑃𝑛 𝑋𝑛 =

𝑃(𝑡𝑛, 𝑟) 𝑋(𝑡𝑛, 𝑟),  𝑓𝑛 = 𝑓(𝑡𝑛, 𝑟) and 𝑘(𝑡𝑛, 𝑠)𝑋𝑛 = 𝑘(𝑡𝑛, 𝑠)𝑋(𝑡𝑛, 𝑟) 

Now, applying these notations and the formula in (15) on equations in (13), we have  

{
𝑋𝑛 = 𝑋𝑛−1 +

ℎα∆𝑛−1

2Г(α+1)
(𝜓𝑛−1 + 𝜓𝑛)

𝑋𝑛 = 𝑋𝑛−1 +
ℎα∆𝑛−1

2Г(α+1)
(𝜓𝑛−1 + 𝜓𝑛)

                                                                                    (17) 

Now, using composite Simpsons on with n subintervals and s belong to [𝑎, 𝑏], the integral part 

of equations in (16) is approximated by  

𝐼0 =
2ℎ

3
(𝑘(𝑡0, 𝑡0)𝑋0) 

𝐼0 =
2ℎ

3
(𝑘(𝑡0, 𝑡0)𝑋0) 

𝐼1 =
ℎ

3
(𝑘(𝑡1, 𝑡0)𝑋0 + 𝑘(𝑡1, 𝑡1)𝑋1) 

𝐼1 =
ℎ

3
(𝑘(𝑡1, 𝑡0)𝑋0 + 𝑘(𝑡1, 𝑡1)𝑋1) 
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{
𝐼𝑛 = ∫ 𝑘(𝑡𝑛, 𝑠)𝑋𝑛𝑑𝑠

𝑏

𝑎
=

ℎ

3
(𝑘(𝑡𝑛, 𝑡0)𝑋0 + 4∑ 𝑘(𝑡𝑛, 𝑡𝑘)𝑋𝑘

𝑛−1
𝑘=1 + 𝑘(𝑡𝑛, 𝑡𝑛)𝑋𝑛)

𝐼𝑛 = ∫ 𝑘(𝑡𝑛, 𝑠)𝑋𝑛𝑑𝑠
𝑏

𝑎
=

ℎ

3
(𝑘(𝑡𝑛, 𝑡0)𝑋0 + 4∑ 𝑘(𝑡𝑛, 𝑡𝑘)𝑋𝑘

𝑛−1
𝑘=1 + 𝑘(𝑡𝑛, 𝑡𝑛)𝑋𝑛)

                   (18) 

Consequently, the equations in (16) become  

{
𝜓𝑛 = − 𝑃𝑛 𝑋𝑛 + 𝑓𝑛 + 𝛽𝐼𝑛

𝜓𝑛 = − 𝑃𝑛 𝑋𝑛 + 𝑓𝑛 + 𝛽𝐼𝑛
                                                                                                   (19) 

By substituting equations (19) and (18) in equations (17), we get on the following formulas 

n=2,3, 

𝑋𝑛 = {1 +
ℎα∆𝑛−1
2Г(α + 1)

 𝑃𝑛 −
ℎα+1∆𝑛−1
6Г(α + 1)

𝛽𝑘(𝑡𝑛, 𝑡𝑛)}

−1

{𝑋𝑛−1 +
ℎα∆𝑛−1
2Г(α + 1)

(𝜓𝑛−1)

+
ℎα∆𝑛−1
2Г(α + 1)

{𝑓𝑛 +
𝛽ℎ

3
(𝑘(𝑡𝑛, 𝑡0)𝑋0 + 4∑ 𝑘(𝑡𝑛, 𝑡𝑘)𝑋𝑘

𝑛−1

𝑘=1
)}} 

𝑋𝑛 = {1 +
ℎα∆𝑛−1
2Г(α + 1)

 𝑃𝑛 −
ℎα+1∆𝑛−1
6Г(α + 1)

𝛽𝑘(𝑡𝑛, 𝑡𝑛)}

−1

{𝑋𝑛−1 +
ℎα∆𝑛−1
2Г(α + 1)

(𝜓𝑛−1)

+
ℎα∆𝑛−1
2Г(α + 1)

{𝑓𝑛 +
𝛽ℎ

3
(𝑘(𝑡𝑛, 𝑡0)𝑋0 + 4∑ 𝑘(𝑡𝑛, 𝑡𝑘)𝑋𝑘

𝑛−1

𝑘=1
)}} 

(20) 

The first and second states are expressed by  

𝑋1 = {1 +
ℎα

2Г(α + 1)
 𝑃1 −

ℎα+1

6Г(α + 1)
𝛽𝑘(𝑡1, 𝑡1)}

−1

{𝑋0 +
ℎα

2Г(α + 1)
(𝜓0)

+
ℎα

2Г(α + 1)
{𝑓1 +

𝛽ℎ

3
(𝑘(𝑡1, 𝑡0)𝑋0)}} 
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𝑋1 = {1 +
ℎα

2Г(α + 1)
 𝑃1 −

ℎα+1

6Г(α + 1)
𝛽𝑘(𝑡1, 𝑡1)}

−1

{𝑋0 +
ℎα

2Г(α + 1)
(𝜓0)

+
ℎα

2Г(α + 1)
{𝑓1 +

𝛽ℎ

3
(𝑘(𝑡1, 𝑡0)𝑋0)}} 

(21)   

𝑋2 = {1 +
ℎα(2α − 1)

2Г(α + 1)
 𝑃2 −

ℎα+1(2α − 1)

6Г(α + 1)
𝛽𝑘(𝑡2, 𝑡2)}

−1

{𝑋1 +
ℎα(2α − 1)

2Г(α + 1)
(𝜓1)

+
ℎα(2α − 1)

2Г(α + 1)
{𝑓2 +

𝛽ℎ

3
(𝑘(𝑡2, 𝑡0)𝑋0 + 4𝑘(𝑡2, 𝑡1)𝑋1)}} 

𝑋2 = {1 +
ℎα(2α − 1)

2Г(α + 1)
 𝑃2 −

ℎα+1(2α − 1)

6Г(α + 1)
𝛽𝑘(𝑡2, 𝑡2)}

−1

{𝑋1 +
ℎα(2α − 1)

2Г(α + 1)
(𝜓1)

+
ℎα(2α − 1)

2Г(α + 1)
{𝑓2 +

𝛽ℎ

3
(𝑘(𝑡2, 𝑡0)𝑋0 + 4𝑘(𝑡2, 𝑡1)𝑋1)}} 

 (22) 

3. Illustrative example  

To show the efficiency and accuracy of the proposed technique with various values of step size, 

we consider the following example.      

Example: Consider the following fuzzy fractional integro-differential equation taken from (12)  

{
DC
𝛼𝑋(𝑡, 𝑟) +  𝑋(𝑡, 𝑟) = ((3 + 3𝑟) sinh(𝑡) , (8 − 2𝑟) sinh(𝑡)) + ∫ (𝑡 − 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠

1

0

𝑋(0, 𝑟) = ((3 + 3𝑟), (8 − 2𝑟))   ,   𝑡 ∈ [0,1], 0 ≤ 𝑟 ≤ 1
        (23) 

Where, 0 < α ≤ 1 ,  the exact solution is given by  

𝑋(𝑡, 𝑟) = ((3 + 3𝑟)(𝑡𝛼+1E2,α+2(𝑡
2) + 1), (8 − 2𝑟)(𝑡𝛼+1E2,α+2(𝑡

2) + 1))                       (24) 

The approximate solution by using extended difference Euler method is given by  
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𝑋𝑛 = {1 +
ℎα∆𝑛−1
2Г(α + 1)

 }
−1

{𝑋𝑛−1 +
ℎα∆𝑛−1
2Г(α + 1)

(𝜓𝑛−1)

+
ℎα∆𝑛−1
2Г(α + 1)

{(3 + 3𝑟) sinh(𝑡𝑛) +
ℎ

3
((𝑡𝑛 − 𝑡0)𝑋0 + 4∑ (𝑡𝑛 − 𝑡𝑘)𝑋𝑘

𝑛−1

𝑘=1
)}} 

𝑋𝑛 = {1 +
ℎα∆𝑛−1
2Г(α + 1)

 }
−1

{𝑋𝑛−1 +
ℎα∆𝑛−1
2Г(α + 1)

(𝜓𝑛−1)

+
ℎα∆𝑛−1
2Г(α + 1)

{(8 − 2𝑟) sinh(𝑡𝑛) +
ℎ

3
((𝑡𝑛 − 𝑡0)𝑋0 + 4∑ (𝑡𝑛 − 𝑡𝑘)𝑋𝑘

𝑛−1

𝑘=1
)}} 

  (25)   

Where  

{
𝜓𝑛 = −  𝑋𝑛 + (3 + 3𝑟) sinh(𝑡𝑛) + 𝐼𝑛

𝜓𝑛 = −  𝑋𝑛 + (8 − 2𝑟) sinh(𝑡𝑛) + 𝐼𝑛
                                                                                 (26) 

Approximate solutions 𝑋𝑛 , 𝑋𝑛 can be found by solving equations in (25) (see Fig. 1., 2, 3, 4, 

5, 6) And Table 1, 2, 3) 

 

Table 1: 𝒉 = 𝟎.𝟏,𝛂 = 𝟎.𝟗  

 

 

 

 

t d 

0 0 

0.3 0.0052 

0.5 0.0149 

0.7 0.0188 

0.9 0.0237 

Figure 1: Exact Solution when α = 0.9  



  
 

 

 

238 

Academic Science Journal 

P-ISSN: 2958-4612  

E-ISSN: 2959-5568 

 

Volume: 2, Issue: 4, October 2024 

Manuscript Code: 780B 

 
 
 

 

𝐓𝐚𝐛𝐥𝐞 𝟐  𝒉 = 𝟎. 𝟎𝟏  , 𝛂 = 𝟎. 𝟗 

 

 

 

 

 

 

 

𝐓𝐚𝐛𝐥𝐞 𝟑  𝒉 = 𝟎. 𝟎𝟎𝟏, , 𝛂 = 𝟎. 𝟗 

 

 

 

 

 

 

 

Conclusion 

The extended difference Euler technique for solving fractional order fully fuzzy integro-

differential Equations was considered.   This technique proved it’s efficient in solving of 

proposed equations by providing the best approximate of its solutions.  We showed that the 

fractional parameter   played a fundamental and important role in reducing the error rate which 

resulted from the approximation of solutions for fuzzy fractional integro-differential Equations. 

Thus, our work in this paper, can be extended to multivariate fuzzy fractional equations.  Finally, 

we would like to refer that the proposed equation can be applied to various fields such as 

environmental, medicine, economy, engineering and biomedical.    

𝑡 D 

0 0 

0.3 0.0015 

0.5 0.0068 

0.7 0.0145 

0.9 0.0209 

t d 

0 0 

0.3 0.0014 

0.5 0.0067 

0.7 0.0150 

0.9 0.0214 

Figure 2: Approximate Solution when  α =
0.9  

Figure 3: Exact and Approximate Solution at t=0.3 , 𝛂 = 𝟎. 𝟗  
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