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Abstract 

This study established the numerical RKM approach for solving linear two-point boundary 

value problems involving fourth-order ordinary differential equations. However, the proposed 

developed numerical RKM method has been tested using some implementations in order to 

compare it with the exact solutions to establish the method's validity. Furthermore, this 

comparison demonstrates that the proposed direct integrator is more efficient than the indirect 

method in terms of efficiency and accuracy. In addition, numerical implementations are used 

in order to show the efficiency and time-based complexity of function evaluations. This direct 

method's suggested strategy, which has wonderful qualities like quick and efficient calculation, 

also requires fewer computational employees. 

Keyword: RKM, Ordinary Differential Equations; Boundary Value Problems, Order, DEs, 

ODEs. 

Introduction 

Fourth-order boundary-value problems (BVPs) arise in mathematical modeling of science and 

engineering, for example, cantilever beam deflection under concentrated load, beam 
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deformation and plate deflection theory, obstacle problems, temperature distribution of the 

trapezoidal profile's radiation fin, and a variety of other engineering applications. However, the 

linear boundary value problems (LBVPs) with ordinary differential equations (ODEs) are used 

to represent a wide range of situations, including electrostatic potential between two concentric 

metals, chemical reactions, heat transmission, and bean deflection. A boundary value issue with 

four boundary conditions can be used to introduce these problems. Numerous authors have 

employed numerical and approximate techniques to address LBVPs, with specific 

methodologies outlined in references [1-10] which introduced the construction of a numerical 

algorithm for solving second-order LBVPs with Dirichlet and Neumann boundary conditions 

involves the utilization of Walsh wavelets and semi-orthogonal B-spline wavelets. Na, (1980) 

[1] achieved the numerical solution for second-, third-, and fourth-order BVPs by converting 

them into initial value problems (IVPs) and employing methods such as the nonlinear shooting 

method of reduced physical parameters and the method of invariant embedding. Our current 

approach is versatile, and applicable to both BVPs and IVPs with slight adjustments, eliminating 

the need for transforming BVPs into IVPs or vice versa. Two-point BVPs are found in all fields 

of engineering and science. The boundary conditions (BCs) are mentioned at two stages in these 

issues. To make matters worse, the governing differential equations for the most majority of 

such situations are nonlinear; because analytic solutions do not exist in general, solutions have 

to be sought through numerical approaches. There are two types of approaches for numerically 

solving such problems: iterative and non-iterative methods. Non iterative solutions can always 

be obtained for LBVPs. Iteration is generally required for nonlinear situations. It should be 

noted, however, that there are numerous strategies for eliminating iteration of the answer, 

resulting in significant reductions in computing time [1]. However, in mechanics, the technique 

was used to analyze many two- and multi-BVPs.  In the last years, many numerical techniques 

for solving LBVPs have been studied, for example, the numerical method utilizing Walsh 

wavelet packet bases as trial functions within the formulation of the least square method where 

Walsh-wavelet packet basis functions enable the formulation of an efficient numerical approach 

for analyzing multi-point linear BVPs [3].  
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A method based on Non-polynomial spline functions of quadratic nature is devised to obtain 

approximation solutions to a set of second-order equations BVPs including obstruction, 

unilateral, and contact problems. The present approach incurs lower computational costs and 

yields more accurate approximations compared to alternative collocation, finite-difference, and 

spline methodologies. The method's convergence analysis is covered. An illustrative numerical 

instance is provided to demonstrate the new method's practical application [4]. A novel 

numerical approach for computing estimations of the solution to a collection of boundary-value 

problems of third order related to obstruction, unilateral, and contact problems is developed 

using quartic non-polynomial splines. It is demonstrated that the novel method produces 

superior approximations than other collocation, spline methods, and finite-difference. The 

method's convergence analysis is presented using standard methodologies. A numerical 

illustration is provided to demonstrate the applicability. A computational technique is 

formulated for approximating the solution of a set of second-order boundary value problems 

(BVPs) by employing non-polynomial spline functions equivalent to cubic splines, which 

proved that the proposed method creates superior approximations compared to alternative 

collocation, finite difference, and spline techniques. The convergence analysis of this method 

is discussed. A numerical example is provided to illustrate the method's practical use studied 

the shooting techniques to approximate the solution of Troesch’s two-point BVPs [5]. A method 

for solving multipoint BVPs is described. This method can be used to solve the generic form of 

multipoint BVPs. Numerical results are presented to demonstrate the effectiveness of the 

devised method [8]. For second-order, non-linear BVPs, finite-difference algorithms of orders 

six and eight are described. Both techniques are cost-effective because they perform few 

function evaluations at inside grid points. The methods are simple to put into practice. The 

methods' convergence is addressed. Numerical examples are used to highlight the 

computational order of convergence. Non-polynomial splines are utilized to construct a class 

of numerical algorithms for computing approximations to the solution of sixth-order BVPs with 

two-point boundary conditions. The conventional approach yields second-, fourth- , and sixth-

order convergence. It is demonstrated that the current methods yield better estimates than other 

spline and domain decomposition methods [11]. 
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The objective of this article is to develop a method for solving the linear fourth-order BVPs 

numerically which arising in the mathematical modeling of different engineering applications.  

This paper is concerned with the solution of LBVPs involving fourth-order ODEs, which are 

as follows: 

𝑦(4)(𝑥)

= 𝑃(𝑥)𝑦′′′(𝑥) + 𝑄(𝑥)𝑦′′(𝑥) + 𝑅(𝑥)𝑦′(𝑥) + 𝑆(𝑥)𝑦(𝑥)

+ 𝑇(𝑥),                                                                                                                                                       (1)    

Where 𝑃(𝑥) > 0,   a ≤ 𝑥 ≤ b, 

With the boundary conditions 

𝑦(a) = α0,    𝑦′(a) = α1,  𝑦′′(a) = α2, 

 𝑦(b) = β,             (2) 

where a , b , α , β, 𝛾  and 𝛿 are the given constants. 

Furthermore, to assess the suitability of the devised approach, our emphasis is placed on the 

LBVPs of the type in Equation (1) with the boundary conditions in Eq. (2). 

The following structure is used to organize the paper. Section 2. The preliminary introduces 

some fundamental concepts connected to the subject under consideration in this work. Section 

3 presents a generic formulation of the numerical strategy based on the RKM method for solving 

4th-order ODEs. Furthermore, in Section 4, the major conclusions of the suggested method of 

solutions, as well as a summary of the analysis and several numerical examples, are presented. 

Finally, numerical results are shown in Section 4 to demonstrate the efficiency of the proposed 

direct method with four tested problems. 

1. Preliminary 

This section introduced some basic concepts related to the problem of study in this paper.   

 Quasi Linear ODEs of 𝟒th  Order 

The special quasi-linear ODE of fourth order has the following form 
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ƴ(4)(ᶍ) = ƒ(ᶍ, ƴ(ᶍ)), ᶍ ≥ a                                                                                                      (3) 

With the initial conditions (I.Cs.) 

ƴ(i)(a) = ƴ0
i , 𝑖 =

0, 1, 2, 3.                                                                                                                                                      (4)                                                                                                                                                                                                                                                                     

with the special properties for the function  f does not depend directly on the 

derivatives (ƴ(ɳ)(ᶍ)), ɳ = 1,2,3,4. Where 𝑓: ℛ × ℛ𝑑 → ℛ𝑑.   

A lot of authors derived numerical methods of one-step, multistep or embedded types for 

solving different orders ODEs [11-25]. Historically, scientists and engineers used to solve 

ODEs of the fourth order by converting ODE into a system of ODEs of the first order and then 

numerically solving this system. This strategy was wasteful of both digital and human 

resources. Numerous authors derived direct explicit one step methods for solving different 

orders of ODEs [1-11] while the others derived direct embedded or multistep methods for 

solving different orders of ODEs [12-15] provided these, direct numerical approaches would 

be the most effective method for solving ODEs of orders three to ten. However, Mechee and 

Kadhim derived a direct RKM method for solving ODE of fourth order in Equation (2) with 

the initial conditions in Equation (3) [14]. 

 RKM Method for Solving 𝟒th –Order ODEs 

To solve the class of 4th -order ODEs in Equation (2) with the initial conditions in Equation (3), 

the RKM technique with a ş-stage can be found in [4] which derived the order conditions of the 

proposed RKM method and then, they evaluated the parameters of RKM integrator  𝑎𝑖𝑗, 𝑐𝑖, ᶀ𝑖
(𝑖𝑖)

 

for 𝑖, 𝑗 = 1,2, . . , 𝑠, ii = 0,1, . . ,3. 

  The Direct Numerical RKM Method [14] 

To solve the ODE of fourth-order in Equation (3)  with the initial conditions in Equation (4), 

we use  the general form of the RKM method with an s-stage in the following  Equations (5)-

(10): 
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ƴɳ+1 = ƴɳ + Ϧƴɳ
′ +

Ϧ2

2
ƴɳ

′′ +
Ϧ3

6
ƴɳ

(3)
+

Ϧ4 ∑  
ȿ
ɨ=1  ᶀɨ

(0)
Ƙɨ,                                                                                                                                                                          

ƴɳ+1
′ = ƴɳ

′ + Ϧƴɳ
′′ +

Ϧ2

2
ƴɳ

(3)
+

Ϧ3 ∑  
ȿ
ɨ=1  ᶀɨ

(1)
Ƙɨ,                                                                                                                                      (6)

                         

ƴɳ+1
′′ = ƴɳ

′′ + Ϧƴɳ
(3)

+

Ϧ2 ∑  
ȿ
ɨ=1  ᶀɨ

(2)
Ƙɨ                                                                                                                                       (7)

                                                 

ƴɳ+1
(3)

= ƴɳ
(3)

+ Ϧ ∑  

ȿ

ɨ=1

 ᶀɨ
(3)

Ƙɨ,                                                                                                                        (8) 

Where 

Ƙ1 = ƒ(ᶍɳ, ƴɳ),                                                                                                                                     (9)                                                 

Ƙɨ = ƒ (ᶍɳ + çɨϦ, ƴɳ + Ϧçɨƴɳ
′ +

Ϧ2

2
çɨ

2ƴɳ
′′ +

Ϧ3

6
çɨ

3ƴɳ
(3)

+

Ϧ4 ∑  ɨ−1
ɉ=1  𝑎ɨɉƘɉ)                                                                                                                                                                                        (10)  

For ɨ = 2,3, … , ȿ. Where 𝒽 is the norm of subintervals RKM method. 

The explicit RKM method has the following real values for the parameters 

çɨ, 𝑎ɨɉ, ᶀɨ
(0)

, ᶀɨ
(1)

, ᶀɨ
(2)

, ᶀɨ
(3)

 for ɨ, ɉ = 1,2, … , ȿ. The following table of coefficients can be used to 

describe the RKM Method in Butcher notation: (see Table 1) 

Table 1: Table of RKM Method 

Ƈ Ą 

 ᶀƬ 

ᶀ′Ƭ 

ᶀ′′Ƭ 

ᶀ(3)Ƭ 
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The authors in [ 41 ] derived two RKM methods of three- and fourth-stages respectively as in the 

following Table 2 and Table 3. 

Table 2: Table of RKM Method of three-stages 

0 0   

5

6
 

1

2
 

0  

1

3
 

1

2
 

1

2
 

0 

 1

60
 

1

3240
 

1

81
 

 1

20
 

1

180
 

1

9
 

 1

10
 

1

15
 

1

3
 

 1

10
 

2

5
 

1

2
 

 

Table 3: Table of RKM Method fourth-stages 

0 0    
1

2
 

3

160
−

√15

240
 

0   

1

2
−

√15

10
 

−1

2
 

1

2
 

0 0 

1

2
+

√15

10
 

−51

100
−

22√15

75
 

1

100
+

√15

5
 

1

2
 

0 

  

0 

 
1

108
 

 
7

432

+
√15

240
 

 
7

432

−
√15

240
 

 0 1

18
 

1

18

+
√15

72
 

1

18

−
√15

72
 

 0 2

9
 

5 + √15

36
 

5 − √15

36
 

 0 4

9
 

5

18
 

5

18
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Results 

In this section, we introduce the main results of the method. 

 Method of Solutions 

In general, the shooting technique for solving LBVPs of ODEs is based on the placement of 

this problem by two IVPs in which have the solutions 𝑦1(x) and 𝑦2(x). There are numerous 

methods for approximating these solutions 𝑦1(x) and 𝑦2(x), and once these approximations are 

known, the solution to the boundary-value issue is approximated as a linear combination of   

𝑦1(x) and 𝑦2(x), The procedure for finding the solutions is depicted graphically in Figure 1. 

The linear shooting method is generalized for solving the boundary value problem of the fourth 

order which is described in Equation (1)  with the boundary conditions in Equation (2) and is 

based on the replacement of the LBVPs in Equation  (1) with the boundary conditions in 

Equation (2) by two  (IVPs)  which have the solutions  𝑦1(x) and 𝑦2(x) which shown as 

follows: 

𝑦1
(4)(𝑥)

= 𝑃(𝑥) 𝑦1
′′′(𝑥) + 𝑄(𝑥) 𝑦1

′′(𝑥) + 𝑅(𝑥) 𝑦1
′ (𝑥) + 𝑆(𝑥) 𝑦1(𝑥)

+ 𝑇(𝑥),                                                                                                                                                  (11)  

Where 𝑃(𝑥) > 0, a ≤ 𝑥 ≤ b 

With the boundary condition 

𝑦1
(𝑖)(a) = α𝑖 , ; 𝑖 = 0,1,2;  𝑦1

′′′(a)

= 1.                                                                                                                                                       (12) 

and 

𝑦2
(4)(𝑥)

= 𝑃(𝑥) 𝑦2
′′′(𝑥) + 𝑄(𝑥) 𝑦2

′′(𝑥) + 𝑅(𝑥) 𝑦2
′ (𝑥)

+ 𝑆(𝑥) 𝑦2(𝑥),                                                                                                                                    (13) 
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 𝑦2
(𝑖)(a) = 0 𝑓𝑜𝑟 𝑖 =

0,1,2,3                                                                                                                                                                                                                                   

(14) 

Where  

 𝑦(𝑥) = 𝑦1(𝑥) +

 𝜃𝑦2(𝑥),                                                                                                                                                                                                                                        (15)                                                                                            

and 𝜃 =
β−𝑦1(b)

𝑦2(b)
. 

Then, the solution of BVP in Equations (1)-(2) is a linear combination of the solutions of two 

IVPs (11)-(12) and (13)-(14) as written in Equation (15)  

 

Figure 1: Combination Solutions of BVP Using Shooting Method where 𝛼 = 𝛼0 

Numerical Results 

In this section, we demonstrate the effectiveness of the direct method with 

four tested problems. 

Example 1 

Consider   
𝑑4 𝑦(𝑥)

𝑑𝑥4 = 16𝑦(𝑥),   0 ≤ 𝑥 ≤ 𝜋, 

with the boundary conditions 𝑦(0) = 𝑦(𝜋) = 𝑦′′(0) = 0, 𝑦′(0) = 2. 
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Exact solution: 𝑦(𝑥) = sin(2x). 

Example 2 

Consider   
𝑑4 𝑦(𝑥)

𝑑𝑥4 =  𝑦(𝑥) + 15𝑒−2𝑥,   0 ≤ 𝑥 ≤ 1, 

With the boundary conditions  𝑦(0) = 1, 𝑦(1) = 𝑒−2, 𝑦′(0) = −2, 𝑦′′(0) = 4. 

Exact solution: 𝑦(𝑥) = 𝑒−2𝑥. 

Example 3 

Consider   
𝑑4 𝑦(𝑥)

𝑑𝑥4 = y(𝑥) − 𝑥7 + 840 𝑥3  ,   0 ≤ 𝑥 ≤ 1 

With the boundary conditions   𝑦(𝑘)(0) = 0, 𝑘 = 0,1,2, 𝑦(1) = 1. 

Exact solution: 𝑦(𝑥) = 𝑥7. 

Example 4 

Consider   
𝑑4 𝑦(𝑥)

𝑑𝑥4 = 𝑦(𝑥) −
1

𝑥

24

𝑥5 .  ,   1 ≤ 𝑥 ≤ 2, 

With the boundary conditions 𝑦(1) = 1, 𝑦(2) =
1

2
 , 𝑦′(1) = −1, 𝑦′′(1) = 2. 

Exact solution: 𝑦(𝑥) =
1

𝑥
. 

 

 

 

 

 

            

                                         (a)                             (b) 
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                                       (c)                                                                       (d) 

Figure 2: A Comparison of Numerical Solutions with The Exact Solutions for Examples (a) 

1, (b)  2,  (c)  3, and,  (d) 4. 

Discussions and Conclusion 

In this study, we developed a direct numerical method for solving special BVPs of fourth-order, 

quasi-linear ODEs. The improved RKM integrators for solving ODEs of the order fourth-order 

is a novel aspect of this work. The purpose of this study is to develop an explicit direct integrator 

for a particular class of fourth-order ODEs. We have examined the effectiveness of the proposed 

RKM method using a variety of quasi-linear, fourth-order ODEs examples. The numerical results 

of the ODEs in Figure 1 demonstrated that the proposed method yielded analytical solutions that 

were identical. However, based on the numerical outcomes produced by the RKM method, we 

can infer that RKM is more accurate and effective than the current method. Finally, the 

constructed RKM method: is more cost-effective in terms of computational-time, than existing 

methods. 
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