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Abstract 

The main goal of presenting this manuscript is to study the dynamic activities of HIV spread 

and how to prevent it. The disease behavior was studied by proposing a new stochastic 

mathematical model. The solution's existence and uniqueness for the proposed mathematical 

model have been proven. We have also demonstrated the restrictions that must be met for 

society to rid itself of the scourge of the transmission of HIV by finding the basic reproduction 

rate 𝑅0
𝑠 . If 𝑅0

𝑠 < 1, This means the disease-free point is stable. Conversely, if  𝑅0
𝑠 > 1 this 

means the disease-free point is unstable. The theoretical results were proven numerically 

through computer simulation using MATLAB. 

Keywords: HIV disease, Basic reproduction rate, Computer simulation, Disease-free point, 

Stochastic differential equations (SDIs).  

Introduction 

Human immunodeficiency virus, abbreviated as (HIV) is a disease that targets the human body's 

immune system, As a result of this targeting, the person carrying HIV becomes susceptible to 

many chronic and serious diseases such as tuberculosis, viral hepatitis, and some cancers [1]. 
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Understanding and predicting HIV has become very significant because of the  enormous global 

health load, It has caused (42.3) million deaths to date, and the infection continues to spread 

worldwide, and some countries report an increase in new infections where they had previously 

been declining[1]. Mathematical models use the language of mathematics to describe a 

particular dynamic system. To interpret the experimental results and understand the basic 

mechanisms that influence the spread of HIV, mathematical models of the dynamics of HIV, 

the virus that causes AIDS, have been developed [2-7]. Ordinary differential equations (ODEs) 

have been the primary tool used by researchers to understand how AIDS spreads since its first 

appearance in 1981[8-12]. Stochastic differential equations (SDEs) have gained attention in the 

past years and have been used to model a number of infectious diseases such as viral hepatitis, 

coronavirus disease, and HIV [13-22]. In this manuscript, we will use the stochastic differential 

equations model to understand how HIV spreads and ways to prevent it. In this work, we relied 

on the stochastic differential equations model instead of the usual deterministic differential 

equations because the phenomenon of the spread of HIV is random and not deterministic, as it 

is not known with certainty how the disease spreads, and also the number of infected people is 

unknown. This is because no country can know the real number of people ill with HIV, and the 

reason is that those infected with HIV do not admit their infection for fear of isolation by society 

and the stigma that follows them, and for this reason there is difficulty in controlling this 

infectious disease. In our manuscript, we use environmental randomness in the deterministic 

equations model. We note that the random differential equations model is better than the 

deterministic equations model, since using the random differential equations system gives a 

distribution of expected results when used multiple times. For example, if we take the whole 

number of people ill with HIV at time t, while the deterministic equations model can provide 

us with a single probable value. This article aims to study the dynamic behavior of HIV 

transmission and highlight the role of prevention measures in controlling its spread. Prevention 

measures include antiretroviral drugs that prevent the progression of HIV to AIDS. 

Antiretroviral drugs can also be taken to prevent the transmission of HIV from infected mothers 

to their children, avoid illicit and suspicious relationships, and perform voluntary medical male 
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circumcision, as well as awareness and education campaigns about the seriousness of the 

disease. The manuscript was prepared as follows: The second section was dedicated to creating 

a new deterministic and stochastic model to comprehend and control the transmission of HIV. 

A table was also presented that explained the role of the parameters used in the new 

mathematical model. In The Third Section, we discuss the solution's existence and uniqueness 

for the proposed SDI model (2).The Fourth Section is devoted to the basic reproduction rate 

and how to derive the basic reproduction rate for the proposed model. Section five is devoted 

to discussing the existence of the disease-free points and their stability. The key outcomes are 

obtainable in Section Six. Finally, the Seventh Section is dedicated to the conclusion. 

Formulating the Deterministic and Stochastic Mathematical Model 

To control the spread of HIV in our communities, different mathematical models have been 

used. In our manuscript, we have presented a mathematical model consisting of four equations, 

which are as follows: The equation of healthy people exposed to infection will be denoted by 

𝑝(𝑡). The equation of males with HIV is 𝐼(𝑡). The equation of women with HIV is 𝑤(𝑡). The 

equation of people who are infected and receive antiretroviral therapy and adhere to all 

preventive measures do not transmit the infection to their sexual partners denoted as 𝐴(𝑡). 

Therefore, the proposed mathematical model will be as follows: 

𝑑𝑝(𝑡)

𝑑𝑡
= 𝑀 − (𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡)) 𝑝(𝑡) − 𝛽1𝑝(𝑡),                                                                                        

𝑑𝐼(𝑡)

𝑑𝑡
= (𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡))  𝑝(𝑡) − (𝛽2 + 𝑞 + 𝑛)𝐼(𝑡), 

𝑑𝑊(𝑡)

𝑑𝑡
= 𝑞𝐼(𝑡) − (𝛽3 + 𝑦)  𝑤(𝑡),                                                                                            (1)                                                                                                                         

𝑑𝐴(𝑡)

𝑑𝑡
= 𝑛𝐼(𝑡) + 𝑦𝑤(𝑡) − 𝛽4𝐴(𝑡). 

We can control the spread of HIV and protect our society from this dangerous epidemic by 

placing restrictions that prevent the transmission of the infection from HIV-infected people to 

healthy people. These restrictions will be symbolized by the symbol(1 − 𝑟). These restrictions 

are as follows: taking antiviral medications that prevent HIV infection from turning into AIDS, 
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testing for HIV and other sexually transmitted diseases before marriage, voluntary medical 

circumcision for males, and media campaigns to raise awareness of the seriousness of the 

disease and how to prevent it. Restrictions on transmission of the disease from infected mothers 

to their children during pregnancy and breastfeeding can also be imposed, and these restrictions 

are symbolized by the symbol(1 − 𝑡), these restrictions are formed by taking antiretroviral 

drugs that protect children from infection. Because the exact number of people infected with 

HIV, both men and women, is not known, and the number of people who do not adhere to HIV 

prevention measures is also not known for these reasons, we will add a random part to the 

proposed stochastic mathematical model as follows: 

𝑑𝑝(𝑡) = [𝑀 − (1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡))  𝑝(𝑡) − 𝛽1𝑝(𝑡)] 𝑑𝑡 − (1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡)) 𝑝(𝑡)𝑑𝐵(𝑡), 

𝑑𝐼(𝑡) = [(1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡)) 𝑝(𝑡) − (𝛽2 + 𝑞 + 𝑛)𝐼(𝑡)]𝑑𝑡 + (1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡)) 𝑝(𝑡)𝑑𝐵(𝑡),  

𝑑𝑤(𝑡) = [(1 − 𝑡)𝑞𝐼(𝑡) − (𝛽3 + 𝑦)𝑤(𝑡)] 𝑑𝑡 + (1 − 𝑡)𝜎3𝐼(𝑡)𝑑𝐵(𝑡),                                       (2)   

𝑑𝐴(𝑡) =  [𝑛𝐼(𝑡) + 𝑦𝑤(𝑡) − 𝛽4𝐴(𝑡)]𝑑𝑡 − 𝜎4𝐴(𝑡)𝑑𝐵(𝑡). 

with initial conditions 

𝑝(0) ≥ 0, 𝐼(0) ≥ 0,𝑤(0) ≥ 0 & 𝐴(0) ≥ 0.                                                                                     (3) 

To illustrate the role of each parameter used in mathematical models 1 and 2, we will present 

Table 1. 

Table 1 :Model States and Model Parameters 

Parameter Description 

𝑝(t) People at risk of contracting HIV. 

I(t) Males infected with HIV.  

W(t) Females infected with HIV. 

A(t) Infected persons who adhere to all preventive measures do not transmit the infection 

to their sexual partners. 

M It represents the increase in population per unit time. 

(1 − 𝑟) It represents the possibility of restrictions that prevent people with AIDS from 

transmitting the infection. 

𝜌1 The rate of spread of the ill from infected men to susceptible people. 

𝜌2 The rate of spread of the infected from infected women to susceptible people. 

𝛽1 It denotes the death rate of uninfected people per unit of time. 
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𝜎1,𝜎2, 𝜎3 and 𝜎4 It represents the random parameters in the proposed stochastic model. 

𝛽2 It represents the mortality rate of HIV-infected men per unit time. 

𝑞 It is the average number of children with the disease that infected women have in 

the absence of antiretroviral medications. 

𝑛 The rate of transformation of infected men into people who adhere to all measures 

to prevent disease transmission. 

(1 − 𝑡) It represents the possibility of taking antiretroviral drugs to prevent the transmission 

of HIV from mothers to their children. 

𝛽3 It represents the mortality rate of HIV-infected women per unit time. 

𝑦 The rate of transformation of infected women into people who adhere to all 

measures to prevent disease transmission. 

𝛽4 It represents the death rate of infected people adhering to preventive measures per 

unit of time. 

𝐵(𝑡)   It symbolizes independent standard Brownian motions. 
 

Existence and Uniqueness 

This section will discuss the solution's existence and uniqueness for the proposed stochastic 

differential equation model 2.  

Theorem 1. The solution  (𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡)) of the proposed stochastic epidemiological 

model 2 of the spread of HIV is unique on 𝑡 ≥ 0  for every primary value  

(𝑝(0), 𝐼(0),𝑤(0), 𝐴(0)) ∈  𝑅+
4  . Also, a solution must stay in 𝑅+

4  with a possibility of one, i.e. 

(𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡)) ∈ 𝑅+
4     for any  𝑡 ≥ 0 . 

Proof. Because all coefficient of the new proposed model are global Lipschitz continuous, for 

any (𝑝(0), 𝐼(0), 𝑤(0), 𝐴(0))  ∈  𝑅+
4   for this reason, there is a single local solution   

(𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡))    on  𝑡 ∈ [0, 𝜏𝑒),  where 𝜏𝑒  is the greatest time. To clarify that the 

solution is global, we need only to prove 𝜏𝑒 = ∞  a.s. suppose that  𝐿0 ≥ 0 is big enough, so 

we will get  𝑝(0), 𝐼(0), 𝑤(0) 𝑎𝑛𝑑 𝐴(0) ∈ [
1

𝐿0
, 𝐿0] for all integers ≥ 𝐿0 . The ideal downtime is 

defined as follows: 

𝜏𝐿 = {𝑡 ∈ [0, 𝜏𝑒):min{𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡)} ≤
1

𝐿
 𝑜𝑟 𝑚𝑎𝑥{𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡)}

≥ 𝐿}.                                                                                                                    (4) 
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In this manuscript. We will consider inf∅ = ∞ and  ∅ means the empty set. It is clear that, 𝜏𝐿  

is increasing when  𝐿 → ∞.  

Let us define𝜏∞ = lim
𝐿→∞

𝜏𝐿, whence 𝜏∞ ≤ 𝜏𝑒 a.s. To end the proof, we must prove that 𝜏∞ = ∞ 

a.s, then 𝜏𝑒 = ∞ and (𝑝(0), 𝐼(0),𝑤(0), 𝐴(0)) ∈  𝑅+
4     a.s for all 𝑡 ≥ 0. If this assertion is 

untrue, then there are two numbers 𝑇 > 0 and 𝜀 ∈ (0,1) such that  

𝑃{𝜏∞ ≤ 𝑇} > 𝜖.                                                                                                                                      ( 5) 

So, there is a number  𝐿1 ≥ 𝐿0 s.t  

𝑃{𝜏𝐿 ≤ 𝑇} ≥ 𝜖 For any  𝐿 ≥ 𝐿1 .                                                                                                          (6) 

We take a function and define it as follows: 𝑣: 𝑅+
4 → 𝑅+ by 𝑣(𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡)) = 𝑝 + 𝐼 +

𝑤 + 𝐴 + 1 − (log 𝑝(𝑡) + log 𝐼(𝑡) + log𝑤(𝑡) + log𝐴(𝑡)). 

This function's non-negativity is evident from 𝑢 + 1 − log(𝑢) ≥ 0, ∀𝑢 > 0.  Using Ito’s 

formula [13], we will get  

𝑑𝑣(𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡)) = 

[(1 −
1

𝑝(𝑡)
) [[𝑀 − (1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡))𝑝(𝑡) − 𝛽1𝑝(𝑡)]] +                                                                        

(1 −
1

𝐼(𝑡)
) [(1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡))𝑝(𝑡) − (𝛽2 + 𝑞 + 𝑛)𝐼(𝑡)] +                                                                  

(1 −
1

𝑤(𝑡)
) [(1 − 𝑡)𝑞𝐼(𝑡) − (𝛽3 + 𝑦)𝑤(𝑡)] + (1 −

1

𝐴(𝑡)
) [𝑛𝐼(𝑡) + 𝑦𝑤(𝑡) − 𝛽4𝐴(𝑡)] +                                  

1

2
(1 − 𝑟)2(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))

2
+

1

𝐼(𝑡)2
0.5(1 − 𝑟)2(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))

2
𝑝(𝑡)2                                              

+
1

𝑤(𝑡)2
0.5(1 − 𝑡)2𝜎3

2𝐼(𝑡)2 + 0.5𝜎4
2]𝑑𝑡                                                                                                                  

+[(1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡)) − (1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))𝑝(𝑡)                                                                      

+(1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))𝑝(𝑡) −
(1−𝑟)(𝜎1𝐼(𝑡)+𝜎2𝑤(𝑡))𝑝(𝑡)

𝐼(𝑡)
+ (1 − 𝑡)𝜎3𝐼 −

(1−𝑡)𝜎3𝐼(𝑡)

𝑤(𝑡)
                                                        

+𝜎4 − 𝜎4𝐴(𝑡)]𝑑𝐵(𝑡).                                                                                                                                                   
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= [𝑀 − (1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡))𝑝(𝑡) − 𝛽1𝑝(𝑡) + (1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡))𝑝(𝑡) − (𝛽2 +

𝑞 + 𝑛)𝐼(𝑡) + (1 − 𝑡)𝑞𝐼(𝑡) − (𝛽3 + 𝑦)𝑤(𝑡) + 𝑛𝐼(𝑡) + 𝑦𝑤(𝑡) − 𝛽4𝐴(𝑡) −
𝑀

𝑝(𝑡)
+ (1 −

𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡) + 𝛽1 −
(1−𝑟)(𝜌1𝐼(𝑡)+𝜌2𝑤(𝑡))𝑝(𝑡)

𝐼(𝑡)
+ (𝛽2 + 𝑞 + 𝑛) − 

(1 − 𝑡)𝑞𝐼(𝑡)

𝑤(𝑡)
+ (𝛽3 + 𝑦) −

𝑛𝐼(𝑡)

𝐴(𝑡)
−

𝑦𝑤(𝑡)

𝐴(𝑡)
+ 𝛽4 +

1

2
(1 − 𝑟)2(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))

2

+
1

𝐼(𝑡)2
0.5(1 − 𝑟)2(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))

2
𝑝(𝑡)2 +

1

𝑤(𝑡)2
0.5(1 − 𝑡)2𝜎3

2𝐼(𝑡)2

+ 0.5𝜎4
2]𝑑𝑡 + [(1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡)) − (1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))𝑝(𝑡)

+ (1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))𝑝(𝑡) −
(1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))𝑝(𝑡)

𝐼(𝑡)

+ (1 − 𝑡)𝜎3𝐼 −
(1 − 𝑡)𝜎3𝐼(𝑡)

𝑤(𝑡)
+ 𝜎4 − 𝜎4𝐴(𝑡)]𝑑𝐵(𝑡). 

 Hence,  

𝑑𝑣(𝑝(𝑡), 𝐼(𝑡), 𝑤(𝑡), 𝐴(𝑡))

≤ [ 𝑀 + 𝛽1 + 𝛽2 + 𝑞 + 𝑛 + 𝛽3 + 𝑦 + 𝛽4 + 𝜎4 + (1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡))𝑝(𝑡)

+ (1 − 𝑡)𝑞𝐼(𝑡) + 𝑛𝐼(𝑡) + 𝑦𝑤(𝑡) + (1 − 𝑟)(𝜌1𝐼(𝑡) + 𝜌2𝑤(𝑡)

+
1

2
(1 − 𝑟)2(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))

2
+

1

𝐼(𝑡)2
0.5(1 − 𝑟)2(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))

2
𝑝(𝑡)2

+
1

𝑤(𝑡)2
0.5(1 − 𝑡)2𝜎3

2𝐼(𝑡)2 + 0.5𝜎4
2]𝑑𝑡 + [(1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))

+ (1 − 𝑟)(𝜎1𝐼(𝑡) + 𝜎2𝑤(𝑡))𝑝(𝑡) + (1 − 𝑡)𝜎3𝐼 −
(1 − 𝑡)𝜎3𝐼(𝑡)

𝑤(𝑡)
]𝑑𝐵(𝑡)

= 𝐾.                                                                                                                                                           (7) 

For this, we will get 
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𝐸[𝑣(p(t)(𝜏𝐿⋀𝑇), I(t)(𝜏𝐿⋀𝑇),w(t)(𝜏𝐿⋀𝑇), A(t)(𝜏𝐿⋀𝑇)]

≤ 𝑣(𝑝(0), 𝐼(0), 𝑤(0), 𝐴(0)) + 𝐸 [ ∫ 𝐾𝑑𝑡

𝜏𝐿⋀𝑇

0

]

≤ 𝑣(𝑝(0), 𝐼(0), 𝑤(0), 𝐴(0))

+ 𝐾𝑇.                                                                                                                                    (8) 

Assume that  Ω𝐿 = 𝜏𝐿 ≤ 𝑇  for 𝐿 ≥ 𝐿1  and by Equation (6) 𝑃(Ω𝐿) ≥ 𝜖 . We find that for 

each   𝜔 ∈ Ω𝐿 ,there is one of these values   p(t)(𝜏𝐿 , 𝜔), I(t)(𝜏𝐿 , 𝜔), w(t)(𝜏𝐿 , 𝜔)  , A(t)(𝜏𝐿 , 𝜔) 

that is equivalent 𝐿  or 
1

𝐿
,    and   then        𝑣((p(t)(𝜏𝐿), I(t)(𝜏𝐿),w(t)(𝜏𝐿), A(t)(𝜏𝐿)) is bigger 

than   𝐿 − 1 − log 𝐿 or (
1

𝐿
) − 1 + log 𝐿. As a result of this 

𝑣((p(t)(𝜏𝐿), I(t)(𝜏𝐿),w(t)(𝜏𝐿), A(t)(𝜏𝐿)) ≥ 𝐸(𝐿 − 1 − log 𝐿 )⋀ ((
1

𝐿
) − 1 +

log 𝐿)                                                                                                                                                        (9)  

Therefore, Equation (6) and (8) indicate this 

𝑣(𝑝(0), 𝐼(0), 𝑤(0), 𝐴(0)) + 𝐾𝑇 ≥ 𝐸 [1Ω(𝜔)
𝑣((p(t)(𝜏𝐿), I(t)(𝜏𝐿),w(t)(𝜏𝐿), A(t)(𝜏𝐿))]

≥ 𝜖 [(𝐿 − 1

− log 𝐿)⋀ ((
1

𝐿
) − 1

+ log 𝐿)].                                                                                                                  (10)  

Note that  1Ω(𝜔)
 is a pointer function of  Ω. Letting 𝐿 → ∞ we will get a contradiction 

∞ > 𝑣(𝑝(0), 𝐼(0), 𝑤(0), 𝐴(0)) + 𝐾𝑇 = ∞ This means  𝜏∞ = ∞ 𝑎. 𝑠, ∎ 
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The Basic Reproduction Rate 

To comprehend the activities of HIV, how it spreads, and whether society can eliminate this 

infectious disease, we will use the basic reproduction rate 𝑅0
𝑠, which may be defined as the total 

number of secondary infections created via one ill person in a population that is completely at 

risk of contracting HIV. We found the mathematical formula for the basic reproduction rate for 

the new stochastic model which as follows: 

𝑅0
𝑠 =

(1 − 𝑟)𝜌1 + (1 − 𝑟)𝜎1

(𝛽2 + 𝑞 + 𝑛)

+
((1 − 𝑟)𝜌2 + (1 − 𝑟)𝜎2)((1 − 𝑡)𝑞 + (1 − 𝑡)𝜎3)

(𝛽2 + 𝑞 + 𝑛)(𝛽3 + 𝑦)
.                                     (11) 

 

Existence of Equilibrium Points and Their Stability 

 To calculate the stability of the new stochastic model, we will calculate the steady states of this 

model. The new model has an equilibrium point known as the "disease-free equilibrium,". This 

denotes that there are no infected men and no infected women (i.e., 𝐼(𝑡)∗ = 0 & 𝑤(𝑡)∗ = 0). 

Therefore, when solving the equations in model 2, we find the disease-free point, which is as 

follows: 

(p(t)∗, 0,0,0) = (
𝑀

𝛽1
, 0,0,0). To prove the stability of the disease- free point will present the 

following theory. 

Theorem 2. The disease- free point of the stochastic model 2 is asymptotically stable if  𝑅0
𝑠 <

1, and unstable if 𝑅0
𝑠 > 1. 

Proof. The Jacobin matrix for the new model 2 at the disease-free point, is as follows: 

J(p(t)∗, 0, 0, 0 ) = 

[
 
 
 
−β1 ,           − (1 − r)ρ1p(t)∗  − (1 − r)σ1p(t)∗, −(1 − r)ρ2p(t)∗ − (1 − r)σ2p(t)∗, 0

0, (1 − r)ρ1p(t)∗ − (β2 + q + n) + (1 − r)σ1p(t)∗, (1 − r)ρ2p(t)∗ + (1 − r)σ2p(t)∗, 0

0,                            (1 − t)q + (1 − t)σ3 ,                                    − (β3 + y),                         0
0,                                                   n,                                                      y,                       − β4 − σ4 ]
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The characteristic equation about J(p(t)∗, 0, 0, 0 ) is |J(p(t)∗, 0, 0, 0 )  − 𝜆𝐼| = 0. 

[
 
 
 

[−β1] − 𝜆,      − (1 − r)ρ1p(t)∗  − (1 − r)σ1p(t)∗, −(1 − r)ρ2p(t)∗ − (1 − r)σ2p(t)∗, 0

0, [(1 − r)ρ1p(t)∗ − (β2 + q + n) + (1 − r)σ1p(t)∗] − 𝜆, (1 − r)ρ2p(t)∗ + (1 − r)σ2p(t)∗, 0

0,                      (1 − t)q + (1 − t)σ3,                      [−(β3 + y)] − 𝜆,                         0

0,                                  n,                                                      y,                   [(−β4 − σ4)] − 𝜆 ]
 
 
 

= 0. 

The first two roots of the characteristic equation or the eigenvalues are 𝜆1 = −𝛽1 & 𝜆2 = −𝛽4 −

𝜎4, and the other two eigenvalues can be determined via the following quadratic equation 

𝑃2(𝜆) = 𝜆2 − (𝑏11 + 𝑏22)𝜆 + (𝑏11𝑏22 − 𝑏12𝑏21)  

𝑃2(𝜆) = 𝜆2 − (((1 − r)ρ1p(t)∗ − (β2 + q + n) + (1 − r)σ1p(t)∗) − β4 − σ4) 𝜆  

−((β4 + σ4)((1 − r)ρ1p(t)∗ − (β2 + q + n) + (1 − r)σ1p(t)∗)

− ((1 − t)q + (1 − t)σ3)((1 − r)ρ2p(t)∗ + (1 − r)σ2p(t)∗)) 

𝑃2(𝜆) = 𝜆2 + 𝑏1𝜆 + 𝑏2. 

With coefficients given by 

𝑏1 = −(((1 − r)ρ1p(t)∗ − (β2 + q + n) + (1 − r)σ1p(t)∗) − β4 − σ4) 

𝑏2 = −((β4 + σ4)((1 − r)ρ1p(t)∗ − (β2 + q + n) + (1 − r)σ1p(t)∗)

− ((1 − t)q + (1 − t)σ3)((1 − r)ρ2p(t)∗ + (1 − r)σ2p(t)∗)) 

It is easy to prove that 𝑏1 > 0 &  𝑏2  > 0  if 𝑅0
𝑠 < 1, then both  eigenvalues have a negative real 

part via the Roth-Hurwitz principle. Further, since the first two eigenvalues also have, a 

negative real part, the disease- free point is asymptotically stable. On the contrary, if 𝑅0
𝑠 > 1, 

leads to 𝑏1 < 0 &  𝑏2  < 0,  and then the eigenvalues have the non-negative real part. Hence the 

disease- free point is an unstable, which complete the proof∎ 
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Main Results 

In this section, we conducted many computer simulations using the Matlab program to prove 

the theoretical results numerically. We found from Theorem 2 that the disease- free point of the  

stochastic model 2 is stable if  𝑅0
𝑠 < 1, and unstable if 𝑅0

𝑠 > 1. In another meaning 𝐼(𝑡) and 

𝑤(𝑡) are  exponentially stable and lim
𝑡→∞

𝐼(𝑡) = 0 & lim
𝑡→∞

𝑤(𝑡) = 0, if 𝑅0
𝑠 < 1 While  𝐼(𝑡) and 

𝑤(𝑡) are unstable if 𝑅0
𝑠 > 1. we will use two examples to illustrate how antiretroviral drugs and 

preventive measures that prevent people with HIV from transmitting the disease contribute to 

stabilize the system and eliminating the spread of the HIV epidemic. 

Example 6.1: Let us choose the parameter values as follows:  

Parameter The value  

𝑟 0.8 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝜌1 10 𝑑𝑎𝑦−1 

𝜎1 0.02 

𝜌2 0.1 𝑑𝑎𝑦−1 

𝜎2 0.02 

𝑡 0.9 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝑞 1*100 𝑑𝑎𝑦−1 

𝜎3 0.03 

𝛽2 0.2 𝑑𝑎𝑦−1 

𝑛 1.5*100 𝑑𝑎𝑦−1  

𝛽3 0.05*100 𝑑𝑎𝑦−1 

𝑦 4*100 𝑑𝑎𝑦−1 
 

 First, let's calculate a value of 𝑅0
𝑠.  This is done by substituting the parameter values into the 

Equation (11), we will find its value as 𝑅0
𝑠 = 0.7424500563 < 1. Since the value of (𝑅0

𝑠) is 

less than one according to Theory 2 the disease-free point is stable. To prove this result 

numerically, we will take the equation of men infected with HIV. 

𝑑𝐼 = [(1 − 𝑟)(𝜌1𝐼 + 𝜌2𝑤)𝑝(𝑡) − (𝛽2 + 𝑞 + 𝑛)𝐼]𝑑𝑡 + (1 − 𝑟)(𝜎1𝐼 + 𝜎2𝑤)𝑝(𝑡)𝑑𝐵(𝑡), 
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When we substitute the values, of the parameters into the equation for injured men and use the 

Ito's formula [13] to solve the resulting equation, we will find that 

𝐼(𝑡) = 1000𝑒−(29980002.7)𝑡 , so the number of men with HIV I(t) decreases and goes to zero 

exponentially in case t→∞, This is illustrated using MATLAB, as shown in Figure1.  

 

Figure 1: Computer simulations show that the number of men infected with HIV keeps 

decreasing until it reaches zero in the case 𝑅0
𝑠 < 1. 

 If we take the equation of women infected with the disease  

𝑑𝑤 = [(1 − 𝑡)𝑞𝐼 − (𝛽3 + 𝑦)𝑤]𝑑𝑡 + (1 − 𝑡)𝜎3𝐼𝑑𝐵(𝑡).                                        

When we substitute the values of the parameters into the equation for women with HIV and use 

Ito's formula [13]. To solve the resulting equation, will find that the solution is as follows: 

𝑤(𝑡) = 1000𝑒−3.95𝑡, this means that the number of infected women goes to zero in case t→∞. 

This is illustrated using MATLAB, as shown in Figure 2.   
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Figure 2: Computer simulations show that the number of women infected with HIV keeps 

decreasing until it reaches zero in the case  𝑅0
𝑠 < 1, 

Example 6.2: In contrast to the first example, we assume that preventive measures (1 − 𝑟) and 

treatment with antiviral drugs (1 − 𝑡) are both weak and that random variance (𝜎1), (𝜎2), and 

(𝜎3) are also weak, therefore, the parameters will be as shown in the table below. 

Parameter The value  

𝑟 0.1 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝜌1 10 𝑑𝑎𝑦−1 

𝜎1 0.001 

𝜌2 0.1 𝑑𝑎𝑦−1 

𝜎2 0.001 

𝑡 0.1 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝑞 1*100 𝑑𝑎𝑦−1 

𝜎3 0.01 

𝛽2 0.2 𝑑𝑎𝑦−1 

𝑛 1.5*100 𝑑𝑎𝑦−1  

𝛽3 0.05*100 𝑑𝑎𝑦−1 

𝑦 0. 07*100 𝑑𝑎𝑦−1 
 

If calculating a value of 𝑅0
𝑠 , this is done by substituting the parameter values into Equation 11, 

will find its value as 𝑅0
𝑠 = 3.58 > 1, since the value of (𝑅0

𝑠) is greater than one if we apply 
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Theory2 the disease-free point is unstable. To prove this result numerically, will take the 

equation of men infected with HIV.  

𝑑𝐼 = [(1 − 𝑟)(𝜌1𝐼 + 𝜌2𝑤)𝑝(𝑡) − (𝛽2 + 𝑞 + 𝑛)𝐼]𝑑𝑡 + (1 − 𝑟)(𝜎1𝐼 + 𝜎2𝑤)𝑝(𝑡)𝑑𝐵(𝑡), 

When substituting the values of the parameters into the equation for  infected  men and using 

Ito's formula [13]  to solve the resulting equation, we will find the solution as follows 𝐼(𝑡) =

1000𝑒7469997.3𝑡, as a result, I(t) keeps increasing and does not go to zero when t→∞. This is 

illustrated using MATLAB, as in Figure 3.    

 

Figure 3: Computer simulations show that the number of men infected with HIV keeps 

increasing and does not go to zero in the case 𝑅0
𝑠 > 1. 

If we take the equation of women infected with the disease  

𝑑𝑤 = [(1 − 𝑡)𝑞𝐼 − (𝛽3 + 𝑦)𝑤]𝑑𝑡 + (1 − 𝑡)𝜎3𝐼𝑑𝐵(𝑡).                                        

When substituting  the values of the parameters into the equation for women with HIV  and 

using  Ito's formula [13]  to solve the resulting equation, will find that the solution as follows 

𝑤(𝑡) = 1000𝑒0.7799595𝑡. This means that the number of infected women does not go to zero in  

case t→∞. This is illustrated using MATLAB, as shown in Figure 4.   
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Figure 4: Computer simulations show that the number of women infected with HIV keeps 

increasing and does not go to zero in the case 𝑅0
𝑠 > 1. 

 

Conclusions 

What is new in our article is that we studied the behavior of HIV and its prevention by proposing 

a new stochastic differential equations model. This was achieved by proving the solution's 

existence and uniqueness for the proposed mathematical model. We have also proved that if 

preventive measures (1 − 𝑟) and treatment with antiviral drugs (1 − 𝑡)are both strong and that 

random variance (𝜎1), (𝜎2), and (𝜎3) are also strong, this gives us 𝑅0
𝑠 < 1, this means according 

to Theory 2 the disease-free point is stable. Computer simulations shown in Figures1and 2 

support the result. On the contrary, if preventive measures (1 − 𝑟)  and treatment with antiviral 

drugs (1 − 𝑡)  are both weak and that random variance (𝜎1), (𝜎2), and (𝜎3) are also weak this 

gives us 𝑅0
𝑠 > 1. This means according to Theory 2 the disease-free point is unstable the result 

was confirmed by using computer simulations as shown in Figures 3 and 4. 
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