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Abstract

In this paper, the effect of heat transfer and slip conditions on peristaltic transport of Magneto
hydrodynamics (MHD) non-Newtonian fluid across tapered porous channel are studied. The
mathematical equations for Bingham fluid model are developed and use the perturbation
method to obtain the analytic solutions of the expressions for axial velocity and temperature
distribution under the assumption of long wavelength and low Reynolds numbers. The effects
of all parameters that appear in the problem are analyzed through graphs. The results showed
that axial velocity increased by increasing Q and the opposite for risingm. Also, the
temperature profile increases by increasing k, ¢, and ¢, with the opposite behavior for ¢ and

M. MATHEMATICA software is used for computational results and plotting all figures.
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Introduction

Peristaltic flow is simply a form of fluid transport inside a channel or tube induced by the
progressive wave of area contraction or expansion along the axial axis direction of a flexible
walls. Peristaltic flow has recently attracted a lot of attention due to its implications in industry
and physiology. The human body experiences peristalsis flow in the movement of chime
through the digestive system, urine via the ureter, and swallowed food through the esophagus
as well as numerous others the non-Newtonian fluids deviate from the classical Newtonian
linear relationship between the shear stress and shear rate, for example honey, blood and
processing of food are considered non-Newtonian fluid. Due to complex rheological properties,
it is difficult to suggest a single model which exhibits all properties of non-Newtonian fluids.
Machines have been designed on the principle of peristaltic. In recent years, the effects of heat
transfer on peristaltic transport of non-Newtonian fluid in the present of magnetic field receive

considerable attentions due to its application in biomedical sciences. It is now a well-accepted
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fact that the peristaltic flows of magneto hydrodynamic (MHD) fluids are important in medical
sciences and bioengineering. The MHD characteristics are useful in the development of
magnetic devices, cancer tumor treatment, hyperthermia and blood reduction during surgery.
Flows through porous medium occur in filtration of fluids and seepage of water in river beds
[1,2].

This type of flow is highly useful in the design of a variety of biomedical devices, such as the
heat-lung device that keeps blood flowing during risky surgeries [3]. This subject was first
investigated by Shapiro et al. and Lew et al. [4,5]. The concept of peristaltic transport has been
subjected to a number of hypotheses, the most well-known of which are the long wavelength
and low Reynolds number. The viscosity of a non- Newtonian fluid varies depending on the
applied tension or force. It's a fluid whose flow characteristics aren't characterized by a single
constant viscosity value. When the peristaltic pump is activated, physiological fluid with
constant viscosity fail to provide an accurate hold. The lymphatic vessels, tiny blood vessels,
and the intestines are all involved in the transmission. The majority of peristalsis research was
used on a viscosity that was consistent. Several recent research [6-9] looked in to the impact of
changing viscosity when the viscosity is only based on distance. However, other studies looked
at the effect of viscosity when it is temperature dependent [10-12]. It has also been discovered
that heat and mass transfer play important roles in peristaltic flow, such as in blood flux
processes, kidney dialysis, and cancer medication. Bifurcation analysis for a two-dimensional
peristaltic driven flow of power—law fluid in asymmetric channel [13]. MHD effect on
peristaltic transport for rabinowitsch fluid through a porous medium in cilia channel [14].
Impacts of heat and mass transfer on magneto hydrodynamic peristaltic flow having
temperature dependent properties in an inclined channel [15]. The present study addresses the
effect of heat transfer and slip conditions on peristaltic transport of MHD non-Newtonian fluid
across tapered porous channel. The differential equations of the fluid flow were resolved subject
to related boundary conditions (slip conditions). The non-Newtonian Bingham fluid was
considered in this study. Open form solutions for this problem are obtained via perturbation
method. The results are illustrated by plotted graphical results for axial velocity and temperature

distraction.
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Formulation in Mathematics

Consider a peristaltic transport of an incompressible MHD non-Newtonian fluid with variable
viscosity in a two-dimensional non-uniform tapered porous channel of width (a; + a,).
Figurel gives the schematic diagram of the non-uniform tapered channel. The flow is created
by waves propagating down the channel walls at a constant speed of c, with varying wave
amplitudes, phase angles, and channel widths. In the stationary frame of reference (X,Y), let
H, and H, represent the right and the left side wall respectively. To investigate the impact of a
uniform magnetic field on fluid flow, it is applied in the Y-direction with absence of an electric
field. Convective conditions were used to study heat transfer. The deformable walls are given
by [16,17]

Y=HX ) =a, +E)_(+$1cos(27"()_(—cﬂ) ......................................................................... (1)
for the right-hand side wall,
Y=H,(X,t) = —a, — bX — ¢, cos (27”()_(—&)+¢) ............................................................. (2)

for the left hand side wall, where 1 is the wavelength, ¢, and ¢, are the amplitudes of the
waves, t is the time, ¢ is the phase difference which varies in the range 0 < g < m. Further
a,,a,, ¢1, P, and @ satisfy ¢ + ¢p2 + 2¢,P,cos p < (a; + a,)? so that the boundaries that

do not cross each other.

Figure 1: The figure represents an asymmetric channel.[18]
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Basic and Constitutive equations

The main governing equation that characterize the flow in the current problem are given by
[19,20]

T 0l = 0, et @A)
p(‘;—?+ 172—':’+ V‘;—?) = —g)_(+ 28 4 2t pg@(T — To) — 0'B3U — 12T, ..o 4)

(Z+U%+V%}=—g+%+%—iﬁwi ...................................................................... (5)
pCy (Z+TL+7I) = x(g+zg) FTRR D+ TRY %+ IR o2+ TP 2 vt 6)

The associated dimensional form boundary condition [1,5] are
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Where g, 7(y), k, T,x, 8 and C, are represent gravity acceleration, variable viscosity,
permeability, temperature, thermal conductinty, velocity-slip parameter and specific heat
respectively. The magnetic part is added to the momentum equation by using Lorentz force in

absent of electric field (for more detail [21]).

The non-Newtonian Bingham plastic fluid is chosen and the extra stresses are defined by given

tensor [16] as follows

_1 7 p__D
p=2(W+ (W) ) D T e —— 9)
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Equations (10) and (11) are used in equations (1)-(9) and then applying Re < 1, § « 1 and

the relations u = 1, and v = —§1, to obtain the following dimensionless governing equations

Y =H1(X) =14 DX+ P1COS(2TTX) ,eviiiiieie ittt sneeneas (12)
y = Hy(x) = —a — bx — ¢ cos(2mx + @) , a=%, .............................................................. (13)
1

ap _ ny)

= rxy +6Gro —M*(y, +1) - p (Py 4 1), i (14)

o _

3 SO TURUP TP (15)

9%0

a2 = BrTyyPyy, BT = PTEC....ii e (16)
Yy + By, =-1,0=1 at}’—Hl} a7
¥, — B, =1, 6=0 B B

Tax = Tyy = 0, Ty =NV Pyy By (18)
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Where, Br = EcPr, is the Brinkman number. The Reynolds model of viscosity is used to

describe the variable viscosity. let as consider

Where a is the Reynolds model parameter which is constant. Using the maclaurian series

expansion, neglecting squares and higher powers of «, equation (19) can be written as
na)=1-ay, a<1

Compensating equation (19) and (18) in to equation (14) in light of equation (15) and driving

the result with respect y provides

The dimensionless volume flow rate F in the wave frame defined by

F= f:;(%)%dy V10 2XC2) B 1 (: 216 (20)

or one can write

Y= gat the right walland ¥ = —gat the left wall of the channel. and ® = F + 2 — 2m where

@ is the time mean flow rate.

The equation (15) and equation (18) are used into equation (14) and deriving the conclusion

with respect to y produces,

Vyyyy = @Y Pyyyy — 208y, + GOy — A2y + 2Py, + oWy +2 = 0 (21)
From equation (16) and (18) having

0yy = —Br [P35, — @y, + Bawyy| oo (22)

Solution of the Problem

The system of nonlinear partial differential equations, ((21) and (22)) in the aforementioned
equations that are difficult to solve precisely. As a result, to solve it, using an approximated
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approach through the perturbation method. For small values of viscosity (a <« 1) and Grashof

number (Gr «< 1), stream function and temperature expand as follows

Y =3Z(@ P, +0(a?)
0 = 270(61)!6; + 0 (Gr?)

The zeroth and first order systems are obtained by using equation (23) into equations (21) and
(22) with the relevant boundary conditions (equations (17) and (20)) and then collection the

coefficients of like power of a and Gr.

4.1 Zeroth Order System
1[)0yyyy - Azll)oyy = 0, ................................................................................................................... (24)
Boyy + BTG, + BYBIWgyy = 0, ..o (25)

with the boundary constraints that go along with it

F
Yo=3 Yoyt BPoyy=-1 6Og=1 aty=H, (26)
F s

Yo=—5, Yoy—BPoyy,=-1 6p=0 aty=H,

4.2 First Order System
1

Wiyyyy = YPoyyyy — 2 Woyyy + 0oy = A2P1yy + 2 Woyy +3 (Woy +1) =0 (27)
01yy + 2BT Yoy P1yy — VBTG, + BrBAY 1y, = 0, (28)
with the corresponding boundary conditions

Y1=0, Y1y +BYP1y,=0,0,=0, aty=H, 29)
Wi =0, Py, — By, =0, By =0, @by = Hy| s

All calculations are performed using the MATHEMATICA software, and the zeroth system's

solution with the required boundary conditions is carried out.
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Ay1 —Ay2
e c+e c

P =—4—4~4— y 4 + 3 + yc4;

Br(c22e~24Y + 4Bnc2e ™4 + 4Bncle?” + c1%2e?4Y + 4A%c1c2y?)
0=
442

+ c5 + yc6;

where c; ,i = 1,2, ...,6 are constants discovered by the use of boundary conditions. The zeroth
order solution is used to solve the first order system with the relevant boundary conditions

which is.

1
T 24A5k

Py e 24y (—Brc22k + Brc12e*4k

+ 3c1e®4Y (-7 — 10BnBrk — 24%ky + 2A(3 + 2BnBrk)y + 2A4*ky?

— A2(3k + 2y?))

— c2e#Y(—3(7 + 10BnBrk) — 6A(3 + 2BnBrk)y + 6A*ky? — 34%(3k + 2y?)
+ 2A4%ky(3 + 4Brcle?y?))

+12A43%e4Y (eY (1 + c4 + c6k)y? + 2e24Y¢9 + 2k * clO)) +cll +y*cl2;

- 1
c22e™2AY (——y)

4A2

c1? eZAy(—%+y)

61 = Br(_ 442

+ %cchy3 + ) + ¢13 + ycl4;
also i = 9,10, ...,16 are constants discovered through the application of boundary conditions.

Results and Discussion

The approximate solution via perturbation method is calculated for velocity and temperature
profile. Further, this section displays the computational results with help of graphs as shown in
figs.2 -23.

Velocity Distribution u

The behavior of the parameters involved in the simulation is depicted graphically. u represents
velocity on the axis of flow. The effects of various values of M, k, a, B, ¢, ¢,, m, @, Br,

Bn, and Q on the axial velocity u are depicted in Figs. 2 - 12. As seen in the figures, the
velocity distribution has a parabolic behavior. Figs.2 and 3 demonstrates M and S influence on

u. It is observed that when Mand g is rise, the axis multiply at the duct's boundaries but goes
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down in the duct's center. In Figure4, we observed that the velocity distribution multiply with
rise of Q whereas it go down by rise in m, as shown in Figure5. Fig 6 demonstrates the effect
of k on u. It is seen that u goes down slowly at the duct's boundaries, however rise at the central

part of the duct with rise k.

Figure7. Shown the effect of viscosity parameter a on u, at the left part of the duct the velocity
go down by rising a and the opposite behavior noted for the right part of the duct. From figs.
8 and 9 noted that u do not change at rise in Br and Bn. Figurel0 displayed the effect of ¢,

on the u.

When ¢, is rises, the speed on the axis of the channel rise at the right wall and merges from
the middle part to the remainder of the channel (no effect). Figurell explained that the speed
on the axis of flow rising near the left wall and center section of the duct, but the situation is

reversed near the right side of the duct, by rising in ¢.

Fig 12 we noted that at rising in ¢, merges from the center part to the right wall of the duct and
u go down at the left. There is a lot of agreement between our results for M, a, ¢4, ¢, and ¢
with those reported in Murad and Abdulhadi [18,19].

— Y]
B=0.19

— B=030

Fig. 2: The axial velocity u affect by M atp, = 2,¢, = 1,m =.1,  Fig. 3: The axial velocity u affect by g atp; = 2,¢, = 1,m = .1,
Q=13k=1,a=0033=02¢=",Br=5Bn=.00,x=.1 Q=13k=1a=003M=09,¢=1,Br=>5Bn=.00,x=.1
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Fig. 4: The axial velocity u affect by Q at¢, = 2,¢, = 1,m = .1,
V3
Qk=1a=003,M=09p=02¢ =7,BT =5,Bn=.001,x =.1

Fig. 6: The axial velocity u affect by k atp, = 2,¢, = 1,m = .1,
@=0.030Q0=13,M=09,8=02¢= %,Br =5Bn=.00l,x=.1

Fig. 8: The axial velocity u affect by Br atg, = 2,¢, = 1,m = .1
k=1,a=0030=13,M=098=020¢ =%,Bn =.001,x =.1

Fig. 5: The axial velocity u affect by m at¢; = 2,¢, = 1,k = 1,
Q=13,a=003,M=09F=02¢ =%,Br =5Bn=.00l,x=.1

Fig. 7: The axial velocity u affect by a at$h; = 2,¢p, = 1,m = .1,
k=1,0Q0=13,M=09,8=02,¢ =E,,Br =5Bn=.001,x =1

Fig. 9: The axial velocity u affect by Bn at, = 2,¢p, = 1,m = .1
k=1a=0030Q=13M=09p4=02¢ =%,Br =5x=.1
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1 0 1 2
v
Fig. 10: The axial velocity u affect by ¢, at p, = 1,m = .1,k =1
ka=0030=13,M=09p=02¢= g,Br =5Bn=.001x=.1

0.0 >l

0.1}

Fig. 11: The axial velocity u affectby ¢, at ¢, =2, m=.1,k =1
ka=0.03,0=13,M=09,=02,¢0 =E,,Br =5,Bn=.001,x =

0.0 ,/ﬁ
_0 1 -
-0.2 -— Q=2
3 0=
-03} ¢—,—T
-4
-04F =
. — %
-0.5
1 0 1 2

Fig. 12: The axial velocity u affectby p at ¢, =2, ¢p, =1,m=.1,k =1
ka=0.03Q=13,M=09,=0.2,,Br=5Bn=.00l,x=.1
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Temperature distribution 8

The temperature profile variation for various values of the related parameters is depicted in the
Figs. 13-23. Figurel3 shown that the effect of M on the temperature profile, It is noticed that
the temperature profile go down with rise M. Figs 14 and 15 explained the temperature
distribution go down in the middle part and multiply at the boundaries of the duct by rise
and m, However, the converse is true when rising in Q and Br, as illustrate in shown in figs.
16 and 17. Fig 18 illustrate the influence of k on 6.1t is noticed that when rise in k, the 6 rising
in the central region and the right wall of the duct and gradually vanishes from the left wall of
the duct. In fig 19 we noted that by rising Gr, the temperature goes down in the center region,
but rises in the right wall of the duct and gradually vanishes from the left wall of the duct. With
rising in Bn ,the temperature distribution exhibits oscillatory behavior as in Figure20. The
temperature distribution rises along the right wall, and then gradually disappear by rising in ¢
as shown in Figure21. From fig 22 we noted that at rising in ¢,, the temperature rises at the
duct 's left wall and blends with rest of the duct 's middle portion (no effected). From Figure23
we noticed that when ¢ rises, 8 go down at the left wall of the duct and merges from the middle
area to the duct 's right wall. The impacts of Br, Gr, k, ¢4, ¢, and ¢. Consistent with results

analyzed in previous studies (Murad and Abdulhadi[18,19].

Fig. 13: The temperature profile 6 affect by Mat ¢, = 4,¢p, =3,m =2
k=3,6r=.001,0 =13,8=0.2,¢ =%,Br =5Bn=.1x=.1
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Fig. 14: The temperature profile @ affect by Bat ¢, = 4,¢, = 3,m = .2 Fig. 15: The temperature profile 6 affectby mat ¢, = 4,¢, = 3,k = 3
m
k=3,6r=.001,0=13,M=2,¢ =%,Br =5Bn=.1x=.1 M=26r=.00,0=13,=02¢=, Br=5Bn=.1x=.1
1

. I~ S T, -

\

Fig. 16: The temperature profile 6 affect by Q at ¢, = 4,¢, = 3,k =3

Fig. 17: The temperature profile 8 affect by Brat ¢, = 4,¢, =3,k =3
M=2,6r=00L,m=2,f=02¢="Br=5B8n=.lx=.1 '9 perature proi yBratg, =4¢,

M=2,Gr=.001,Q=13,=02¢="m=2Bn=1x=.1

B e T T Ty

e

| ST YN

Fig. 18: The temperature profile 0 affect by kat ¢, =4,¢, =3, m = .2 Fig. 19 : The temperature profile 6 affect by Grat¢, =4,¢, =3, m=.2
M =2,Gr=.001,Q=13,=02,¢=",Br=58n=.1x=.1 M=2k=30=13,=020¢ =§,Br =5Bn=.1x=.1
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Fig. 20 : The temperature profile 8 affect by Bnat ¢, = 4,¢, = 3,m = .. Fig. 21 : The temperature profile 6 affect by ¢, at p, =3, m=.2,M = 2,
M=2,6r=.001,0=13,8=02¢ :%,Br =5k=3x=.1 Gr=.001,Q0=13,8=02,¢ =§,Bn =.1,Br=5k=3x=.1

Fig. 22 : The temperature profile 6 affect by ¢, at ¢, = 4,m = .2,M = 2, Fig. 23 : The temperature profile 0 affect by p at ¢, =4,m=.2,M =2,
Gr=.001,Q0=13,=02,¢=",Bn=1Br=5k=3x=.1 Gr=.001,Q=13,=02¢,=Bn=1Br=5k=3x=.1
Conclusions

In this study, the effect of heat transfer and slip condition on peristaltic transport of MHD non-
Newtonian fluid across tapered porous channel at low Reynolds number and a long wavelength
are utilized. The perturbation method was used to solve a system of nonlinear partial differential
equations of this research. The following are some of the more intriguing analyses:

« When M and S is rised, the velocity on the axis of flow go down in the central region
and grows near the duct 's edges, but the opposite occur for rise k. By rising Q,the
velocity multiply across the entire cross-section, but go down with rising m.

% Velocity on the axis of flow while it grows on the right side of the channel, go down

near the left by rises a. Also, the velocity is unaffected by Br andBn.
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The 8 go down by rise M. It's go down in the central region and grows near the duct s
edges by rise m and 3, but the opposite occur for rise Q and Br.
By rising Gr, the temperature go down in the center region, but growth in right wall of

the duct and gradually vanishes from the left wall of the duct.
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