Synthesis, Characterization and Antimicrobial Activity Study of the Ternary (Poly Anthranilic acid- Graphene Oxide- Zinc Oxide) Nanocomposite
DOI:
https://doi.org/10.24237/ASJ.03.01.839BAbstract
In this study, a (Poly anthranilic acid (PANA)- Graphene Oxide (GO) nanosheets, Zinc Oxide
(ZnO) nanorods) ternary nanocomposite was synthesized. The prepared compounds (PANA,
GO, ZnO and the (PANA-GO-ZnO) nanocomposite were characterized through FTIR, XRD,
SEM, and thermal analysis. The analyses revealed that GO consisted of nanostructures in sheet
form, ZnO consisted of rod-shaped structures with dimensions varying between 39 and 63 nm,
and the polymer appeared in regular, sphere-like shapes with different diameters. Thermal
analyzes of the polymer showed that the polymer (PANA) partially decomposes in the
temperature range (145.3-315.6 o C), and completely decomposes at (315.6, 541.9 o C), which
means that the polymer is thermally stable. The ternary nanocomposite was employed to assess
their efficacy against four distinct bacterial strains (Staphylococcus aurous, Staphylococcus
epidermidis, Escherichia coli, and Klebsiella sp.) and one fungal strain (Candida albicans). It was
also found that this compound has a high effectiveness in inhibiting the tested microorganisms.
References
N. F. Kamaruzzaman, Antimicrobial polymers: the potential replacement of existing antibiotics?, Int. J. Mol. Sci., 20(11), 2747(2019), DOI(https://doi.org/10.3390/ijms20112747)
D. Kharaghani, Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) nanofiber, Nanomaterials, 8(7), 461(2018), DOI(https://doi.org/10.3390/nano8070461)
S. Kamalesh, P. Tan, J. Wang, T. Lee, E. Kang, C. Wang, Biocompatibility of electroactive polymers in tissues, J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 52(3), 467–478(2000),DOI(https://doi.org/10.1002/1097-4636(20001205)52:3%3C467::AID-JBM4%3E3.0.CO;2-6)
P. Boomi, H. G. Prabu, J. Mathiyarasu, Synthesis, characterization and antibacterial activity of polyaniline/Pt–Pd nanocomposite, Eur. J. Med. Chem., 72, 18–25(2014),DOI(https://doi.org/10.1016/j.ejmech.2013.09.049)
S. Liu, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 5(9), 6971–6980(2011),DOI(10.1021/nn202451x)
K. A. Whitehead, Antimicrobial activity of graphene oxide-metal hybrids, Int. Biodeterior, Biodegradation, 123, 182–190(2017), DOI(https://doi.org/10.1016/j.ibiod.2017.06.020)
B. Cao, S. Cao, P. Dong, J. Gao, J. Wang, High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation, Mater. Lett., 93, 349–352, (2013),DOI(https://doi.org/10.1016/j.matlet.2012.11.136)
O. Akhavan, E. Ghaderi, K. Rahimi, Adverse effects of graphene incorporated in TiO 2 photocatalyst on minuscule animals under solar light irradiation, J. Mater. Chem., 22 )43(,23260–23266)2012(,DOI(https://doi.org/10.1039/C2JM35228A)
T. Kavitha, A. I. Gopalan, K. P. Lee, S. Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon N. Y., 50)8(,2994–3000)2012(,DOI(https://doi.org/10.1016/j.carbon.2012.02.082)
H. R. Pant, A green and facile one-pot synthesis of Ag–ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants, Ceram. Int., 39)5(, 5083–5091)2013(,DOI(https://doi.org/10.1016/j.ceramint.2012.12.003)
M. Roberson, V. Rangari, S. Jeelani, T. Samuel, C. Yates, Synthesis and characterization silver, zinc oxide and hybrid silver/zinc oxide nanoparticles for antimicrobial applications, Nano Life, 4)1(,1440003)2014(, DOI(https://doi.org/10.1142/S1793984414400030)
R. M. Mohsen, S. M. M. Morsi, M. M. Selim, A. M. Ghoneim, H. M. El-Sherif, Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites, Polym. Bull., 76, 1–21)2019(, DOI(https://doi.org/10.1007/s00289-018-2348-4)
M. Tariq, Green synthesis of Zno@ GO nanocomposite and its’ efficient antibacterial activity, Photodiagnosis Photodyn. Ther., 35, 102471)2021(, DOI(https://doi.org/10.1016/j.pdpdt.2021.102471)
L. Zhong, K. Yun, Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties, Int. J. Nanomedicine, 10(sup1), 79–92(2015), DOI(https://doi.org/10.2147/IJN.S88319)
A. N. Abd, A. H. Al-Agha, M. A. Alheety, Addition of some primary and secondary amines to graphene oxide, and studying their effect on increasing its electrical properties, Baghdad Sci. J., 13(1), (2016), DOI(http://dx.doi.org/10.21123/bsj.2016.13.1.0097)
A. H. Al-Agha, I. A. Latif, The Study of Functionalization Effect (poly aniline (PAni) and thiocarbohydrazide (TCH)) on Electrical Properties of Graphene Oxide Nanoparticles, Diyala J. Pure Sci., 12(3-part 1), (2016)
O. G. Hammoodi, E. T. B. Al-Tikrity, K. H. Hassan, Synthesis and Characterization of Cobalt Ferrite/Graphene for The Removal of Sulfur from Kerosene by Oxidative Desulfurization, Diyala J. Pure Sci., 15(3), (2019)
O. G. Hammoodi, E. T. B. Al-Tikrity, K. H. Hassan, Sulfur Removal from Iraqi Kerosene by Oxidative Desulfurization Using Cobalt Molybdate-Graphene Composite, World, 8(1), 92–99(2019)
A. H. Majeed, E. T. B. Al-Tikrity, D. H. Hussain, Dielectric properties of synthesized ternary hybrid nanocomposite embedded in poly (vinyl alcohol) matrix films, Polym. Polym. Compos., 29(7), 1089–1100(2021), DOI(https://doi.org/10.1177/0967391120951406)
A. A. Khalil, A. F. Shaaban, M. M. Azab, A. A. Mahmoud, A. M. Metwally, Synthesis, characterization and morphology of polyanthranilic acid micro-and nanostructures, J. Polym. Res., 20, 1–10(2013),DOI(https://doi.org/10.1007/s10965-013-0142-4)
N. F. Alheety, Antiproliferative and antimicrobial studies of novel organic-inorganic nanohybrids of ethyl 2-((5-methoxy-1H-benzo [d] imidazol-2-yl) thio) acetate (EMBIA) with TiO2 and ZnO, J. Mol. Struct., 1274, 134489(2023), DOI(https://doi.org/10.1016/j.molstruc.2022.134489)
A. H. Majeed, D. H. Hussain, E. T. B. Al-Tikrity, M. A. Alheety, Poly (o-Phenylenediamine-GO-TiO2) nanocomposite: modulation, characterization and thermodynamic calculations on its H2 storage capacity, Chem. Data Collect., 28, 100450(2020), DOI(https://doi.org/10.1016/j.cdc.2020.100450)
G. Nagaraju, S. A. Prashanth, M. Shastri, K. V Yathish, C. Anupama, D. Rangappa, Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial, Mater. Res. Bull., 94, 54–63 (2017),DOI(https://doi.org/10.1016/j.materresbull.2017.05.043)
Q. T. Ain, S. H. Haq, A. Alshammari, M. A. Al-Mutlaq, M. N. Anjum, The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model, Beilstein J. Nanotechnol., 10(1), 0901–911(2019),DOI(https://doi.org/10.3762/bjnano.10.91)
M. A. Alheety, A. H. Majeed, A. H. Ali, L. A. Mohammed, A. Destagul, P. K. Singh, Synthesis and characterization of eggshell membrane polymer-TiO2 nanocomposite for newly synthesized ionic liquid release, J. Iran. Chem. Soc., 1–11(2022), DOI(https://doi.org/10.1007/s13738-022-02584-x)
P. Jayakrishnan, M. T. Ramesan, Synthesis, structural, magnetoelectric and thermal properties of poly (anthranilic acid)/magnetite nanocomposites, Polym. Bull., 74, 3179–3198(2017), DOI(https://doi.org/10.1007/s00289-016-1883-0)
L. A. Adnan, N. F. Alheety, A. H. Majeed, M. A. Alheety, H. Akbaş, Novel organic-inorganic nanohybrids (MnO2 and Ag nanoparticles functionalized 5-methoxy-2-mercaptobenzimidazole): One step synthesis and characterization, Mater. Today Proc., 42, 2700–2705(2021), DOI(https://doi.org/10.1016/j.matpr.2020.12.707)
K. Ogura, H. Shiigi, M. Nakayama, A. Ogawa, Thermal properties of poly (anthranilic acid)(PANA) and humidity‐sensitive composites derived from heat‐treated PANA and poly (vinyl alcohol), J. Polym. Sci. Part A Polym. Chem., 37(23), 4458–4465(1999),DOI(https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23%3C4458::AID-POLA23%3E3.0.CO;2-R)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.