Synthesis and Characterization of Quaternary Chalcogenide Nanomaterials: A Review Study

Authors

  • Huda Talib
  • Nabeel A. Bakr
  • Mohammed A. Abed

DOI:

https://doi.org/10.24237/ASJ.02.01.676C

Keywords:

Quaternary chalcogenide, Quaternary semiconductor, Stannite structure, Kesterite structure.

Abstract

For the past ten years, copper-based quaternary chalcogenide semiconductor materials have also been studied and classified in a variety of ways. The majority of research and academic works on quaternary chalcogenides are devoted to solar cell PV studies, where, as the material first gained popularity as a less expensive option in contrast to Si for Solar PV systems. . Such components have all of the desirable characteristics for becoming an effective PV material in the thin films or nanomaterials configuration, like effective and non-toxic unique materials, effective charge carrier, best possible energy band, as well as higher adsorption co-effectiveness. Cu2MIMIIX4 (where X = S or/and Se; MII = Si, Sn, and Ge; MI = Zn, Mn, Fe, Co, Ni, Cd, and Hg) is a new class of quaternary materials that has just emerged and found use in electrochemistry, thermal, sensor systems, power banks, and some other technologies. The unique combination characteristics of this class of chalcogenides, like optoelectronic and electrical; magnetic and optoelectronic; as well as thermo-electric, make their potentially useful importance for a variety of usages. Even though many of the papers have already covered the PV characteristics of such quaternary chalcogenides, this material has many various uses that remain investigated. This article touches on the multi-functional systems of novel dissimilar quaternary copper-based chalcogens, including the fabrication, the doping impact on their physical and chemical characteristic, and their use in many applications, including solar cells.

References

H.Jiang, P.Dai, Z.Feng, W.Fan and J.Zhan, Phase Selective Synthesis of Metastable Orthorhombic Cu2ZnSnS4. Journal of Materials Chemistry, Vol. 22, pp. 7502-7506, (2012).‏

W. Hsu, C. M. Sutter-Fella, M. Hettick, L. Cheng, S. Chan, Y. Chen, Y. Zeng, M. Zheng, H. Wang, C. Chiang, and A. Javey, Electron-Selective TiO2 Contact for Cu (In, Ga) Se2 Solar Cells. Scientific reports, Vol. 5 ,pp. 1-7 ,(2015).‏

Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse and R. Agrawal, Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals, J. Am. Chem. Soc, Vol. 132, pp. 17384–17386, (2010).

M. Nakamura, K. Yamaguchi and Y. Kimoto, Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell with Record Efficiency of 23.35%. IEEE J. Photovolt,Vol. 9, pp. 1863–1867, (2019(.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Arak and A. Takeuchi, Development of CZTS-Based thin Film Solar Cells, Thin Solid Films, Vol. 517, pp. 2455-2460, (2009).‏

K. Tanaka, M. Oonuki, N. Moritake and H. Uchiki, Cu2ZnSnS4 thin film solar cells prepared by Non-Vacuum Processing. Solar Energy Materials and Solar Cell, Vol. 93, pp. 583-587, (2009).‏

A. Weber, S. Schmidt, D. Abou-Ras, P. S. Bischoff, I. Denks, R. Mainz and H. W. Schock, Texture Inheritance in thin-Film Growth of Cu2ZnSnS4. Applied Physics Letters, Vol. 95, pp. 041904, (2009).‏

Q.Guo, H.W.Hillhouse and R.Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for Solar Cells Journal of the American Chemical Society, Vol. 131, pp. 11672-11673, (2009).‏

C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo and B.A. Korgel, Synthesis of Cu2ZnSnS4 Nanocrystals for Use in low-cost Photovoltaics. Journal of the American Chemical Society, Vol. 131, pp. 12554-12555, (2009).‏

A. Shavel, J. Arbio and A. Cabot, Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+ x+ 2y. Journal of the American Chemical Society, Vol. 132, pp. 4514-4515, (2010).

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. Ho. Yun, Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: on the discrepancies of reported band gap values. Applied Physics Letters, Vol. 97, pp. 021905, (2010).‏

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, High‐efficiency solar cell with earth‐abundant liquid‐processed absorber. Advanced materials, Vol. 22, pp. 156-159, (2010).

P. Balaza, M. Balaza, A. Zorkovskaa, I. Škorvánekb, Z. Bujnakovaa and J. Trajic, Kinetics of solid-state synthesis of quaternary Cu2FeSnS4 (stannite) nanocrystals for solar energy applications. Acta Phys, Vol. 131, pp. 1153-1155, (2017).‏

H. Oueslati, M. B. Rabeh and M. Kanzari, Growth and characterization of the evaporated quaternary absorber Cu2FeSnS4 for solar cell applications. Journal of Electronic Materials, Vol. 47, p. 3577-3584, (2018).‏

S. Siebentritt. Why are kesterite solar cells not 20% efficient? Thin solid films, Vol. 535, pp. 1-4, (2013).‏

X. Wang, X. Gu, H. Guan, and F. Yu, Flower-like Cu2MnSnS4 particles synthesized via microwave irradiation method. Chalcogenide Lett, Vol. 12, 99-103, (2015).

L. Nie, J. Yang, D. Yang and S. Liu, Effect of substrate temperature on growth and properties of Cu2MnSnS4 thin films prepared by chemical spray pyrolysis. Journal of Materials Science: Materials in Electronics, Vol. 30, pp. 3760-3766, (2019).

A. Lunhong, and Jing Jiang. Hierarchical porous quaternary Cu–Fe–Sn–S hollow chain microspheres: rapid microwave nonaqueous synthesis, growth mechanism, and their efficient removal of organic dye pollutant in water. Journal of Materials Chemistry, Vol. 22, pp. 20586-20592, (2012).‏

L. Ai and J. Jiang, Self-sacrificial templating synthesis of porous quaternary Cu–Fe–Sn–S semiconductor nanotubes via microwave irradiation. Nanotechnology, vol. 23.49, pp. 495601, (2012).

C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li and Y. Liu, Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals. Chemical Communications, Vol. 48.20, pp. 2603-2605, (2012).‏

Z. Gui, R. Fan, X. Chen, Y. Hu, Z. Wang, A new colloidal precursor cooperative conversion route to nanocrystalline quaternary copper sulfide. Materials research bulletin, Vol. 39.2, pp. 237-241, (2004).

X. Jiang, W. Xu, R. Tan, W. Song, J. Chen, Solvothermal synthesis of highly crystallized quaternary chalcogenide Cu2FeSnS4 particles. Materials Letters, vol. 102, pp. 39-42, (2013).

X. Meng, H. Deng, J. He, L. Sun, P. Yang, J. Chu, Synthesis, structure, optics and electrical properties of Cu2FeSnS4 thin film by sputtering metallic precursor combined with rapid thermal annealing sulfurization process. Materials Letters, Vol. 151, pp. 61-63, (2015).‏

R. Prabhakar, N. H. Loc, M. H. Kumar, P.P. Boix, S. Juan, R. A. John, S. K. Batabyal, and L.H. Wong, Facile water-based spray pyrolysis of earth-abundant Cu2FeSnS4 thin films as an efficient counter electrode in dye-sensitized solar cells. ACS applied materials & interfaces, Vol. 6.20, pp. 17661-17667, (2014).

W. Wang, H. Shen, H. Yao, J. Li, Preparation and properties of Cu2FeSnS4 nanocrystals by ultrasound-assisted microwave irradiation. Materials Letters, Vol. 125, pp. 183-186, (2014).

J. Zhou, Z. Ye, Y. Wang, Q. Yi, and J. Wen, Solar cell material Cu2FeSnS4 nanoparticles synthesized via a facile liquid reflux method. Materials letters, Vol.140, pp. 119-122, (2015).‏

L. Chen, H. Deng, J. Tao, W. Zhou, L. Sun, F. Yue, P. Yang, and J. Chu, Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol–gel technique. Journal of Alloys and Compounds, Vol. 640, pp. 23-28, (2015).

R. R. Prabhakar, S. Zhenghua, Z. Xin, T. Baikie, L. S. Woei, S. Shukla, S. K. Batabyal, O. Gunawan, and L. H. Wong, Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S, Se)4 thin films. Solar Energy Materials and Solar Cells, Vol. 157, pp. 867-873, (2016).‏

X. Yan, E. Michael, S. Komarneni, J. R. Brownson and Z. Yan, Microwave-Hydrothermal/Solvothermal Synthesis of Kesterite, an Emerging Photovoltaic Material. Ceramics International, Vol. 40.1, pp. 1985-1992, (2014).‏

Y. Liu, J. Xu, Z. Ni, G. Fang and W. Tao, One-Step Sonochemical Synthesis Route Towards Kesterite Cu2ZnSnS4 Nanoparticles. Journal of Alloys and Compounds, Vol. 630, pp. 23-28, (2015).

S. Chen, X. Gong, A. Walsh and S. H. Wei, Electronic Structure and Stability of Quaternary Chalcogenide Semiconductors Derived From Cation Cross-Substitution of II-VI and I-III-VI2 Compounds. Physical Review B, vol. 79, pp. 165211, (2009).

Z. Li, J. W. Ho, K. K. Lee, X. Zeng, T. Zang, L. H. Wong and Y. M. Lam, Environmentally Friendly Solution Route to Kesterite Cu2ZnSn(S, Se)4 thin Films for Solar cell Applications. RSC Advances, Vol. 4.51, pp. 26888-26894, (2014).

K. Sun, Z. Su, C. Yan, F. Liu, H. Cui, L. Jiang , Y. Shen, X. Hao and Y. Liu, Flexible Cu2ZnSnS4 Solar Cells Based on Successive Ionic Layer Adsorption and Reaction Method. RSC Advances, Vol. 4.34, pp. 17703-17708, (2014).

T. J. Huang, X. Yin, C. Tang, G. Qi and H. Gong, A low-cost, ligand Exchange-Free Strategy to Synthesize Large-Grained Cu2ZnSnS4 thin-Films without a Fine-Grain Underlayer from Nanocrystals. Journal of Materials Chemistry A, Vol. 3.34, pp. 17788-17796, (2015).

N, Yu, R. Zhong, W. Zhong, X. Chen, J. Luo, X. Gu, X. Hu, L. Zhong, J. Hu and Z. Chen Synthesis of Cu2ZnSnS4 Film by Air-Stable Molecular-Precursor ink for Constructing thin Film Solar Cells. RSC advances, Vol. 4.68, pp. 36046-36052, (2014).

N. S. Arul, D. Y. Yun, D.U. Lee and T. W. Kim, Strong Quantum Confinement Effects in Kesterite Cu2ZnSnS4 Nanospheres for Organic Optoelectronic Cells. Nanoscale, Vol. 5.23, pp. 11940-11943, (2013).

A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, Vol. 271, pp. 933-937, (1996).‏

C. S. Riha, B. A. Parkinson, and A. L. Prieto, Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals. Journal of the American Chemical Society, Vol. 131, pp. 12054-12055, (2009).

M. Ibanez, D. Cadavid, R. Zamani, N. G. Ctello, V. I. Roca, W. Li, A. Fairbrother, J. D. Prades, A. Shavel, J. Arbio, A. P. Rodriguez, J. R. Morante and A. Cabot, Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: the Case of Stannite Cu2CdSnSe4. Chemistry of Materials, Vol. 24, pp. 562-570, (2012).

W. Li, M. Ibanez, R. R. Zamani, N.G. Castello, S. Crosse, D. Cadavid, J. D. Prades, J. Arbiol and A. Cabot, Cu2HgSnSe4 Nanoparticles: Synthesis and Thermoelectric Properties. Cryst Eng Comm, Vol. 15, pp. 8966-8971, (2013).

W. Li, M. Ibanez, D. Cadavid, R. R. Zamani, J. R. Garcia, S. Gorsse, J. R. Morante, J. Arbiol and A. Cabot, Colloidal Synthesis and Functional Properties of Quaternary Cu-Based Semiconductors: Cu2HgGeSe4. Journal of nanoparticle research, Vol. 16, pp. 1-6, (2014).

F. J. Fan, L.Wu, M. Gong, S. Y. Chen, G. Y. Liu, H. W. Liang, Y. X. Wang and S. Hong Yu, Linearly Arranged Polytypic CZTSSe Nanocrystals. Scientific reports, Vol. 2, pp. 1-6, (2012).

K. Wei and G. S. Nolas, Synthesis and Characterization of Nanostructured Stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for Thermoelectric Applications. ACS applied materials & interfaces, Vol. 7, pp. 9752-9757, (2015).

J. J. Wang, P. Liu and K. M. Ryan, A Facile Phosphine-Free Colloidal Synthesis of Cu2SnS3 and Cu2ZnSnS4 Nanorods with a Controllable Aspect Ratio. Chemical Communications, Vol. 51, pp. 13810-13813, (2015).

S. Schorr, The Crystal Structure of Kesterite Type Compounds: A Neutron and X-ray Diffraction Study. Solar Energy Materials and Solar Cells, Vol. 95, pp. 1482-1488, (2011).

T. Hirai, K. Kurata, and Y. Takeda, Derivation of New Semiconducting Compounds by Cross Substitution for Group IV Semiconductors, and their Semiconducting and Thermal Properties. Solid-State Electronics, Vol. 10, pp. 975-981, (1967)‏.

S. Chen, X. G. Gong, A. Walsh, and S. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights Applied Physics Letters, vol. 94, pp. 041903, (2009).

C. Persson, Electronic and Optical Properties of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of Applied Physics, Vol. 107, pp. 053710, (2010).

X. Lu, Z. Zhuang, O. Peng and Y. Li, Wurtzite Cu2ZnSnS4 Nanocrystals: a Novel Quaternary Semiconductor. Chemical Communications, Vol. 47, pp. 3141-3143, (2011).‏

M. Li, W. H. Zhou, J. Guo, Y. Lizhou, Z. L. Hou, J. Z. Jizhou, Z. L. Du and S. X. Wu, Synthesis of pure Metastable Wurtzite CZTS Nanocrystals by Facile one-Pot Method. The Journal of Physical Chemistry C, Vol. 116, pp. 26507-26516, (2012).

A. Singh, H. Geaney, F. Laffir and K. M. Ryan, Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly. Journal of the American Chemical Society, Vol. 134, pp. 2910-2913, (2012).

C. C. Kang, H. F. Chen, T. C. Yu and T. C. Lin, Aqueous Synthesis of Wurtzite Cu2ZnSnS4 Nanocrystals. Materials Letters, Vol. 96, pp. 24-26, (2013).

X. Zhang, N. Bao, B. Lin and A. Gupta, Colloidal Synthesis of Wurtzite Cu2CoSnS4 Nanocrystals and the Photoresponse of Spray-Deposited thin Films. Nanotechnology, Vol. 24, pp. 105706, (2013).

X. Zhang, G. Guo, C. Ji, K. Huang, C. Zha, Y. Wang, L. Shen, A. Gupta, and N. Bao, Efficient Thermolysis Route to Monodisperse Cu2ZnSnS4 Nanocrystals with Controlled Shape and Structure. Scientific Reports, Vol. 4, pp. 5086, (2014).

S. M. Camara, L. Wang, and X. Zhang, Easy Hydrothermal Preparation of Cu2ZnSnS4 (CZTS) Nanoparticles for Solar Cell Application. Nanotechnology, Vol. 24, pp. 495401, (2013).

C. Rincon, and R. Marquez, Defect Physics of the CuInSe2 Chalcopyrite Semiconductor. Journal of Physics and Chemistry of Solids, Vol. 60, pp. 1865-1873, (1999).

S. H. Wei, and S. B. Zhang, Defect Properties of CuInSe2 and CuGaSe2. Journal of Physics and Chemistry of solids, Vol. 66, pp. 1994-1999, (2005).

S. H. Wei, S. B. Zhang, and A. Zunger, Effects of Ga Addition to CuInSe2 on its Electronic, Structural, and Defect Properties. Applied physics letters, Vol. 72, pp. 3199-3201, (1998).

S. Chen, A. Walsh, X. G. Gong and S. H. Wei, Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers. Advanced materials, 25, pp. 1522-1539, (2013).

S. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, and S. H. Wei Compositional Dependence of Structural and Electronic Properties of Cu2ZnSn(S, Se)4 alloys for thin Film Solar Cells. Physical Review B, Vol. 83, pp. 125201, (2011).

S. Chen, J. H. Yang, X. G. Gong, A. Walsh and S. H. Wei, Intrinsic Point D and Complexes in the Quaternary Kesterite Semiconductor Cu2ZnSnS4. Physical Review B, Vol. 81, pp. 245204, (2010).

R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir and K. H. Kim, Single Step Preparation of Quaternary Cu2ZnSnSe4 thin Films by RF Magnetron Sputtering from Binary Chalcogenide Targets. Journal of Physics and Chemistry of Solids, Vol. 68, pp. 1908-1913, (2007).

M. Grossberg, J. Krustok, K. Timmo and M. Altosaar, Radiative Recombination in Cu2ZnSnSe4 Monograins Studied by Photoluminescence Spectroscopy. Thin Solid Films, Vol. 517, pp. 2489-2492, (2009).‏

T. Tanaka, T. Nagatom, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, Preparation of Cu2ZnSnS4 thin Films by Hybrid Sputtering. Journal of Physics and Chemistry of Solids, Vol. 66, pp. 1978-1981, (2005).

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake and H. Uchiki, Optical Properties of Cu2ZnSnS4 thin Films Prepared by Sol–Gel and Sulfurization Method. Japanese Journal of Applied Physics, Vol. 47S, pp. 596, (2008).

S. Chen, A. Walsh, Y. Luo, J. H. Yang, X. G. Gong and S. H. Wei, Wurtzite-Derived Polytypes of Kesterite and Stannite Quaternary Chalcogenide Semiconductors. Physical Review B, Vol. 82, pp. 195203, (2010).‏

A. Nagoya, R. Asahi, R. Wahl and G. Kresse, Defect Formation and Phase Stability of Cu2ZnSnS4 Photovoltaic Material. Physical Review B, Vol. 81, pp. 113202, (2010).

S. Chen, L. W. Wang, A. Walsh, X. G, Gong, and S. H. Wei, Abundance of CuZn+ SnZn and 2CuZn+SnZn Defect Clusters in Kesterite Solar Cells. Applied Physics Letters, Vol. 101, pp. 223901, (2012).

Y. Zhang, X. Sun, P. Zhang, X. Yuan, F. Huang and W. Zhang, Structural Properties and Quasiparticle Band Structures of Cu-based Quaternary Semiconductors for Photovoltaic Applications. Journal of Applied Physics, Vol. 111, pp. 063709, (2012).

J. Paier, R. Asahi, A. Nagoya, and G. Kresse, Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study Physical Review B, vol. 79, pp. 115126, (2009).

E. A Lund, H. Du. W. M. Hlaing, G. Teeter and M. A. Scarpulla, Investigation of Combinatorial Coevaporated thin Film Cu2ZnSnS4 (II): Beneficial Cation Arrangement in Cu-rich growth. Journal of Applied Physics, Vol.115, pp. 173503, (2014).

A. Shavel, M. Ibanez, Z. Luo, J. D. Roo, A. Carrete, M. Dimitrievska, A. Genc, M. Meyns, A. P. Rodriguez, M.V. Kovalenko, J. Arbiol and A. Cabot, Scalable Heating-up Synthesis of Monodisperse Cu2ZnSnS4 Nanocrystals. Chemistry of Materials, Vol. 28, pp. 720-726, (2016).

P. Kush, S. K. Ujjain, N.C. Mehra, P. Jha, R. K. Sharma, S. Deka, Development and Properties of Surfactant‐Free Water‐Dispersible Cu2ZnSnS4 Nanocrystals: a Material for low‐Cost Photovoltaics. ChemPhysChem, Vol. 14, pp. 2793-2799, (2013).

A. Shavel, J. Arbiol, and A. Cabot, Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+ 2y. Journal of the American Chemical Society, Vol. 132, pp. 4514-4515, (2010).

X. Song, X. Ji. M. Li. W. Lin, X. Luo and H. Zhang, A Review on Development Prospect of CZTS Based thin Film Solar Cells. International Journal of Photoenergy, Vol. 2014, (2014).

J. Y. Park, J. H. Noh, T. N. Mandal, S. H. lm, Y. Jun and S. Seok, Quaternary Semiconductor Cu2FeSnS4 Nanoparticles as an Alternative to Pt Catalysts. RSC Advances, Vol. 3, pp. 24918-24921, (2013).

Y. Cui, R. Deng, G. Wang and D. Pan, A General Strategy for Synthesis of Quaternary Semiconductor Cu2MSnS4 (M= Co2+, Fe2+, Ni2+, Mn2+) Nanocrystals. Journal of Materials Chemistry, Vol. 22, pp. 23136-23140, (2012).

F. Lopez-Vergara, A. Galdamez, V. Manriquez, P. Barahona, O. Pena, Cu2Mn1− xCoxSnS4: Novel kësterite type solid solutions. Journal of Solid State Chemistry, Vol. 198, pp. 386-391, (2013).

Y. Qi, Q. Tian, Y. Meng, D. Kou, Z. Zhou, W. Zhou, and S. Wu, Elemental Precursor Solution Processed (Cu1–xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency. ACS applied materials & interfaces, Vol. 9, pp.21243-21250, (2017).

B. Murali, and S. B. Krupanidhi, Facile synthesis of Cu2CoSnS4 nanoparticles exhibiting red-edge-effect: Application in hybrid photonic devices. Journal of Applied physics, Vol. 114, pp. 144312, (2013).

S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, and M. Kabir, Structural, electronic, and optical properties of Cu2NiSnS4: a combined experimental and theoretical study toward photovoltaic applications. Chemistry of Materials, Vol. 29, pp 3133-3142, (2017).

R. Pandey, R. Kumar, S. N. Sahu, and Suresh Chandra, Handbook of Semiconductor Electrodeposition. CRC Press, (2017).‏

D. Lincot, Electrodeposition of semiconductors. Thin Solid Films, Vol. 487, pp. 40–48, (2005).

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, Vol. 77, pp. 725–737, (2004).

D. Cunningham, M. Rubcich, and D. Skinner, Cadmium telluride PV module manufacturing at BP solar. Progress in Photovoltaics: Research and Applications, Vol. 10, pp. 159–168, (2002).

B. E. McCandless, A. Mondal, and R. W. Birkmire, Galvanic deposition of cadmium sulfide thin films. Solar Energy Materials and Solar Cells, Vol. 36, pp. 369–379, (1995).

J. J. Scragg, P. J. Dale, and L. M. Peter, Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4 Electrochemistry Communications, Vol. 10, pp. 639–642, (2008).

J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. Physica Status Solidi B, Vol. 245, pp. 1772–1778, (2008).

J. J. Scragg, D. M. Berg, and P. J. Dale, A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, Vol. 646, pp. 52–59, (2010(.

H. Araki, Y. Kubo, A. Mikaduki, Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells, Vol. 93, pp. 996–999, (2009).

H. Araki, Y. Kubo, K. Jimbo, Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors. Physica Status Solidi C, Vol. 6, pp. 1266–1268, (2009).

R. Schurr, A. Hölzing, S. Jost, The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors. Thin Solid Films, Vol. 517, pp. 2465–2468, (2009).

S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Advanced Energy Materials, Vol. 2, pp. 253–259, (2012).

N. M. Shinde, D. P. Dubal, D. S. Dhawale, C. D. Lokhande, J. H. Kim, and J. H. Moon, Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, Vol. 47, pp. 302–307, (2012).

S. S. Mali, P. S. Shinde, C. A. Betty, P. N. Bhosale, Y. W. Oh, and P. S. Patil, Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, Vol. 73, pp. 735–740, (2012).

X. Miao, R. Chen, and W. Cheng, Synthesis and characterization of Cu2FeSnS4 thin films prepared by electrochemical deposition. Materials Letters, Vol. 193, pp. 183-186, (2017).

H. Guan, H. Shen, B. Jiao, and X. Wang, Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Mater. Sci. Semicond. Process, Vol. 25, pp. 159-162, (2014).

X. Meng, H. Deng, L. Sun, P. Yang, and J. Chu, Sulfurization temperature dependence of the structural transition in Cu2FeSnS4-based thin films. Mater. Lett, Vol. 161, pp. 427-430, (2015).

S. Zhang, CZTS thin film and its research progress of solar cell. Engineering and Technology, Vol. 8, pp. 67-69, (2010).‏

S. A. Vanalakar, G. L. Agwane, M. G. Gang, P. S. Patil, J. H. Kim, and J. Y. Kim, A mild hydrothermal route to synthesis of CZTS nanoparticle inks for solar cell applications. Phys. Status Solidi C, Vol. 12, pp. 500-503, (2015).

S. A. Vanalakar, V. L. Patil, P. S. Patil, and J. H. Kim, Controllable synthesis of stoichiometric Cu2ZnSnS4 nanoparticles by solvothermal method and its properties. AIP Conf. Proc, Vol. 1665, pp. 050061, (2015).

C. An, K. Tang, G. Shen, C. Wang, L. Huang, and Y. Qian, The synthesis and characterization of nanocrystalline Cu- and Ag-based multinary sulfide semiconductors. Mater. Res. Bull, Vol. 38, pp. 823–830, (2003).

N. Muhunthan, O.Singh, S. Singh, and V. N. Singh, Growth of CZTS thin films by cosputtering of metal targets and sulfurization in H2S. International Journal of Photoenergy, Vol. 2013, (2013).‏

K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, Chemical Composition Dependence of Morphological and Optical Properties of Cu2ZnSnS4 thin Films Deposited by Sol-Gel Sulfurization and Cu2ZnSnS4 thin Film Solar Cell Efficiency. Solar Energy Materials and Solar Cells, Vol. 95, pp. 838–842, (2011).

A. Ziti, B. Hartiti, S. Smariri, H. Labrim, Y. Nouri, A. Belafhaili, H. J. T. Nkuissi, S. Fadili, M. Tahri and P. Thevenin, Advancement of Stannite Cu2CoSnS4 thin Films Deposited by Sol Gel Dip-Coating Route. Physica Scripta, Vol. 97, pp. 065815, (2022).

Y. Zhao, W. Tao, X. Chen, J. Liu and A. Wei Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals Prepared by Microwave Irradiation Method J. Mater. Sci.: Mater. Electron, Vol. 26, pp. 5645–5651, (2015).

H. Guan, Y. Shi, H. Hou, X. Wang and F. Yu, Quaternary Cu2CdSnS4 Nanoparticles Synthesised by Microwave Irradiation Method. Micro & Nano Letters, Vol. 9, pp. 251-252, (2014).

C. H. Lai, M. Yen Lu and L. J. Chen, Metal Sulfide Nanostructures: Synthesis, Properties and Applications in Energy Conversion and Storage. Journal of Materials Chemistry, Vol. 22, pp.19-30, (2012).

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P, F. Barbara and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu (Inx Ga1-x) Se2 (CIGS) Nanocrystal inks for Printable Photovoltaics. Journal of the American Chemical Society, Vol. 130, pp. 16770-16777, (2008).

P. Reiss, M. Protiere, and Liang Li. Core/shell Semiconductor Nanocrystals. Small, Vol. 5, pp.154-168, (2009).

M. Konagai, M. Sugimoto, and K. Takahashi, High Efficiency GaAs thin Film Solar Cells by Peeled Film Technology. Journal of crystal growth, Vol. 45, pp. 277-280, (1978).

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruna, F. W. Wise and T. Hanrath, PbSe Nanocrystal Excitonic Solar Cells. Nano letters, Vol. 9, pp. 3749-3755, (2009).

Y. Wu, C. Wadia, W. Ma, B. Sadtler and A. P. Alivisatos, Synthesis and Photovoltaic Application of Copper (I) Sulfide Nanocrystals. Nano letters, Vol. 8, pp. 2551-2555, (2008).‏

P. Kumar and K. Singh, Element Directed Aqueous Solution Synthesis of Copper Telluride Nanoparticles, Characterization, and Optical Properties. Crystal Growth and Design, Vol. 9, pp. 3089-3094, (2009).

D. V. Talapin, A. L. Rogach, A. Kornowski. M. Haase, and H. Weller, Highly luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine− Trioctylphosphine oxide− Trioctylphospine Mixture. Nano letters, Vol. 1, pp. 207-211, (2001).

R. Zeng, T. Zhang, J. Liu, S. Hu, Q. Wan, X. Liu, Z. Peng, and B. Zou, Aqueous Synthesis of Type-II CdTe/CdSe Core–Shell Quantum Dots for Fluorescent Probe labeling Tumor Cells. Nanotechnology, Vol. 20, pp. 095102, (2009).

S. Deka, A. Genovese, Y. Zhang, K. Miszta, G. Bertoni, R. Krahne, C. Giannini and L. Manna, Phosphine-Free synthesis of P-Type Copper (I) Selenide Nanocrystals in Hot Coordinating Solvents. Journal of the American Chemical Society, Vol.132, pp. 8912-8914, (2010).

L. Li, N. Coates, and D. Moses, Solution-Processed Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CuInS2 Nanocrystals, Journal of the American Chemical Society, Vol. 132, pp. 22-23, (2010).

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, J .J. Schermer, 26.1% thin-film GaAs solar cell using epitaxial lift-off. Solar Energy Materials and Solar Cells, Vol. 93, pp.1488-1491, (2009).

S. Tamaki, W. T. Frankenberger Jr, Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology, Vol. 124, pp. 79-110, (1992).

M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis and X.Hao, Solar Cell Efficiency Tables (version 57). Progress in photovoltaics: research and applications, Vol. 29, pp. 3-15, (2021).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. Ho-Baillie, Solar cell efficiency tables (version 49). Progress in Photovoltaics: Research and Applications Vol. 25, pp. 3-13, (2016).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 46). Prog. Photovoltaics Res. Appl. vol. 23, pp. 805–812, (2015).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 48). Progress in Photovoltaics: Research and Applications, vol. 24, pp. 905-913, (2016).

M. A. Green, K. Emery, D. L. King, S. Igari, and Wilhelm Warta, Solar cell efficiency tables (version 26)., Vol. 13, pp. 387-392, (2005).

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. Ho-Baillie, Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications,Vol. 26, pp. 427-436, (2018).

S. K. Wallace, D. B. Mitzi, and A. Walsh,The Steady Rise of Kesterite Solar Cells. ACS Energy Letters, vol. 2, pp. 776 –779, (2017).

F. Zhang, and S. S. Wong, Controlled synthesis of semiconducting metal sulfide nanowires. Chemistry of materials, Vol. 21, pp. 4541-4554, (2009).‏

Y. K. Albert Lau, D. J. Chernak, M. J. Bierman and S. Jin, Epitaxial growth of hierarchical PbS nanowires. Journal of Materials Chemistry, Vol. 19, pp. 934-940, (2009).

A. Singh, S. Singh, S. Levcenko, T. Unold, F. Laffir, and K. M. Ryan, Compositionally Tunable Photoluminescence Emission in Cu2ZnSn(S1−xSex)4 Nanocrystals. Angewandte Chemie International Edition, Vol. 52, pp. 9120-9124, (2013).

Y. Yang, X. Kang, L. Huang and D. Pan, Tuning the band gap of Cu2ZnSn(S, Se)4 thin films via lithium alloying. ACS Applied Materials & Interfaces, Vol. 8, pp. 5308-5313, (2016).

D. B. Khadka and J. Kim, Structural transition and band gap tuning of Cu2(Zn, Fe) SnS4 chalcogenide for photovoltaic application. The Journal of Physical Chemistry, Vol. 118, pp. 14227-14237, (2014)‏.

S.C. Riha, B. A. Parkinson and Amy L. Prieto, Compositionally Tunable Cu2ZnSn (S1–x Sex)4 Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films. Journal of the American Chemical Society, Vol. 133, pp. 15272-15275. (2011).

F. Fan, L. Wu, M. Gong, G. Liu, Y. Wang, S. Yu, S. Chen, L. Wang and X. Gong, Composition-and Band-Gap-Tunable Synthesis of Wurtzite-Derived Cu2ZnSn (S1–xSex)4 Nanocrystals: Theoretical and Experimental Insights. ACS nano, Vol. 7, pp. 1454-1463, (2013).

K Yang, D. Son, S. Sung, J. Sim, Y. Kim, S. Park, D. Jeon, J. Kim, D. Hwang, C. Jeon, D. Nam, H. Cheong, J. Kang, and D. Kim, A band-gap-graded CZTSSe solar cell with 12.3% efficiency. Journal of Materials Chemistry A, Vol. 4, pp. 10151-10158, (2016).‏

H. Zhou, W. Hsu, H. Duan, B. Bob, W. Yang, T. Song, C. Hsu and Y. Yang, CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy & Environmental Science, Vol. 6, pp. 2822-2838, (2013).

A. A. Rockett. Current status and opportunities in chalcopyrite solar cells. Current Opinion in Solid State and Materials Science, Vol. 14, pp. 143-148, (2010).

K. Sardashti, R. Haight, T. Gokmen, W. Wang, L. Chang, D. B. Mitzi, A. C. Kummel, Impact of nanoscale elemental distribution in high‐performance kesterite solar cells. Advanced Energy Materials, Vol. 5, pp. 1402180, (2015).

W. Shockley, and H. J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, Vol. 32, pp. 510-519, (1961).

W. Ki, and Hugh W. Hillhouse, Earth‐abundant element photovoltaics directly from soluble precursors with high yield using a non‐toxic solvent. Advanced Energy Materials, Vol. 1, pp. 732-735, (2011).

P. S. Maldar, M. A. Gaikwad, A. A. Mane, S. S. Nikam, S. P. Desai, S. D. Giri, A. Sarkar, A. V. Moholkar, Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Solar Energy, Vol. 158, pp. 89-99, (2017).

A. Sharma, and R. Thangavel, Cost-effective fabrication of Cu2CoSnS4 thin films for photovoltaic applications. 2018 3rd International Conference on Microwave and Photonics (ICMAP). IEEE, )2018(.

A. Ziti, B. Hartiti, S. Smairi, H. Labrim, Y. Nouri, A. Belafhaili, H. T. Nkuissi, S. Fadili, M. Tahri and P. Thevenin, Advancement of stannite Cu2CoSnS4 thin films deposited by sol gel dip-coating route. Physica Scripta, Vol. 97, pp. 065815, (2022).

H. Hammami, M. Marzougui, H. Oueslati, M. BenRabeh, and M. Kanzari, Synthesis, growth and characterization of Cu2CoSnS4 thin films via thermal evaporation method. Optik, Vol. 227, pp. 166054, (2021).

P. S. Maldar, A. A. Mane, S. S. Nikam, S. D. Dhas, and A. V. Moholkar, Spray deposited Cu2CoSnS4 thin films for photovoltaic application: effect of film thickness. Thin Solid Films, Vol. 709, pp. 138236 ,(2020).‏

M. Beraich, M. Taibi, A. Guenbour, A. Zarrouk, M. Boudalia, A. Bellaouchou, M. Tabyaoui, S. Mansouri, Z. Sekkat, and M. Fahoume, Preparation and characterization of Cu2CoSnS4 thin films for solar cells via co-electrodeposition technique: Effect of electrodeposition time. Optik, Vol. 193, pp. 162996, (2019).

M. Rouchdi, E. Salmani, N. Hassanain and A. Mzerd, Effect of deposition time on structural and physical properties of Cu2CdSnS4 thin films prepared by spray pyrolysis technique: experimental and ab initio study. Optical and Quantum Electronics, Vol. 49, pp. 1-12, (2017).

A. Tombak, T. Kilicoglu, and Y. S. Ocak, Solar cells fabricated by spray pyrolysis deposited Cu2CdSnS4 thin films. Renewable Energy, Vol. 146, pp. 1465-1470, (2020).

Q. Xu, Z. Wang, H. Yang, Y. Xiang, G. Nie, and W. Yue, Synthesis of hierarchical Cu2CdSnS4 by microwave-assisted transformation from precursor for photodegradation to malachite green. Journal of Alloys and Compounds, Vol. 904, pp. 163966, (2022).

J. Zhou, S. Yu, X. Guo, L. Wu, and H. Li, Preparation and characterization of Cu2FeSnS4 thin films for solar cells via a co-electrodeposition method. Current Applied Physics, Vol. 19, pp. 67-71, (2019).

I. M. El Radaf, H. Y. S. Al-Zahrani, S. S. Fouad, and M. S. El-Bana, Profound optical analysis for novel amorphous Cu2FeSnS4 thin films as an absorber layer for thin film solar cells. Ceramics International, Vol. 46, pp. 18778-18784, (2020).

C. Nefzi, M. Souli, Y. Cuminal, and N. Kamoun-Turki, Effect of substrate temperature on physical properties of Cu2FeSnS4 thin films for photocatalysis applications. Materials Science and Engineering: B, Vol. 254, pp. 114509, (2020).

M. A. Abed, N. A. Bakr, and S. B. Mohammed, Synthesis and Characterization of Chemically Sprayed Cu2FeSnS4 (CFTS) Thin Films: The Effect of Substrate Temperature. Materials Science Forum. Vol. 1039. Trans Tech Publications Ltd, (2021).

M. Zaki, F. Sava, A. Buruiana, I. Simandan, N. Becherescu, A. Galca, C. Mihai, and A. Velea Synthesis and characterization of Cu2ZnSnS4 thin films obtained by combined magnetron sputtering and pulsed laser deposition. Nanomaterials, vol. 11, pp. 2403, (2021).

Y. Jayasree, Y.B. KishoreKumar, G. SureshBabu, P. UdayBhaskar, Growth of Cu2ZnSnS4 thin films by hybrid chemical approach. Physica B: Condensed Matter, Vol. 618, pp. 413199, (2021).

A. Murugan, V. Siva, A. Shameem, and S. AsathBahadur, Optimization of adsorption and reaction time of SILAR deposited Cu2ZnSnS4 thin films: Structural, optical and electrochemical performance. Journal of Alloys and Compounds, Vol. 856, pp. 158055, (2021).

A. A. Ahmad, A. B. Migdadi, A. M. Alsaad, I. A. Qattan, Qais M. Al-Bataineh, AhmadTelfah. Computational and experimental characterizations of annealed Cu2ZnSnS4 thin films. Heliyon, Vol. 8, pp. e08683, (2022).

M. A. Abed, N. A. Bakr, and J. Al-Zanganawee, Structural, Optical And Electrical Properties Of Cu2NiSnS4 Thin Films Deposited By Chemical Spray Pyrolysis Method. Chalcogenide Letters, Vol. 17, pp. 179-186, (2020).

A. Ziti, B. Hartiti, A. Belafhaili, H. Labrim, S. Fadili, A. Ridah, M. Tahri and P. Thevenin, Effect of dip-coating cycle on some physical properties of Cu2NiSnS4 thin films for photovoltaic applications. Journal of Materials Science: Materials in Electronics, Vol. 32, pp. 16726-16737, (2021).

H.Hussein, and A.Yazdani, Spin-coated Cu2CrSnS4 thin film: A potential candidate for thin film solar cells. Materials Science in Semiconductor Processing, Vol. 91, pp. 58-65, (2019).

S. M. Abdullah, N. A. Bakr, S. A. Salman, Structural, Optical, and Electrical, Properties of Ag2ZnSnS4 Sprayed Thin Films by Chemical Pyrolysis Method. Chalcogenide Letters, Vol. 18, pp. 65-73, (2021).

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. Mitzi, Device characteristics of CZTSSe thin film solar cells with 12.6% efficiency, Adv. Energy Mater, Vol. 4, pp. 201301465, (2014).

K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J. A. Stride, M. Green, and X. Hao, Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Advanced Energy Materials, Vol. 6, pp. 1600046, (2016).

Downloads

Published

2024-03-17

How to Cite

Huda Talib, Nabeel A. Bakr, & Mohammed A. Abed. (2024). Synthesis and Characterization of Quaternary Chalcogenide Nanomaterials: A Review Study. Academic Science Journal, 2(1), 322–360. https://doi.org/10.24237/ASJ.02.01.676C

Issue

Section

Articles