Role Of Efflux Pump Genes In Antibiotic Resistance of Klebsiella pneumoniae Bacteria Isolated From Clinical Causes: A Narrative Review

Authors

  • Rana Alshwaikh Department of Biology, College of Education for pure Sciences (Ibn Al –Haitham), University of Baghdad, Baghdad, Iraq.
  • Douaa Rashed Hamady Department of Biology, College of Education for pure Sciences (Ibn Al –Haitham), University of Baghdad https://orcid.org/0000-0001-9159-573X

DOI:

https://doi.org/10.24237/

Abstract

Klebsiella pneumoniae is an opportunistic pathogen, mostly affecting those with weakened immune systems and immune-compromised and cause nosocomial infections. Which are commonly acquired in hospitals Pathogens causing acute respiratory infections such as Pneumonia. Other infections caused by this organism include urinary tract infections, wound infections Abscesses, sepsis, inflammation, and diarrhea. Klebsiella pneumoniae have a range of virulence factors to colonize and replicate in the host cell. These include at least  surface antigen, especially capsular polysaccharide (CPS) (K antigen); siderophores responsible for binding ferric iron secreted by host iron-binding proteins; and adherence variants responsible for binding to host cell surfaces, such as type 1 and type 3 fimbriae, and non-fimbrian adherence proteins. Antibiotic resistance leads to more effects of this infection. Antibiotic resistance of K. pneumoniae to carbapenems is mediated by a number of mechanisms, including the production of potent carbapenems, as well as beta-lactamases with weak carbapenemase activity in association with membrane permeabilization. Colistin is widely viewed as the last line of defense against KPC-producing K. pneumoniae, but reports of colistin-resistant Klebsiella isolates are on the rise. The effect of antibiotics to kill bacterial cells is mainly based on the inhibition of some cellular function through a drug-target interaction. The main specific targets of antibiotics are cell wall synthesis, cell membrane, nucleic acid (DNA and RNA), and protein and folate synthesis. Efflux pumps reduce the drug concentration without modifying the antibiotic itself. Decreased outer membrane permeability results in a decrease in the efflux of antimicrobial agents. Therefore, this causes resistance in many important clinical microorganisms. This type of resistance is controlled by plasmids or chromosomes. Efflux pumps are resistance mechanisms used in many bacteria to certain antibiotics of different classes, such as tetracyclines, beta-lactams, macrolides, aminoglycosides, streptogramins, lincosamides, phencols, oxazolidinones, pyrimidines, quinolones, rifamycins, sulfonamides and cationic peptides. Although resistance to a range of antimicrobial agents in Gram-negative bacteria was previously attributed to the structure and function of the outer membrane.

Downloads

Download data is not yet available.

References

[1] M. Mustafa, R. M. Abdullah, Prevalence of Quinolones Resistance Proteins Encoding Genes (qnr genes) and Co-Resistance with β-lactams among Klebsiella pneumoniae Isolates from Iraqi Patients, Baghdad Sci. J., 17(2), 0406(2020), DOI(https://doi.org/10.21123/bsj.2020.17.2.0406)

[2] M. A. J. Raoof, M. A. Fayidh, Investigation of Biofilm Formation Efficiency in ESβLs of Pathogen Escherichia coli Isolates, Int. J. Drug Deliv. Technol., 12(2), 695-700(2022)

[3] R. M. A. A. R. Mouruj, A. Al-Aubydi, Investigating the Adjuvanticity of K. pneumoniae Capsular Polysaccharide with Formalin-Killed S. aureus Against Live S. aureus Infection in Mice, Iraqi J. Sci., 57(2A), 893-900(2016)

[4] I. J. Adeosun, K. E. Oladipo, O. A. Ajibade, T. M. Olotu, A. A. Oladipo, H. Awoyelu, O. M. Oyawoye, Antibiotic susceptibility of Klebsiella pneumoniae isolated from selected Tertiary Hospitals in Osun State, Nigeria, Iraqi J. Sci., 60(7),1423-1429(2019), DOI(https://doi.org/10.24996/ijs.2019.60.7.2)

[5] H. M. Mphba, Citrobacter Klebsiella enterobacter serratia and other Enterobacteriaceae, 10, (2005)

[6] A. Seaton, A.G. Leitch, D. Seaton Crofton and Douglas's respiratory diseases, (John Wiley & Sons, 2008)

[7] Y. Hu, Y.H. Anes, S. Devineau, and S.. Fanning, Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium, Foodborne Pathog. Dis., 18 (2), 63-84(2021), DOI(https://doi.org/10.1089/fpd.2020.2847)

[8] M. K. Paczosa, J. Mecsas, Klebsiella pneumoniae: going on the offense with a strong defense, Microbiol. Molec. Biol. Rev., 80(3), 629-661(2016), DOI(https://doi.org/10.1128/mmbr.00078-15)

[9] T. M. K. K. K. Ghaima, Molecular Detection of acrAB and oqxAB Genes in Klebsiella pneumoniae and Evaluation the Effect of Berberine on their Gene Expression, Iraqi J. Biotechnol., 21(2) 2022)

[10] G. A. Abdulhasan, The biological effect of Rosmarinus officinelis L. essential oil on biofilm formation and some fimbrial genes (fimH-1 and mrkD) of Klebseilla pneumoniae, Iraqi J. Sci., 56(3C), 2553-2560(2015)

[11] B. Li, Y. Zhao, C. Liu Z. Chen, D. Zhou, Molecular pathogenesis of Klebsiella pneumonia, Future Microbiol., 9(9), 1071-1081(2014), DOI(https://doi.org/10.2217/fmb.14.48)

[12] S. Chiu, T. Wu, Y. Chuang, J. Lin, C. Fung, P. Lu, J. Wang, L. Wang, K. Siu, K. Yeh, National surveillance study on carbapenem Nonsusceptible Klebsiella pneumoniae in taiwan: the emergence and rapid dissemination of kpc-2 carbapenemase, Plos One, 8(7), 1-7( 2013), DOI(https://doi.org/10.1371/journal.pone.0069428)

[13] M. H. Al-Jailawi, T. H. Zedan, K. A. Jassim, Multiplex-PCR assay for identification of Klebsiella pneumonia, Int. J. Pharm. Sci. Rev. Res., 26(1), 112-7 (2014)

[14] S. Farajnia, M.Y. Alikhani, R. Ghotaslou, B. Naghili, A. Nakhlband, Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran, Int. J. Infect. Dis., 13(2), 140–144(2009), DOI(https://doi.org/10.1016/j.ijid.2008.04.014)

[15] A. Al-Badr, G. Al-Shaikh, Recurrent urinary tract infections management in women: a review, Sultan Qaboos Univ. Med J., 13(3), 359–367(2013), DOI(https://doi.org/10.12816/0003256)

[16] C. Berne, A. Ducret, G. G. Hardy, Y. V. Brun, Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria, Microbiol. Biofilm., 3(4), 163-199(2015), DOI(https://doi.org/10.1128/microbiolspec.mb-0018-2015)

[17] S. Dhingra, N.A.A. Rahman, M.R. Peile, M. Sartelli, M.A. Hassali, T. Islam, M. Haque, Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance and how best to counter, Front Public Health, 8, 535668(2020), DOI(https://doi.org/10.3389/fpubh.2020.535668)

[18] M. C. El Bouamri, L. Arsalane, Y. El Kamouni, S. Zouhair, Antimicrobial susceptibility of urinary Klebsiella pneumoniae and the emergence of carbapenem-resistant strains: A retrospective study from a university hospital in Morocco, North Africa, African J. Urol., 21(1), 36-40(2015), DOI(https://doi.org/10.1016/j.afju.2014.10.004)

[19] M. S. Mustafa, R.M. Abdullah, Investigation for some Aminoglycosides Modifying Enzymes-Encoding Genes and Co-Resistance to Fluoroquinolones among Klebsiella pneumoniae Isolates from Different Clinical Cases, Iraqi J. Sci., 2866-2878(2020), DOI(https://doi.org/10.24996/ijs.2020.61.11.10)

[20] G. Casey, Antibiotics and the rise of superbugs, Kai Tiaki: Nursing New Zealand, 18(10), 20-24(2012)

[21] P. Nordmann, G. Cuzon T. Naas, The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria, Lancet Infect. Dis., 9(4), 228–236(2009), DOI(https://doi.org/10.1016/s1473-3099(09)70054-4)

[22] R. L. Nation, J. Li, O. Cars, W. Couet, Dudley M N, Kaye K S, Mouton J W. Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus, Lancet Infect. Dis., 15(2), 225–234(2015), DOI(https://doi.org/10.1016/s1473-3099(14)70850-3)

[23] M. S. Mustafa, R. M. Abdullah, Role of oqxA and oqxB Genes in the Development of Multidrug Resistant Phenotype among Clinical Klebsiella pneumoniae Isolates from Various Cases, Iraqi J. Sci., 61(8), 1902-1912(2020), DOI(https://doi.org/10.24996/ijs.2020.61.8.7)

[24] M. Kohanski, D. Dwyer, J. Collins, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8(6), 423–435(2010), DOI(https://doi.org/10.1038/nrmicro2333)

[25] T. Silhavy, D. Kahne, S. Walker, The Bacterial Cell Envelope, Cold Spring Harbor Perspect. Biol., 2(5), a000414-a000414(2010), DOI(https://doi.org/10.1101/cshperspect.a000414)

[26] W. Vollmer, D. Blanot, Pedro M de. Peptidoglycan structure and architecture, FEMS Microbiol. Rev., 32(2), 149–167(2008), DOI(https://doi.org/10.1111/j.1574-6976.2007.00094.x)

[27] D. Kahne, C. Leimkuhler, W. Lu, C. Walsh, Glycopeptide and Lipoglycopeptide Antibiotics, Chem. Rev., 105(2), 425–448(2005), DOI(https://doi.org/10.1021/cr030103a)

[28] S. Dzidic, J. Šuškovic, B. Kos, Antibiotic Resistance Mechanisms in Bacteria: Biochemical and Genetic Aspects, Food Technol. Biotechnol., 46(1), 11–21(2008)

[29] G. Kapoor, S. Saigal, A. Elongavan, Action and resistance mechanisms of antibiotics: A guide for clinicians, J. Anaesthesiol. Clin. Pharmacol., 33(3), 300–305(2017), DOI(https://doi.org/10.4103/joacp.joacp_349_15)

[30] H. Grundmann, M. Aires-de-Sousa, J. Boyce, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat, Lancet, 368(9538), 874–885(2006), DOI(https://doi.org/10.1016/s0140-6736(06)68853-3)

[31] M. Trimble, P. Mlynárcik, M. Kolár, R.E. Hancock, Polymyxin: Alternative Mechanisms of Action and Resistance, Cold Spring Harbor Perspect. Med., 6(10), a025288(2016), DOI(https://doi.org/10.1101/cshperspect.a025288)

[32] P. Higgins, A. Fluit, F. J. Schmitz, Fluoroquinolones: Structure and Target Sites, Curr. Drug Targets, 4(2), 181–190(2003), DOI(https://doi.org/10.2174/1389450033346920)

[33] C. Clancy, Y. Yu, A. Lewin, M. H. Nguyen, Inhibition of RNA Synthesis as a Therapeutic Strategy against Aspergillus and Fusarium: Demonstration of In Vitro Synergy between Rifabutin and Amphotericin B, Antimicrob. Agents Chemother., 42(3), 509–513(1998), DOI(https://doi.org/10.1128/aac.42.3.509)

[34] H. Yoneyama, R. Katsumata, Antibiotic Resistance in Bacteria and Its Future for Novel Antibiotic Development, Biosci. Biotechnol. Biochem., 70(5), 1060–1075(2006), DOI(https://doi.org/10.1271/bbb.70.1060)

[35] P. Vannuffel, C. Cocito, Mechanism of Action of Streptogramins and Macrolides, Drugs. Supplement, 20–30(1996), DOI(https://doi.org/10.2165/00003495-199600511-00006)

[36] M. A. Webber, L. J. V. Piddock, The importance of efflux pumps in bacterial antibiotic resistance, J. Antimicrob. Chemother., 51(1), 9–11(2003), DOI(https://doi.org/10.1093/jac/dkg050)

[37] J. Sun, Z. Deng, A. Yan, Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations, Biochem. Biophys. Res. Communic., 453(2), 254–267(2014), DOI(https://doi.org/10.1016/j.bbrc.2014.05.090)

[38] M. J. Fraqueza, Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages, Int. J. Food Microbiol., 212, 76–88(2015), DOI(https://doi.org/10.1016/j.ijfoodmicro.2015.04.035)

[39] S. Kumar, M. F. Varela, Molecular mechanisms of bacterial resistance to antimicrobial agents, In: A. Méndez-Vilas, editor, Microbial Pathogens and Strategies for Combating Them: Science, (Technology and Education: Formatex Res. Center, 2013), 522–534

[40] Z. H. Alwan Al-Saadi, R. M. Abdullah, Phenotypic and molecular detection of Escherichia coli efflux pumps from UTI patients, Biochem. Cellul. Arch., 19, 2371-2376(2019)

[41] H. Nikaido, Outer membrane barrier as a mechanism of antimicrobial resistance, Antimicrob. Agents Chemother., 33(11), 1831–1836(1989), DOI(https://doi.org/10.1128/aac.33.11.1831)

[42] P. Zarakolu, Mikroorganizmalarda direnç mekanizmasi olarak aktif pompa sistemleri, Active Pump Systems as Resistance Mechanism in Microorganisms, Turk. J. Hospital Infect., 7(3), (2003) 136–131

[43] F. Girardin, Membrane Transporter Proteins: A Challenge for CNS Drug Development, Dialog. Clin. Neurosci., 8(3), 311–321(2006), DOI(https://doi.org/10.31887/DCNS.2006.8.3/fgirardin)

[44] D. Fernando, A. Kumar, Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence, Antibiotics, 2(1), 163–181(2013), DOI(https://doi.org/10.3390/antibiotics2010163)

[45] S. S. Pao, I. T. Paulsen, M. H. Saier, Major Facilitator Superfamily, Microbiol. Molecul. Biol. Rev., 62(1), 1–34(1998), DOI(https://doi.org/10.1128/mmbr.62.1.1-34.1998)

[46] M. I. Borges-Walmsley, K. Mckeegan, A. Walmsley, Structure and function of efflux pumps that confer resistance to drugs, Biochem. J., 376(2), 313–338(2003), DOI(https://doi.org/10.1042/BJ20020957)

[47] M. Dean, R. Allikmets, Evolution of ATP-binding cassette transporter genes, Current Opinion Genet. Develop, 5(6), 779–785(1995), DOI(https://doi.org/10.1016/0959-437x(95)80011-s)

[48] M. H. Saier Jr, J. T. Beatty, A. Goffeau, K. T. Harley, W. H. Heijne, S. C. Huang SC, The Major Facilitator Superfamily, J. Molec. Microbiol. Biotechnol., 1(2), 257–279(1999)

[49] P. Henderson, M. Maiden, Homologous Sugar Transport Proteins in Escherichia coli and Their Relatives in Both Prokaryotes and Eukaryotes, Philosoph. Transac, the Royal Soc. B: Biol. Sci., 326(1236), 391–410(1990), DOI(https://doi.org/10.1098/rstb.1990.0020)

[50] J. Griffith, M. Baker, D. Rouch, M. Page, R. Skurray, I. Paulsen, Membrane transport proteins: implications of sequence comparisons, Curr. Opin. Cell Biol., 4(4), 684–695(1992), DOI(https://doi.org/10.1016/0955-0674(92)90090-y)

[51] A. Aygül, The Importance of Efflux Systems in Antibiotic Resistance and Efflux Pump Inhibitors in the Management of Resistance, Bull. Microbiol., 49(2), 278–291(2015), DOI(https://doi.org/10.5578/mb.8964)

[52] M. I. Borges-Walmsley, K. Mckeegan, A. Walmsle, Structure and function of efflux pumps that confer resistance to drugs, Biochem. J., 376(2), 313–338(2003), DOI(https://doi.org/10.1042/bj20020957)

[53] Y. Moriyama, M. Hiasa, T. Matsumoto, H. Omote, Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics, Xenobiotica., 38(7-8), 1107–1118(2008), DOI(https://doi.org/10.1080/00498250701883753)

[54] M. Lu Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications, Channels., 10(2), 88–100(2016), DOI(https://doi.org/10.1080/19336950.2015.1106654)

[55] D. Bay, K. Rommens, R. Turner Small multidrug resistance proteins: A multidrug transporter family that continues to grow, Biochimica et Biophysica Acta (BBA)- Biomembranes, 1778(9), 1814–1838(2008), DOI(https://doi.org/10.1016/j.bbamem.2007.08.015)

[56] T. Renau, R. Léger, E. Flamme, J. Sangalang, M. She, R. Yen, Inhibitors of Efflux Pumps in Pseudomonas aeruginosa Potentiate the Activity of the Fluoroquinolone Antibacterial Levofloxacin, J. Med. Chem., 42(24), 4928–4931(1999), DOI(https://doi.org/10.1021/jm9904598)

[57] H. Kettenmann, B. R. Ransom, The Concept of Neuroglia: A Historical Perspective. In: H. Kettenmann, B.R. Ransom editors, (Neuroglia: Oxford University Press, 2005), 1–16

[58] H. Venter, R. A. Shilling, S. Velamakanni, L. Balakrishnan, H. W. van Veen, An ABC transporter with a secondary-active multidrug translocator domain, Nature, 426(6968), 866–870(2003), DOI(https://doi.org/10.1038/nature02173)

[59] W. Xie, Drug Metabolism in Diseases, (Academic Press, 2016), 59

[60] Z. P. Kara, N. Öztürk, D. Öztürk, A. Okyar, ABC Carrier Proteins: Circadian Rhythms and Gender Differences, Müsbed, 3(1), 1–13(2013), DOI(https://doi.org/10.5455/musbed.20130306115105)

[61] R. R. Begicevic, M. Falasca, ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance, Int. J. Molec. Sci., 18(11), 2362(2017), DOI(https://doi.org/10.3390/ijms18112362)

[62] C. J. Stubenrauch, R. S. Bamert, J. Wang, T. Lithgow, A noncanonical chaperone interacts with drug efflux pumps during their assembly into bacterial outer membranes, PLoS Biol., 20(1), e3001523(2022), DOI(https://doi.org/10.1371/journal.pbio.3001523)

[63] J. Lubelski, W. N. Konings, A. J. M. Driessen, Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria, Microbiol. Molec. Biol. Rev., 71(3), 463–476(2007), DOI(https://doi.org/10.1128/MMBR.00001-07)

[64] U. Hasdemir, The Role of Cell Wall Organization and Active Efflux Pump Systems in Multidrug Re-sistance of Bacteria, Bull. Microbiol., 41, 309–327(2007)

[65] X. Z. Li, H. Nikaido H. Efflux-Mediated Drug Resistance in Bacteria, Drugs, 69(12), 1555–1623(2009), DOI(https://doi.org/10.2165/11317030-000000000-00000)

[66] A. Priyanka, K. Akshatha, V. K. Deekshit, J. Prarthana, D. S. Akhila, Klebsiella pneumoniae infections and antimicrobial drug resistance, In Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery, (Springer, Singapore, 2020), 195-225

[67] D. R. Hamady, S. K. Ibrahim, The study on ability of Escherichia coli isolated from different clinical cases to biofilm formation and detection of csgd gene responsible for produce curli (fimbriae), Biochem. Cell. Arch., 20(2), 5553-5557(2020)

[68] N. Bharatham, P. Bhowmik, M. Aoki, U. Okada, S. Sharma, E. Yamashita, S. Murakami, Structure and function relationship of OqxB efflux pump from Klebsiella pneumonia, Nat. Communic., 12(1), 1-12(2021), DOI(https://doi.org/10.1038/s41467-021-25679-0)

[69] M. AlMatar, O. Albarri, E.A. Makky, I. Var, F. Köksal, An overview of the activities of cefiderocol against sensitive and multidrug- resistant (MDR) bacteria, Mini Rev. Med. Chem., 20(18), 1908-1916(2020), DOI(http://dx.doi.org/10.2174/1389557520666200818211405)

[70] M. AlMatar, O. Albarri, E. A. Makky, I. Var, F. Köksal, A glance on the role of bacterial siderophore from the perspectives of medical and biotechnological approaches, Curr. Drug Targets, 21(13), 1326-1343(2020), DOI(http://dx.doi.org/10.2174/1389450121666200621193018)

[71] D. M. Livermore, Current epidemiology and growing resistance of gram-negative pathogens, Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 27(2), 128-142(2012), DOI(http://dx.doi.org/10.3904/kjim.2012.27.2.128)

[72] C. G. Giske, D. L. Monnet, O. Cars, Y. Carmeli, Clinical and economic impact of common multidrug-resistant gram-negative bacilli, Antimicrob. Agents Chemother, 52(3), 813-821(2008), DOI(http://dx.doi.org/10.1128/AAC.01169-07)

[73] A. Osman, V. Işıl, K. Fatih, Microbial siderophores: Potential medicinal applications of the siderophores, J. Biotechnol. Sci. Res, 6, 32(2019), DOI(https://doi.org/10.1007/s11356-015-4294-0)

[74] H. Okusu, D. Ma, H. Nikaido, AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple- antibiotic-resistance (Mar) mutants, J. Bacteriol., 178(1), 306-308(1996), DOI(https://doi.org/10.1128/jb.178.1.306-308.1996)

[75] S. Bialek-Davenet, J. P. Lavigne, K. Guyot, N. Mayer, R. Tournebize, S. Brisse, V. Leflon-Guibout, M. H. Nicolas-Chanoine, Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae, J. Antimicrob. Chemother., 70(1), 81-88(2015), DOI(https://doi.org/10.1093/jac/dku340)

[76] B. M. Gabr, A. S. A. Zamzam, E. A. Eisa, G. F. El-Baradey, M. A. S. Eldeen, Detection of oqxA and oqxB efflux pump genes among nosocomial coliform bacilli: An observational cross sectional study, J. Acute Dis., 10(3), 117(2021), DOI(http://dx.doi.org/10.4103/2221-6189.316676)

[77] Y. J. Lee, C. H. Huang, N. A. Ilsan, I. H. Lee, Huang, T. W. Molecular epidemiology and characterization of carbapenem-resistant Klebsiella pneumoniae isolated from urine at a teaching hospital in Taiwan, Microorganisms, 9(2), 271 (2021), DOI( http://dx.doi.org/10.3390/microorganisms9020271)

[78] Y. Park, Q. Choi, G. C. Kwon, S. H. Koo, Molecular epidemiology and mechanisms of tigecycline resistance in carbapenemresistant Klebsiella pneumoniae isolates, J. Clin. Lab. Anal., 34(12), e23506(2020), DOI(https://doi.org/10.1002/jcla.23506)

[79] S. G. Elgendy, M. R. Abdel Hameed, M. A. El-Mokhtar, Tigecycline resistance among Klebsiella pneumoniae isolated from febrile neutropenic patients. J. Med. Microbiol., 67(7), 972-975(2018), DOI(http://dx.doi.org/10.1099/jmm.0.000770)

[80] P. Blanco, S. Hernando-Amado, J.A. Reales-Calderon, F. Corona, F. Lira, M. Alcalde-Rico, A. Bernardini, M.B. Sanchez, J. L. Martinez, Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants, Microorganisms, 4(1), 14(2016), DOI(http://dx.doi.org/10.3390/microorganisms4010014)

[81] J. Li, Q. Xu, S. Ogurek, Z. Li, P. Wang, Q. Xie, Z. Sheng, M. Wang, Efflux pump acrab confers decreased susceptibility to piperacillin-tazobactam and ceftolozane-tazobactam in tigecyclinenon- susceptible Klebsiella pneumoniae, Infect. Drug Resist., 13, 4309-4319(2020), DOI(https://doi.org/10.2147/idr.s279020)

[82] S. Correia, P. Poeta, M. Hébraud, J. I. Capelo, G. Igrejas, Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol., 66(5), 551-559(2017), DOI(http://dx.doi.org/10.1099/jmm.0.000475)

[83] Y. Chen, D. Hu, Q. Zhang, X.P. Liao, Y.H. Liu, J. Sun, Efflux pump overexpression contributes to tigecycline heteroresistance in Salmonella enterica serovar Typhimurium, Front Cell. Infect., Microbiol., 7, 37(2017), DOI(https://doi.org/10.3389/fcimb.2017.00037)

[84] N. Jomehzadeh, K. Ahmadi, M. A. Bahmanshiri, Investigation of plasmid mediated quinolone resistance genes among clinical isolates of Klebsiella pneumoniae in southwest Iran, J. Clin. Lab. Anal., e24342(2022), DOI(https://doi.org/10.1002/jcla.24342)

[85] O. Szabo, B. Kocsis, N. Szabo, K. Kristof, D. Szabo, Contribution of OqxAB efflux pump in selection of fluoroquinoloneresistant Klebsiella pneumoniae, Can. J. Infect. Dis. Med. Microbiol., 2018, 4271638(2018), DOI(https://doi.org/10.1155/2018/4271638)

[86] M. Veleba, S. De Majumdar, M. Hornsey, N. Woodford, T. Schneiders, Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes, J. Antimicrob. Chemother., 68(5), 1011-1018(2013), DOI(https://doi.org/10.1093/jac/dks530)

[87] J. C. Jiménez-Castellanos, W. N. I. Wan Ahmad Kamil, C. H. P. Cheung, M. S. Tobin, J. Brown, S. G. Isaac, K.J. Heesom, T. Schneiders, M. B. Avison, Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae, J. Antimicrob. Chemother., 71(7), 1820-1825(2016), DOI(https://doi.org/10.1093/jac/dkw088)

[88] X. Zhong, H. Xu, D. Chen, H. Zhou, X. Hu, G. Cheng, First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital, PLoS One, 9(12), e115185(2014), DOI(http://dx.doi.org/10.1371/journal.pone.0115185)

Downloads

Published

2025-10-01

Issue

Section

Articles

How to Cite

Alshwaikh, R., & Douaa Rashed Hamady. (2025). Role Of Efflux Pump Genes In Antibiotic Resistance of Klebsiella pneumoniae Bacteria Isolated From Clinical Causes: A Narrative Review. Academic Science Journal, 3(4), 251-274. https://doi.org/10.24237/