Using Improved Operationally Matrix for Volterra Integral Equation of the First Type
DOI:
https://doi.org/10.24237/Keywords:
Block pulse functions, Volterra integral equation of the first type, Improved operationally matrixAbstract
The purpose of this paper is to find a practical method with simple arithmetic operations to solve the first type of Volterra's integral equation. Using of the piecewise functions and the improved operationally matrix of their integration, the integrally equation of the first type can be decreased to a lower linear sparse relation that should be easily solved directly by replacing from forward. Numerical examples show that the approximate solution has an acceptable and appropriate value.
Downloads
References
[1] S. Patel, B. L. Panigrahi, Discrete Legendre spectral projection-based methods for Tikhonov regularization of first kind Fredholm integral equations, Applied Numerical Mathematics, 198, 75-93(2024), DOI(https://doi.org/10.1016/j.apnum.2023.12.008)
[2] P. Das, G. Nelakanti, Convergence analysis of discrete legendre spectral projection methods for hammerstein integral equations of mixed type, Applied Mathematics and Computation, 265(15) 574-601(2015), DOI(https://doi.org/10.1016/j.amc.2015.05.100)
[3] B. Li, H. Kang, S. Chen, S. Ren, On the approximation of highly oscillatory Volterra integral equations of the first kind via Laplace transform, Mathematics and Computers in Simulation, 214, 92-113(2023), DOI(https://doi.org/10.1016/j.matcom.2023.06.019)
[4] L. Wen, W. Wang, Y. Yu, Dissipativity and asymptotic stability of nonlinear neutral delay integro-differential equations, Nonlinear Analysis, 72, 1746–1754(2010), DOI(https://doi.org/10.1016/j.na.2009.09.016)
[5] B. Xu, R. Yuan, On the positive almost periodic type solutions for some nonlinear delay integral equations, J. Math. Anal. Appl., 304, 249–268(2005), DOI(https://doi.org/10.1016/j.jmaa.2004.09.025)
[6] S. S. Allaei, Z. W. Yang, H. Brunner, Collocation methods for third-kind VIEs, IMA Journal of Numerical Analysis, 37(3), 1104-1124(2016), DOI(https://doi.org/10.1093/imanum/drw033)
[7] G. S. Gebremedhin, S. R. Jena, Approximate Solution of Ordinary Differential Equations via Hybrid Block Approach, Int J Emerg Technol., 10(4), 210-211(2019)
[8] S. R. Jena, M. Mohanty, S. K. Mishra, Ninth step block method for numerical solution of fourth order ordinary differential equation, Advanced Model of Analysis, 55, 45-56(2018), DOI(https://doi.org/10.18280/ama_a.550202)
[9] G.bS. Gebremedhin, S. R. Jena, Approximate solution of a fourth order ordinary differential equation via tenth step block method, Int J Comput Sci Math., 11, 253-262(2020), DOI(https://doi.org/10.1504/IJCSM.2020.106695)
[10] S. Kazem, M. Dehghan, Application of finite difference method of lines on the heat equation, Numerical Methods for Partial Differential Equations, 34(2), 626-660(2018), DOI(https://doi.org/10.1002/num.22218)
[11] S. R. Jena, D. Nayak AK. Paul, SC. Mishra, Numerical Investigation, Error Analysis and Application of Joint Quadrature Scheme in Physical Sciences, Baghdad Sci J., 20(5), 1789-1796(2023), DOI(https://doi.org/10.21123/bsj.2023.7376)
[12] S. R. Jena, A. Singh, A Mathematical Model for Approximate Solution of Line Integral, J Comp Math Sci., 10(5), 1163-1172(2019)
[13] S. S. Allaei, Z. W. Yang, H. Brunner, Collocation methods for third-kind VIEs, IMA Journal of Numerical Analysis, 37(3), 1104-1124(2016), DOI(https://doi.org/10.1093/imanum/drw033)
[14] W. Qiu, D. Xu, J. Zhou, J. Guo, An efficient Sinc-collocation method via the DE transformation for eighth-order boundary value problems, Journal of Computational and Applied Mathematics, 408, 114136(2022), DOI(https://doi.org/10.1016/j.cam.2022.114136)
[15] M. Ghasemi, K. Mohammadi, A. Alipanah, Numerical solution of system of second-order integro-differential equations using non classical sinc collocation method, Bound Value Probl. , 38, (2023), DOI(http://dx.doi.org/10.1186/s13661-023-01724-3)
[16] A. Alipanah, K. Mohammadi, M. Ghasemi, Numerical solution of third-order boundary value problems using non-classical sinc-collocation method, Comput Methods Differ Equ., 11, 643–63(2023), DOI(https://doi.org/10.22034/cmde.2022.52725.2218)
[17] A. Kayal, M. Mandal, G. Nelakanti, Super convergence of Legendre spectral projection methods for m-th order integro-differential equations with weakly singular kernels, Journal of Computational and Applied Mathematics, 439(15), 115585(2024), DOI(https://doi.org/10.1016/j.cam.2023.115585)
[18] W. Zheng, Y. Chen, J. Zhou, A Legendre spectral method for multidimensional partial Volterra integro-differential equations, Journal of Computational and Applied Mathematics, 436(15), 115302(2024), DOI(https://doi.org/10.1016/j.cam.2023.115302)
[19] G. Fairweather, D. Meade, A survey of Spline collocation methods for the numerical solution of differential equations, In, Mathematics for Large Scale Computing, (Taylor Francis, CRC press, 2020), 297-341
[20] G. Schmidt, & W. Wendland, On spline collocation methods for boundary integral equations in the plane, Mathematical methods in the applied sciences, 7(1), 74-89(1985)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

