Study the Structural, Morphological and Magnetic Properties of (Bi Ni Fe2 O4/C) Nano Composite

Authors

  • Ahmed G. Awni
  • Zena M. Ali Abbas

DOI:

https://doi.org/10.24237/ASJ.02.02.781B

Abstract

In this work, bismuth nickel ferrite (Bix Ni1-x Fe2O4)  supported by activated carbon (AC) with x=0, 0.3 and 0.5 were made and studied using the sol-gel method, and the samples were  calcinated at 350 and 650 °C for 3 hours. XRD, FTIR, FESEM, and EDX spectroscopy were used to examine the chemical structure and morphology of bismuth nickel ferrite on activated carbon (Bix Ni1-x Fe2O4/ C).  The XRD patterns show that when the temperature of the synthesized material is raised, the intensity and spread of the peaks decrease. This leads to more crystallization. FTIR studies were done in the frequency range (400–4000) cm-1, and the FTIR spectrum of (Bix Ni1-x Fe2O4/ C) shows the two significant absorption bands near the frequency ranges 500 cm-1 and 700 cm-1.   FESEM with particles that were between 17 and 60 nm in size was used to study the surface morphology. The EDS plots revealed the existence of no extra peaks other than constituents of the taken up composition. The decrease in saturation magnetization (Ms) and remanence magnetization (Mr) is seen through the utilization of a vibrating sample magnetometer (VSM).

References

J. Zhang, L. Wang, Q. Zhang, Hydrothermal carbonization synthesis of BaZn 2Fe16 O27/carbon composite microwave absorbing materials and its electromagnetic performance, Journal Materials Science, 26, 2538–2543(2015)

X. Chen, X. Wang, L. Li, S. Qi, Preparation and microwave absorbing properties of nickel-coated carbon fiber withpolyaniline via in situ polymerization, Journal Materials Science , 27, 5607–5612(2016)

T. Zhang, S. Zeng, G. Wen, J. Yang, Novel carbon nanofibers build boron carbonitride porous architectures with microwave absorption properties, Microporous Mesoporous Materials , 211, 142–146(2015)

P. I. Liu, L. C. Chung, H. Shao, T. M. Liang, R. Y. Horng, C. M. Ma, M. C. Chang, Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization, Electrochimica Acta , 96, 173–179(2013)

P. I. Liu, L. C. Chung, C. H. Ho, H. Shao, T. M. Liang, R.Y. Horng, M.C. Chang, C. M. Ma, Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/ activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method, Journal of Colloid and Interface Science, 446, 352–358(2015)

H. Y. He, Photocatalytic degradations of Malachite Green on magnetically separable Ni1-x Cox Fe2 O4 nanoparticles synthesized by using a hydrothermal process, American Chemical Science Journal, 6, 58-68(2015)

D. Zhang, X. Pu, K. Du, Y. M. Yu, J. J. Shim, P. Cai, S. Kim, H. J. Seo, Combustion synthesis of magnetic Ag/NiFe2 O4 composites with enhanced visible-light photocatalytic properties, Separation and Purification Technology, 137, 82– 85(2014)

F. Moeinpour, A. Alimoradi, M. Kazemi, Efficient removal of Eriochrome black-T from aqueous solution using NiFe2 O4 magnetic nanoparticles, Journal of Environmental Health Science & Engineering, 12, 112-117(2014)

P. Mathumba, D. M. Fernandes, R. Matos, Metal oxide (Co3 O4 and Mn3 O4) impregnation into S, N-doped graphene for oxygen reduction reaction (ORR), Materials (Basel), 13,1562-1570(2020)

C. Shi, S. Ullah, K. Li, W. Wang , R. Zhang , L. Pan, X. Zhang and J. Zou , “Low-temperature synthesis of ultrasmall spinel MnxCo3-X O4 nanoparticles for efficient oxygen reduction, Chinese Journal of Catalysis, 41, 1818–1825(2020)

D. Hong, Y. Yamada, T. Nagatomi, Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]+2 and S2 O8-2, Journal American Chemical Society, 134, 19572–19575(2012)

Z. Yao, J. Ma , T. K. A. Hoang, High performance biomassderived catalysts for the oxygen reduction reaction with excellent methanol tolerance, International Journal of Hydrogen Energy, 45, 27026–27035(2020)

M. A. Gondal, Q. A. Drmosh, Z. H. Yamani, T. A. Saleh, Synthesis of ZnO2 Nanoparticles by Laser Ablation in Liquid and their Annealing Transformation in to ZnO Nanoparticles, Applied Surface Science, 256(1), 298-304(2009)

K. K. Hazarika, C. Goswami, H. Saikia, Cubic Mn2 O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Molecular Catalysis, 451, 153–160(2018)

A. Silambarasu, A. Manikandan, K. Balakrishnan, Comparative study of structural, morphological, magneto-optical and photo-catalytic properties of magnetically reusable spinel MnFe2 O4 nano-catalysts, Journal of Nanoscience and Nanotechnology, 18, 3523–3531(2018)

Y. J. Choi, H. O. Mohamed, S. G. Park, Electrophoretically fabricated nickel/nickel oxides as cost effective nanocatalysts for the oxygen reduction reaction in air-cathode microbial fuel cell, International Journal of Hydrogen Energy, 45, 5960–5970(2020)

S. M. Lee, C. S. Lalhmunsiama, Manganese and iron oxide immobilized activated carbons precursor to dead biomasses in the remediation of cadmium-contaminated waters, Environmental Science and Pollution Research, 20, 7464–7477(2013)

A. Kim, N. Muthuchamy, C. Yoon, MOF-derived Cu@ Cu2 O nanocatalyst for oxygen reduction reaction and cycloaddition reaction, Nanomaterials, 8, 1–13(2018)

E. M. Kock, M. Kogler, T. Bielz,B. Klotzerand S. Penner, In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2 O3, ZrO2, and yttria-stabilized ZrO2, Journal Physical Chemistry C, 117, 17666–17673(2013)

Vahak Marghussian, Nano-Glass Ceramics: Processing, Properties and Applications, (William Andrew, 2015)

M. J. Byrne, S. V. Coker, E. Cespedes, P. L. Wincott, D. J. Vaughan, R. A. D. Pattrick, G. Laan, E. Arenholz, F. Tuna, M. Bencsik , J. R. Lloyd, N. D. Telling, Biosynthesis of Zinc Substituted Magnetite Nanoparticles with Enhanced Magnetic Properties, Advanced Functional Materials, 24, 2518–2529(2014)

Downloads

Published

2024-04-01

How to Cite

Ahmed G. Awni, & Zena M. Ali Abbas. (2024). Study the Structural, Morphological and Magnetic Properties of (Bi Ni Fe2 O4/C) Nano Composite . Academic Science Journal, 2(2), 209–255. https://doi.org/10.24237/ASJ.02.02.781B

Issue

Section

Articles