New Fixed Point Theorem for Expansive Maps on a Two – Metric Space

Authors

  • Sami Abdullah Abed

DOI:

https://doi.org/10.24237/ASJ.02.01.759A

Keywords:

Two – Metric Space, fixed point, applications in 2- metric space, theorems in Two – Metric Space

Abstract

In this paper new theorems a bout fixed point are given for applications in 2- metric space. The common fixed points of two operators exhibit a shared periodicity in their occurrences. The theorem demonstrates that, certain conditions, there exists a specific pattern or sequence of operators where the fixed points exhibit a common periodicity.

References

M. Abramowiz, I. A. Stegun, eds. Hand book of Mathematical Functions, (Dover Publications, New York, 1965)

Alexander, Diagonally implicit Runge-Kutta methods for stiff ODEs, SIAMJ. Numer. Anal., 14(6), 1006-1021(1977)

constantinides, Numerical Methods for Chemical Engineers with Matlab Applications, (New Jersey, 1999)

A. C. Simpson, Fixed points and lines in 2-metric spaces, Adv Math., 229, 668-600(2012)

W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed., (Academic, Inc., 1992)

O. Axelsson, A class of A-Stable Methods, BIT., 9, 185-199(1969)

M. Bakker, Analytical aspects of a minimax Problem, (Mathematical center, Amsterdam, 1971)

J. C. Butcher, Implicit Runge - Kutta Processes, Math. Comp, 18, 50-64(1964)

J. C. Butcher, Z. Jackiewic, Implementation of Diagonally Implicit Multistage Integration Methods for Ordinary Differential Equations, SIAM J. Numer. Anal., 34(6), 2119-2141(1997)

J. C. Butcher, Z. Jackiewic, Areliable Error Estimation For Diagonally Implicit Multistage integration Methods, BIT, 41(4), 656-665(2001)

J. C. Butcher, W. N. Wright, A transformation relating explicit and diagonally-implicit general linear methods, J. APPL. Numer. Math, 44, 313-327(2003)

J. C. Butcher, Z. Jackiewic, Construction of high order diagonally implicit multistage integration methods for ordinary differential equations, J. APPL. Numer. Math, 27, 1-12 (1998)

J. C. Butcher, A stability Property of implicit Runge-Kutta methods, BIT, 15, 358-361 (1975)

K. Burrage, F. H. Chipman, The Stability Properties of Singly -implicit general Linear Methods, IMA J. Numer. Anal, 5, 287-295(1985)

K. Burrage, J. C. Butcher, Stability criteria for implicit Runge-Kutta Methods, SIMA J. Numer. Anal, 16(1), 46-57(1979)

G. J. Cooper, J. C. Butcher, An Iteration scheme for implicit Runge-Kutta methods,IMA J. Numer. Anal, 3, 127-140(1983)

G. Dahlquist, A. Biorck, Numerical Methods, (Prentice-Hall, Inc., 1987)

K. Dekker, J. C. Verwer, Stability of Runge-Kutta methods for stiff non-linear differential equations, Elsevier Science Publishers B. V, (1984)

B. Deshpande, S. Chouhan, Common fixed point theorems for hybrid pairs of mappings with some weaker conditions in 2-metric spaces, Fasc. Math. 46, 37-55(2011)

B. I. Ehle, One Pade Approximations for the exponential function and A-stable methods for the solution of initial value problems, Univ of waterloo, Dept. Applied Analysis and computer science, Research Rep. No. CSRR 2010, (1969)

R.Frank, G. Kirlinger, A Note on convergence concepts for stiff problems, J. computing, 44, 197-208(1990)

R. Frank, J. Schneld, W. Christopher, Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. Numer. Anal., 22(3), 515-534(1985)

R. Frank, J. Schneld, W. Christopher, Stability properties of implicit Runge-Kutta methods, SIAM J. Numer. Anal., 22(3), 497-514(1985)

R. Frank, J. Schneld, W. Christopher, The concept of B-Convergence, SIAM J. Numer. Anal., 18(5), 753-779(1981)

Y. Feng, W. Mao, The equivalence of cone metric spaces and metric spaces, Fixed Point Theory, 11(2), 259-264(2010)

L. G.Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332, 1468-1476(2007)

K. Iseki, Fixed point theorems in 2-metric spaces Math Sem, Notes Kobe Univ., 3, 133-136(1975)

M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Foxed Point Theory Appl. 2012, Article ID-201(2012)

Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, In: Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia, Spain, 189-198 (2001)

Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J Nonlinear Convex Anal, 7(2), 289-247(2006)

Downloads

Published

2024-04-01

How to Cite

Sami Abdullah Abed. (2024). New Fixed Point Theorem for Expansive Maps on a Two – Metric Space. Academic Science Journal, 2(2), 274–284. https://doi.org/10.24237/ASJ.02.01.759A

Issue

Section

Articles