Formation of Quaternary Czt(S,Se) Compounds Using Hydrothermal Synthesis and Spin Coating Technique

Authors

  • Ali T. Abbood
  • Nabeel A. Bakr
  • Falah I. Mustafa

DOI:

https://doi.org/10.24237/ASJ.02.01.714C

Keywords:

CZT(S,Se); Hydrothermal synthesis; Spin coating technique; Thermal annealing

Abstract

Cu2ZnSn(Se,S)4 or CZT(S,Se) composed of copper, zinc, tin, sulfur, or selenium are developing
as promising new long-term light absorption materials for photovoltaic (PV) systems. The
materials are abundant, non-toxic, and inexpensive. CZT(S,Se) thin films have been prepared
using a two-step procedure. The initial step started with the preparation of CZT(S,Se) powder
using the hydrothermal technique which was heat-treated at annealing temperatures of 400°C,
600°C, and 800°C, whereas the second step is the fabrication of CZT(S,Se) thin films using a
spin coating process. The XRD result showed that the crystal structure of all films was
polycrystalline kesterite phase. At 800 °C, CZTS and CZTSe thin films crystallite size was
15.47 nm and 25.4 nm respectively. According to AFM results, particle size and (RMS) of
CZT(S,Se) film increased with increasing annealing temperature when the grain size is directly
associated with temperature. The morphological properties using FE-SEM showed that the
CZT(S,Se) thin films were compact with more densely packed grains at the highest annealing
temperature. The direct band gaps for CZTS and CZTSe estimated by Tauc’s equation were
(1.73 and 1.68) eV; (1.66 and 1.59) eV; (1.56 and 1.53) eV at 400 °C, 600 °C, and 800 °C
respectively. The energy gap of CZT(S,Se) materials is not far off the optimum value for the
greatest solar cell efficiency. Hall measurements revealed that all of the samples were p-type.

The lowest value of resistivity was found to be 0.031 Ω.cm for CZTS at 800°C and 0.0191
Ω.cm for CZTSe at the same annealing temperature.

References

Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., & Mitzi, D. B. (2014). Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Advanced energy materials, 4(7), 1301465. ‏

Taskesen, T., Neerken, J., Schoneberg, J., Pareek, D., Steininger, V., Parisi, J., & Gütay, L. (2018). Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors. Advanced Energy Materials, 8(16), 1703295. ‏

Olekseyuk, I. D., Dudchak, I. V., & Piskach, L. V. (2004). Phase equilibria in the Cu2S–ZnS–SnS2 system. Journal of alloys and compounds, 368(1-2), 135-143. ‏

Wang, H. (2011). Progress in thin film solar cells based on. International journal of Photoenergy, 2011. ‏

Tiong, V. T., Hreid, T., Will, G., Bell, J., & Wang, H. (2014). Polyacrylic acid assisted synthesis of Cu2ZnSnS4 by hydrothermal method. Science of Advanced Materials, 6(7), 1467-1474. ‏

Guo, Q., Hillhouse, H. W., & Agrawal, R. (2009). Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. Journal of the American Chemical Society, 131(33), 11672-11673. ‏

Zhou, H., Hsu, W. C., Duan, H. S., Bob, B., Yang, W., Song, T. B. & Yang, Y. (2013). CZTS nanocrystals: a promising approach for next-generatio thin film photovoltaics. Energy & Environmental Science, 6(10), 2822-2838. ‏

Camara, S. M., Wang, L., & Zhang, X. (2013). Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology, 24(49), 495401. ‏

Chen, Q. M., Li, Z. Q., Ni, Y., Cheng, S. Y., & Dou, X. M. (2012). Doctor-bladed Cu2ZnSnS4 light absorption layer for low-cost solar cell application. Chinese Physics B, 21(3), 038401. ‏

Shi, C., Shi, G., Chen, Z., Yang, P., & Yao, M. (2012). Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source. Materials Letters, 73, 89-91. ‏

Zhou, B., Xia, D., & Wang, Y. (2015). Phase-selective synthesis and formation mechanism of CZTS nanocrystals. RSC Advances, 5(86), 70117-70126. ‏

Chernomordik, B. D., Béland, A. E., Trejo, N. D., Gunawan, A. A., Deng, D. D., Mkhoyan, K. A., & Aydil, E. S. (2014). Rapid facile synthesis of Cu2ZnSnS4 nanocrystals. Journal of Materials Chemistry A, 2(27), 10389-10395. ‏

Schorr, S., Weber, A., Honkimäki, V., & Schock, H. W. (2009). In-situ investigation of the kesterite formation from binary and ternary sulphides. Thin Solid Films, 517(7), 2461-2464. ‏

Bakr, N. A., Khodair, Z. T., & Mahdi, H. I. (2016). Influence of thiourea concentration on some physical properties of chemically sprayed Cu2ZnSnS4 thin films. International Journal of Materials Science and Applications, 5(6), 261-270. ‏

Sheleg, A. U., Hurtavy, V. G., Mudryi, A. V., Valakh, M. Y., Yukhymchuk, V. O., Babichuk, I. S., ... & Caballero, R. (2014). Determination of the structural and optical characteristics of Cu2ZnSnS4 semiconductor thin films. Semiconductors, 48(10), 1296-1302. ‏

Shah, N. M., Panchal, C. J., Kheraj, V. A., Ray, J. R., & Desai, M. S. (2009). Growth, structural and optical properties of copper indium diselenide thin films deposited by thermal evaporation method. Solar Energy, 83(5), 753-760.‏

Kuo, F. Y., Lin, F. S., Yeh, M. H., Fan, M. S., Hsiao, L. Y., Lin, J. J., ... & Ho, K. C. (2019). Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells. ACS Applied Materials & Interfaces, 11(28), 25090-25099. ‏

Chernov, A. A., & Scheel, H. J. (1995). Extremely flat surfaces by liquid phase epitaxy. Journal of crystal growth, 149(3-4), 187-195. ‏

Yao, L., Ao, J., Jeng, M. J., Bi, J., Gao, S., He, Q., ... & Chen, J. W. (2014). CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure. Nanoscale Research Letters, 9(1), 1-11. ‏

Paul, S., Lopez, R., Repins, I. L., & Li, J. V. (2018). Study of charge transport properties in a ZnO/CdS/Cu (In, Ga) Se2 solar cell via admittance spectroscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 36(2), 022904. ‏

Bakr, N. A., Khodair, Z. T., & Hassan, S. M. (2015). Effect of substrate temperature on structural and optical properties of Cu2ZnSnS4 (CZTS) films prepared by chemical spray pyrolysis method. Research Journal of Chemical Sciences ISSN, 2231, 606X.‏

Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., & Mitzi, D. B. (2014). Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Advanced energy materials, 4(7), 1301465. ‏

Chai, Y., Tam, C. W., Beh, K. P., Yam, F. K., & Hassan, Z. (2015). Effects of thermal treatment on the anodic growth of tungsten oxide films. Thin Solid Films, 588, 44-49.

Ahmed, H. J., Kamil, A. A., Habeeb, A. A., & Bakr, N. A. (2020). The influence of Deposition Temperature on the Properties of Chemically Sprayed Nanostructured Cu2CdSnS4 Thin Films. International Research Journal of Science and Technology, 1(2), 149-155. ‏

Al-Shakban, M., Matthews, P. D., Savjani, N., Zhong, X. L., Wang, Y., Missous, M., & O’Brien, P. (2017). The synthesis and characterization of Cu2ZnSnS4 thin films from melt reactions using xanthate precursors. Journal of materials science, 52(21), 12761-12771. ‏

Downloads

Published

2024-01-01

How to Cite

T. Abbood, A. ., A. Bakr, N. ., & I. Mustafa, F. . (2024). Formation of Quaternary Czt(S,Se) Compounds Using Hydrothermal Synthesis and Spin Coating Technique. Academic Science Journal, 2(1), 254–271. https://doi.org/10.24237/ASJ.02.01.714C

Issue

Section

Articles