Synthesis and Characterization of (Ni,Co)xMn0.25-xMg0.75Fe2O4 Nanoparticles
DOI:
https://doi.org/10.24237/ASJ.02.02.751CKeywords:
Mn-Mg Ferrite, Sol-gel process, Structure characterization, Magnetic measurementsAbstract
Ni-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the reactant solutions that were used is in close agreement with the elemental analysis that was obtained from EDX showing that the composition was as expected. Manganese ferrite showed a decrease in magnetic parameters on magnesium doping, which was further enhanced in (Ni,Co)xMn0.25-xMg0.75Fe2O4 nanoparticles upon replacement of nonmagnetic manganese ions for nickel and cobalt ions. Results indicated that Ni-Co-Mn-Mg ferrite nanoparticles’ crystal morphology, structural, and magnetic properties were significantly influenced by the amounts of nickel and cobalt content.
References
References
Y. Köseoglu, A. Baykal, F. Gözüak, H. Kavas, Polyhedron., 28(14), 2887-2892(2009)
W. Yan, Q. Li, H. Zhong, Z. Zhong, Powder Technol., 192(1), 23–26(2009)
M. Javed Iqbal, Z. Ahmad, T. Meydan, Y. Melikhov, J. Appl. Phys., 111(3), 033906(2012)
M. Srivastava, S. Chaubey, A. K. Ojha, Mater. Chem. Phys., 118(1), 174–180(2009)
A. Rafferty, Y. Gun’ko, R. Raghavendra, Mater. Res. Bull., 44(4), 747–752(2009)
S. M. Hussein, T. H. Mubarak, S. M. Ali Ridha, J. Al-Zanganawee, Key. Eng. Mater., 882, 200-218(2021)
A. Baykal, N. Kasapog˘lu, Y. Köseog˘lu, A. Basaran, H. Kavas, M. Toprak, Cent. Eur. J. Chem., 6(1), 125-130(2008)
P. Hu, D. Pan, X. Wang, J. Tian, J. Wang., S. Zhang, A. A. Volinsky, J. Magn. Magn. Mater., 323(5), 569–573(2011)
Y. Xu, Y. Liang, L. Jiang, H. Wu, H. Zhao, D. Xue, J. Nanomater., 2011, 1–5(2011)
M. Penchal Reddy, X. B. Zhou, Q. Huang, R. Ramakrishna Reddy, Int J Nano Stud Technol., 3(8), 1-6(2014)
M. Niederberger, Acc. Chem. Res., 40(9), 793–800(2007)
L. Saheb, T. M. Al-Saadi, J Phys Conf Ser, 2114, 012040, (2021)
M. Lakshmi, K. Vijaya Kumar, K. Thyagarajan, J NANOSTRUCTURE CHEM, 5(4), 365-373(2015)
H. S. Mahmood, T. H. Mubarak, S. M. Ali Ridha, J. Al-Zanganawee, AIP Conf Proc,2386, 070006(2022)
F. Naaz, H. K. Dubey, C. Kumari, P. Lahiri, SN Appl. Sci., 2(808)(2020)
Y. Zhang, Y. Liu, Z. Yang, R. Xiong, J. Shi, J Nanopart Res, 13, 4557–4563(2011)
M. Hashim, S. S. Meena, R. K. Kotnala, S. E. Shirsath, P. Bhatt, S. Kumar et al, J. Magn. Magn. Mater., 360, 21-33(2014)
A. Lassoued, M. B. Hassine, F. Karolak, B. Dkhiil, S. Ammar, A. Gadri, J. Mater. Sci. Mater. Electron., 28(24), 18857-18864(2017)
S. Singhal, J. Singh, S. K. Barthwal, K. Chandra, J Solid State Chem, 178(10), 3183–3189(2005)
O. A. Ahmed, A. H. Abed, T. M. Al-Saadi, Macromol Symp, 401(1), 2100311(2022)
H. B. Desai, A. Kumar, A. R. Tanna, Eur Chem Bull, 10(3), 186-190(2021)
R. Chen, W. Wang, X. Zhao, Y. Zhang, S. Wu, F. Li, Chem. Eng. J., 242, 226-233(2014)
M. K. Syed, S. Abdul Khader, C. S. Qadeeruddin, Int. J. Mech. Eng. Technol., 7(6), 119-129(2022)
M. H. Khedr, A. A. Omar, M. I. Nasr, E. K. Sedeek, J Anal Appl Pyrolysis, 76(1-2), 203-208(2006)
M. Kaur, P. Jain, M. Singh, Mater. Chem. Phys., 162, 332-339(2015)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 CC BY 4.0
This work is licensed under a Creative Commons Attribution 4.0 International License.