Preparation and Study of Zinc Oxide Nanoparticles to Evaluate TheirAntioxidant Activity

Authors

DOI:

https://doi.org/10.24237/ASJ.03.04.923B

Keywords:

ZnO NPs , Antioxidants , Cytotoxicity . chemo mechanical method .

Abstract

Zinc oxide nanoparticles were prepared by chemical reaction method, which is one of the methods that does not require high temperatures during preparation. The prepared particles were tested by X-ray diffraction (XRD) spectroscopy and UV-vis spectroscopy (FESEM) was performed and the antioxidant behavior of ZnO nanoparticles was evaluated by free radical scavenging of 2,2-diphenyl-1-picrylhydrazyl hydrate ( DPPH) at different nanoparticle concentrations and a discrete time interval. The DPPH scavenging activity was monitored by UV spectrophotometry and ZnO nanoparticles showed good antioxidant activity.

Downloads

Download data is not yet available.

References

[1] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Science, 311(5761), 622-627(2006), DOI(https://doi.org/10.1126/science.1114397)

[2] W. R. Bowen, R. W. Lovitt, C. J. Wright, Application of atomic force microscopy to the study of micromechanical properties of biological materials, Biotechnology Letters, 22, 893-903(2000), DOI(https://doi.org/10.1023/A:1005604028444)

[3] P. Avouris, Manipulation of matter at the atomic and molecular levels, Accounts of chemical research, 28(3), 95-102(1995)

[4] V. L. Colvin, The potential environmental impact of engineered nanomaterials, Nature Biotechnology, 21(10), 1166-1170(2003), DOI(https://doi.org/10.1038/nbt875)

[5] Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, Toxicological and biological effects of nanomaterials, International journal of nanotechnology, 4(1-2), 179-196(2007)

[6] K. J. Davies, Protein damage and degradation by oxygen radicals, I. general aspects. Journal of Biological Chemistry, 262(20), 9895-9901(1987)

[7] J. M. Gutteridge, D. A. Rowley, B. Halliwell, Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free ’iron in biological systems by using bleomycin-dependent degradation of DNA, Biochemical Journal, 199(1), 263-265(1981), DOI(https://doi.org/10.1042/bj1990263)

[8] P. A. Rea, J. Crowe, Y. A. B. D. Wickramasinghe, P. Rolfe, Non-invasive optical methods for the study of cerebral metabolism in the human newborn: a technique for the future?, Journal of medical engineering & technology, 9(4), 160-166(1985), DOI(https://doi.org/10.3109/03091908509032600)

[9] R. L. Baldwin, Estimation of theoretical calorific relationships as a teaching technique: A review, Journal of Dairy Science, 51(1), 104-111(1968), DOI(https://doi.org/10.3168/jds.S0022-0302(68)86928-0)

[10] G. W. Winston, F. Regoli, A. J. Jr. Dugas, J. H. Fong, K. A. Blanchard, A rapid gas chromatographic assay for determining the oxyradical scavenging capacity of antioxidants and biological fluid, Free Radical Biology and Medicine, 24(3), 480-493(1998), DOI(https://doi.org/10.1016/s0891-5849(97)00277-3)

[11] C. S. Ryu, C. H. Kim, S. Y. Lee, K. S. Lee, K. J. Choung, G. Y. Song, S. K. Kim, Evaluation of the total oxidant scavenging capacity of saponins isolated from Platycodon grandiflorum, Food Chemistry, 132(1), 333-337(2012), DOI(https://doi.org/10.1016/j.foodchem.2011.10.086)

[12] F. Regoli, M. Nigro, S. Bompadre, G. W. Winston, Total oxidant scavenging capacity (TOSC) of microsomal and cytosolic fractions from Antarctic, Arctic, and Mediterranean scallops: differentiation between three potent oxidants, Aquatic Toxicology, 49(1-2), 13-25(2000)‏, DO(https://doi.org/10.1016/j.foodchem.2011.10.086)

[13] S. S. J. P. Paul, J. P. Saikia, S. K. Samdarshi, B. K. Konwar, Investigation of antioxidant property of iron oxide particles by 1′-1′ diphenylpicryl-hydrazyle (DPPH) method, Journal of Magnetism and Magnetic Materials, 321(21), 3621-3623(2009), DOI(https://doi.org/10.1016/j.jmmm.2009.07.004)

[14] NK. Hemanth Kumar, M. Murali, A. Satish, S. Brijesh Singh, HG. Gowtham, HM. Mahesh, Bioactive and biocompatible nature of green synthesized zinc oxide nanoparticles from Simarouba glauca DC.: an endemic plant to Western Ghats, India. J Clust Sci., 31, 523–34(2020), DOI(https://doi.org/10.1007/s10876-019-01669-7)

[15] S. Banerjee, J. P. Saikia, A. Kumar, B. K. Konwar, Antioxidant activity and hemolysis prevention efficiency of polyaniline nanofibers, Nanotechnology, 21(4), 045101(2009), DOI(https://doi.org/10.1088/0957-4484/21/4/045101)

[16] D. Das, B. C. Nath, P. Phukon, S. K. Dolui, Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity, Colloids and Surfaces B: Biointerfaces, 111, 556-560(2013), DOI(https://doi.org/10.1016/j.colsurfb.2013.06.041)

[17] M. A. Dobrovolskaia, J. D. Clogston, B. W. Neun, J. B. Hall, A. K. Patri, & S. E. McNeil, Method for analysis of nanoparticle hemolytic properties in vitro, Nano letters, 8(8), 2180-2187(2008), DOI(https://doi.org/10.1021/nl0805615)

[18] S. Syama, S. C. Reshma, P. J. Sreekanth, H. K. Varma, & P. V. Mohanan, Effect of zinc oxide nanoparticles on cellular oxidative stress and antioxidant defense mechanisms in mouse liver, Toxicological & Environmental Chemistry, 95(3), 495-503(2013)‏, DOI(http://dx.doi.org/10.1080/02772248.2013.789606)

[19] D. Guo, C. Wu, H. Jiang, Q. Li, X. Wang, & B. Chen, Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation, Journal of Photochemistry and Photobiology B: Biology, 93(3), 119-126(2008), DOI(https://doi.org/10.1016/j.jphotobiol.2008.07.009)

[20] D. Das, B. C. Nath, P. Phukon, & S. K. Dolui, Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles, Colloids and Surfaces B: Biointerfaces, 101, 430-433(2013), DOI(https://doi.org/10.1016/j.colsurfb.2012.07.002)

[21] A. Serpen, E. Capuano, V. Fogliano, & V. Gökmen, A new procedure to measure the antioxidant activity of insoluble food components, Journal of agricultural and food chemistry, 55(19), 7676-7681(2007), DOI(https://doi.org/10.1021/jf071291z)

[22] M. K. Sharp, & S. F. Mohammad, Scaling of hemolysis in needles and catheters, Annals of biomedical engineering, 26, 788-797(1998), DOI(https://doi.org/10.1114/1.65)

[23] M. Miki, H. Tamai, M. Mino, Y. Yamamoto, & E. Niki, Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by α-tocopherol, Archives of Biochemistry and Biophysics, 258(2), 373-380(1987), DOI(https://doi.org/10.1016/0003-9861(87)90358-4)

[24] A. Mishra, & N. Chaudhary, Study of povidone-iodine loaded hydrogels as wound dressing material, Trends Biomater Artif Organs, 23(3), 122-128(2010)

[25] P. D. File, Joint committee on powder diffraction standards, ASTM, Philadelphia, Pa, 9-185(1967)‏

[26] K. K. Taha, M. M. Mustafa, H. A. M. Ahmed, S. Talab, Selenium zinc oxide (Se/ZnO) nanoparticles: Synthesis, characterization, and photocatalytic activity, Z. Nat. A , 74, 1043–1056(2019), DOI(https://doi.org/10.1016/j.onano.2022.100082)

[27] V. Petkov, T. Ohta, Y. Hou, & Y. Ren, Atomic-Scale Structure of Nanocrystals by High-Energy X-ray Diffraction and Atomic Pair Distribution Function Analysis: Study of Fe x Pd100-x (x= 0, 26, 28, 48) Nanoparticles, The Journal of Physical Chemistry C, 111(2), 714-720(2007)‏, DOI(https://doi.org/10.1021/jp066166p)

[28] P. Gnanamoorthy, V. Karthikeyan, V. A. Prabu, Field Emission Scanning Electron Microscopy (FESEM) characterization of the porous silica nanoparticulate structure of marine diatoms, Journal of Porous Materials, 21, 225-233(2014)‏, DOI(https://doi.org/10.1007/s10934-013-9767-2)

[29] V. Srivastava, D. Gusain, YC. Sharma, Synthesis, characterization, and application of zinc oxide nanoparticles (n-ZnO), Ceram Int., 39(8), 9803-9808(2013), DOI(https://doi.org/10.1016/j.ceramint.2013.04.110)

[30] S. Jafarirad, M. Mehrabi, B. Divband, M. Kosari-Nasab, Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach, Mater Sci Eng C Mater Biol Appl., 59, 296–302(2016), DOI(https://doi.org/10.1016/j.msec.2015.09.089)

[31] D. Das, B. C. Nath, P. Phukon, & S. K. Dolui, Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity, Colloids and Surfaces B: Biointerfaces, 111, 556-560(2013), DOI(https://doi.org/10.1016/j.colsurfb.2013.06.041)

[32] T. Riaz, R. Zeeshan, F. Zarif, K. Ilyas, N. Muhammad, S. Z. Safi, I. U. Rehman, FTIR analysis of natural and synthetic collagen, Applied Spectroscopy Reviews, 53(9), 703-746(2018)‏, DOI(https://doi.org/10.1080/05704928.2018.1426595)

[33] D, Suresh, RM. Shobharani, PC. Nethravathi, MA. Pavan Kumar, H. Nagabhushana, SC. Sharma, Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic, and antioxidant properties, Spectrochim Acta A Mol Biomol Spectrosc, 141, 128–34(2015), DOI(https://doi.org/10.1016/j.saa.2015.01.048)

[34] P. Prieto, M. Pineda, & M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E, Analytical biochemistry, 269(2), 337-341(1999)‏, DOI(https://doi.org/10.1006/abio.1999.4019)

[35] R. Singh, S. Singh, S. Kumar, & S. Arora, Evaluation of the antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn, Food and chemical toxicology, 45(7), 1216-1223(2007), DOI(https://doi.org/10.1016/j.fct.2007.01.002)

[36] A. Venkateasan, R. Prabakaran, V. Sujatha, Phytoextractmediated synthesis of zinc oxide nanoparticles using aqueous leaves extract of Ipomoea pes-caprae (L). R. br revealing its biological properties and photocatalytic activity, Nanotechnol Environ Eng., 2, 8(2017), DOI(https://doi.org/10.1007/s41204-017-0018-7)

[37] A. Es-haghi, F. Javadi, M. E. T. Yazdi, & M. S. Amiri, The expression of antioxidant genes and cytotoxicity of biosynthesized cerium oxide nanoparticles against hepatic carcinoma cell line, Avicenna Journal of Medical Biochemistry, 7(1), 16-20(2019)‏, DOI(https://doi.org/10.34172/ajmb.2019.04)

[38] L. A. Pham-Huy, H. He, & C. Pham-Huy, Free radicals, antioxidants in disease and health, International journal of biomedical science: IJBS, 4(2), 89(2008)

[39] M. DJ, V. Vinaykiya, V. B. Dutta, S., R. Pawar, & V. B. Raghavendra, Screening of antibacterial and antioxidant activity of biogenically synthesized silver nanoparticles from Alternaria alternata, endophytic fungus of Dendrophthoe falcata-a parasitic plant, BioNanoScience, 12(1), 128-141(2022), DOI(https://doi.org/10.1007/s12668-021-00932-4)

[40] Z. K. Taha, S. N. Hawar, & G. M. Sulaiman, Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial, and cytotoxicity activities, Biotechnology letters, 41, 899-914(2019), DOI(https://doi.org/10.1007/s10529-019-02699-x)

Downloads

Published

2025-10-01

Issue

Section

Articles

How to Cite

Wafaa A. Shatti, W., & A.Hassan, N. (2025). Preparation and Study of Zinc Oxide Nanoparticles to Evaluate TheirAntioxidant Activity. Academic Science Journal, 3(4), 286-302. https://doi.org/10.24237/ASJ.03.04.923B

Similar Articles

51-60 of 78

You may also start an advanced similarity search for this article.