Phylogenetic Tree Construction of Gamma Coronavirus Genera and SARS-CoV-2
DOI:
https://doi.org/10.24237/ASJ.02.02.695BKeywords:
SARS-CoV-2, phylogenetic tree construction, Maximum-Likelihood, COVID-19, phylogenetic inference, Neighbor-Joining.Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has spread worldwide. Therefore, this study aimed to build a phylogenetic tree of complete genomes of SARS-CoV-2 and other species of Gamma coronavirus to explore the possibility of finding the evolutionary relationships between them and wished to analyze them in order to forecast the best trees illustrating the sequences' evolutionary relationships and obtain a well-supported phylogenetic tree by using the Neighbor-Joining (NJ) and Maximum Likelihood (ML) methods after performing multiple sequence alignment (MSA). This study utilized 16 isolates of Gamma coronavirus species and SARS-CoV-2 retrieved from the NCBI (National Center for Biotechnology Information) database for this investigation. The experimental outcomes when applying the two methods to the same dataset show that a well-supported and trustworthy phylogenetic tree was obtained with a bootstrapping value of 100% for all branches of the tree when applying the ML method. Additionally, a well-supported and fast-constructing phylogenetic tree was obtained through the NJ method for all branches except one, where the bootstrapping value appeared to be 56%. The research was conducted in 2022 at the College of Science, Diyala University.
References
S. Su, Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses, Trends Microbiol., 24(6), 490–502)2016(
D. Cavanagh, Coronavirus avian infectious bronchitis virus, Vet. Res., 38(2), 281–297(2007)
B. Morel, Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult, Mol. Biol. Evol., 38(5), 1777–1791(2021)
T. Li , Phylogenetic supertree reveals detailed evolution of SARS-CoV-2, Sci. Rep., 10(1), Dec(2020)
M. Sallam, A. Mahafzah, Molecular analysis of sars-cov-2 genetic lineages in Jordan: Tracking the introduction and spread of covid-19 UK variant of concern at a country level, Pathogens, 10(3), 1–12, Mar, (2021)
J. Rizzo, E. C. Rouchka, Review of Phylogenetic Tree Construction, Univ. Louisv. Bioinforma. Lab. Tech. Rep. Ser. 1, (2007)
B. Al-Nuaimi, B. Alkindy, J.-F. Couchot, M. Salomon, C. Guyeux, Ancestral Reconstruction and Investigations of Genomic Recombination on Campanulides Chloroplasts, (2017)
E. Rouchka, J. Rizzo, Review of Phylogenetic Tree Construction, Bioinforma. Lab. Tech. Rep. Ser., June, (2017)
D. W. Mount, Bioinformatics Sequence and Genome Analysis, (2001)
C. Guyeux, B. Al-Nuaimi, B. AlKindy, J. F. Couchot, M. Salomon, On the ability to reconstruct ancestral genomes from Mycobacterium genus, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics, 10208 LNCS, 642–658(2017)
T. Li, Phylogenetic supertree reveals detailed evolution of SARS-CoV-2, Nat. Sci. Reports, 10(1), (2020)
D. D. R. Turista, A. Islamy, V. D. Kharisma, A. N. M. Ansori, Distribution of COVID-19 and phylogenetic tree construction of sars-CoV-2 in Indonesia, J. Pure Appl. Microbiol., 14(May), 1035–1042(2020)
E. H. Awoyelu, E. K. Oladipo, B. O. Adetuyi, T. Y. Senbadejo, O. M. Oyawoye, J. K. Oloke, Phyloevolutionary analysis of SARS-CoV-2 in Nigeria, New Microbes New Infect., 36, 100717(2020)
O. Adebali, Phylogenetic analysis of sars-cov-2 genomes in Turkey, Turkish J. Biol., 44, Special issue 1, 146–156(2020)
B. M. Hussen, D. K. Sabir, Y. Karim, K. K. Karim, H. J. Hidayat, Genome sequence analysis of SARS-COV-2 isolated from a COVID-19 patient in Erbil, Iraq, Appl. Nanosci., 0123456789(2022)
P. C. Y. Woo, Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi, J. Virol., 86(7), 3995–4008(2012)
S. Vijayakumar, A. Bhargavi, U. Praseeda, S. A. Ahamed, Optimizing sequence alignment in cloud using hadoop and MPP database, In: Proceedings - 2012 IEEE 5th International Conference on Cloud Computing, CLOUD 2012, 819–827(2012)
M. Dipl, I. C. Horejš, H. Horejš-Kainrath, U. Bodenhofer, J. Kepler, Multiple Sequence Alignment with R, (2016)
S. R. Amit Roy, Molecular Markers in Phylogenetic Studies-A Review, J. Phylogenetics Evol. Biol., 02(02), (2014)
J. D. Thompson, D. G. Higgins, T. J. Gibson, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22(22), 4673–4680(1994)
J. Xiong, Essential bioinformatics,(2006)
L. Le Cam, Maximum Likelihood: An Introduction,(1990)
I. J. Myung, Tutorial on maximum likelihood estimation, J. Math. Psychol., 47(1), 90–100(2003)
N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees., Mol. Biol. Evol., 4(4), 406–42591987)
L. Addario-Berry, B. Chor, M. Hallett, J. Lagergren, A. Panconesi, T. Wareham, Ancestral Maximum Likelihood Of Evolutionary Trees Is Hard, Journal of Bioinformatics and Computational Biology, 2(2), 257–271(2004)
A. K. A. Al-khafaji, B. T. Al-nuaimi, Phylogenetic Tree Construction to Reveal the Detailed Evolution of SARS-CoV-2, J. Algebr. Stat., 13(2), 538–549(2022)
K.-T. F. Jian-Xin Pan, Growth Curve Models and Statistical Diagnostics, Manchester 1984, (2006)
I. Letunic, P. Bork, Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation, Nucleic Acids Res., 49(W1), W293–W296(2021)
B. Efron, E. Halloran, S. Holmes, Bootstrap confidence levels for phylogenetic trees,(1996)
P. S. Soltis and D. E. Soltis, Applying the Bootstrap in Phylogeny Reconstruction,(2003)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 CC BY 4.0
This work is licensed under a Creative Commons Attribution 4.0 International License.