Some Important Applications of Using Sodium Alginate: Review

Authors

DOI:

https://doi.org/10.24237/

Keywords:

Immobilization, Alginate, Enzymatic efficiency.

Abstract

Alginate is a biological substance with a wide range of uses in engineering and the biological sciences. Its exceptional qualities, namely its excellent biocompatibility and simple gelling, make it widely employed. Numerous cross-linking methods, for example, can be used to create alginate hydrogels. Their structural similarity to extracellular matrices present in living tissues makes them highly useful for wound healing as well as the administration of chemical medicines, tiny proteins, and transplanted cells. Alginate is also frequently employed in a variety of technologies, such as tissue engineering cell transplantation and different biomolecule immobilization techniques. This study will address the main features of alginate and hydrogels, their biological functions, and new ways to research with these polymers in the future.

Downloads

Download data is not yet available.

Author Biography

  • Ahmed N. abd, diyala university

    chemistry

References

[1] J. N. BeMiller, Structure-property correlation of non-starch food polysaccharides, Macromolecular symposia, 1–15(1999), DOI(https://doi.org/10.1002/masy.19991400103)

[2] J. Liu, S. Yang, X. Li, Q. Yan, MJ. Reaney, Z. Jiang, Alginate oligosaccharides: Production, biological activities, and potential applications, Comprehensive Reviews in Food Science and Food Safety, 18(6), 1859-1881(2019), DOI(https://doi.org/10.1111/1541-4337.12494)

[3] KI. Draget, O. Smidsrød, G. Skjåk-Bræk, Alginates from algae. Polysaccharides and polyamides in the food industry, properties, production, and patents, 1-30(2005)

[4] A. Ikeda, A. Takemura, H. Ono, Preparation of low-molecular weight alginic acid by acid hydrolysis, Carbohydrate Polymers, 42, 421–425((2000), DOI(https://doi.org/10.1016/S0144-8617(99)00183-6)

[5] G. Skjåk-Bræk, K. I. Draget, Alginates: Properties and applications, PolymerScience: A Comprehensive Reference, 10, 213–220(2012)

[6] M. G. Kontominas, Use of alginates as food packaging materials. Foods, 9(10), 1440–1445(2020), DOI(https://doi.org/10.3390/foods9101440)

[7] B. T. Stokke, K. I. Draget, Y. Yuguchi, H. Urakawa, K. Kijiwara, Small angleX-ray scattering and rheological characterization of alginate gels, Ca-alginate gels.Macromolecules, 33, 1853–1863(2000), DOI(https://doi.org/10.1002/masy.19971200111)

[8] K. I. Draget, B. Strand, M. Hartmann, S. Valla, O. Smidsrød, G. Skjåk-Braek, Ionic and acid gel formation of epimerised alginates; the effect of AlgE4, InternationalJournal of Biological Macromolecules, 27, 117–122(2000), DOI(https://doi.org/10.1016/S0141-8130(00)00115-X)

[9] H. Hecht, S. Srebnik, Sequence-dependent association of alginate with sodiumand calcium counterions, Carbohydrate Polymers, 157, 1144–1152(2017), DOI(https://doi.org/10.1016/j.carbpol.2016.10.081)

[10] G. Liling, Z. Di, X. Jiachao, G. Xin, F. Xiaoting, Z. Qing, Effects of ioniccrosslinking on physical and mechanical properties of alginate mulching films, Carbohydrate Polymer, 136, 259–265(2016), DOI(https://doi.org/10.1016/j.carbpol.2015.09.034)

[11] N. M. Sanchez-Ballester, B. Bataille, R. Benabbas, B. Alonso, I. Soulairol, Development of alginate esters as novel multifunctional excipients for direct compression, Carbohydrate Polymers, 240, Article 116280(2020), DOI(https://doi.org/10.1016/j.carbpol.2020.116280)

[12] R. Taylor, Protein immobilization: fundamentals and applica- tions, (Marcel Dekker Inc., New York, 1991)

[13] P. Gemeiner, Enzyme engineering: immobilized Biosystems, (Ellis Horwood, Ltd., Chichester, UK, 1992)

[14] J. Liang, Y. Li, V. Yang, Biomedical application of immobilized enzymes, J Pharm Sci 89, 979–990(2000), DOI(https://doi.org/10.1002/1520-6017(200008)89:8%3C979::AID-JPS2%3E3.0.CO;2-H)

[15] G. Funduenanu, C. Nastruzzi, A. Carpov, J. Desbrieres, M. Rinaudo, Physico-chemical characterization of Ca-alginate microparti- cles produced by different methods, Biomaterials, 20, 1427–1435(1999), DOI(https://doi.org/10.1016/S0142-9612(99)00050-2 )

[16] F. Velten, C. Laue, J. Schrezenmeir, The effect of alginate and hyaluronate on the viability and function of immunoisolated neonatal rat islets, Biomaterials, 20,2161–2167(1999), DOI(https://doi.org/10.1016/S0142-9612(99)00119-2)

[17] P. Sriamornsak, Preliminary investigation of some polysaccharides as a carrier for cell entrapment, Eur J Pharm Biopharm, 46, 233–236(1998)

[18] KI. Draget, G. Skjak-Braek, O. Smidsrod, Alginate based new materials, Int J Biol Macromol, 21, 47–55(1997)

[19] O. Smidsrod, G. Skak-Braek, Alginate as immobilization matrix for cells, Trends Biotechnol, 8, 71–8(1990)

[20] R. L. Sinsabaugh, H. Reynolds, and T. M. Long, Rapid assay for amidohydrolase (urease) activity inenvironmental samples, Soil Biology and Biochemistry, 32(14), 2095–2097(2000)

[21] F. Shakeri, S. Ariaeenejad, M. Ghollasi, E. Motamed, synthesis of two novel bio‑based hydrogels using sodium alginate and chitosan and their proficiency in physical immobilization of enzymes, Sci Rep, 12, 2072 (2022), DOI(https://doi.org/10.1038/s41598-022-06013-0)

[22] X. Montané, A. Bajek, K. Roszkowski, J. M. Montornés, M. Giamberini, S. Roszkowski, O. Kowalczyk, R. Garcia-Valls, B. Tylkowski, Encapsulation for cancer therapy, Mol- ecules, 25(2020), DOI(https://doi.org/10.3390/molecules25071605)

[23] M. K. Mishra (Ed.), Handbook of Encapsulation and Controlled Release: Chapter 14: Ionotropic Gelation and Polyelectrolyte Complexation Technique: Novel Approach to Drug Encapsulation, (Boca Raton, CRC Press, 2016), DOI(https://doi.org/10.1201/b19038)

[24] V. Marturano, J. Kozlowska, A. Bajek, M. Giamberini, V. Ambrogi, P. Cerruti, R. Garcia-Valls, J.M. Montornes, B. Tylkowski, Photo-triggered capsules based on lanthanide-doped upconverting nanoparticles for medical applications, Coord. Chem. Rev., 398, 213013(2019), DOI(https://doi.org/10.1016/j.ccr.2019.213013)

[25] A. Nasir, A. Kausar, A. Younus, A review on preparation, properties and applications of polymeric nanoparticle-based materials, Polym.-Plast. Technol. Eng., 54, 325–341(2015), DOI(https://doi.org/10.1080/03602559.2014.958780)

[26] M. A. Miranda, L. B. Silva, I. P. S. Carvalho, R. Amaral, M. H. de Paula, K. Swiech, J. K. Bastos, J. A. R. Paschoal, F. S. Emery, R. B. dos Reis, M. V. L. B. Bentley, P. D. Marcato, Targeted uptake of folic acid-functionalized polymeric nanoparticles loading glycoalkaloidic extract in vitro and in vivo assays, Colloids Surf. B: Biointerfaces, 192, 111106(2020), DOI(https://doi.org/10.1016/j.colsurfb.2020.111106)

[27] C. Tsai, J. Y. Lin, F. Maryani, C. C. Huang, T. Imae, Drug-loading capacity and nu-clear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers, Int. J. Nanomedicine, 8, 4427–4440(2013), DOI(https://doi.org/10.2147/ijn.s53636)

[28] C. Gong, X. Yu, B. You, Y. Wu, R. Wang, L. Han, Y. Wang, S. Gao, Y. Yuan, Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy, Journal of nanobiotechnology, 18, (2020), DOI(https://doi.org/10.1186/s12951-020-00649-8)

[29] Y. Li, J. Lin, Z. Cai, P. Wang, Q. Luo, C. Yao, Y. Zhang, Z. Hou, J. Liu, X. Liu, Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy, J. Control. Re- lease, 321, 222–235(2020), DOI(https://doi.org/10.1016/j.jconrel.2020.02.025)

[30] X. Chen, H. Qian, H. Qiao, B. Dong, E. Chen, D. Huang, T. Wang, W. Chen, Tumor- adhesive and pH-degradable microgels by microfluidics and photo-cross-linking B. Reig-Vano, B. Tylkowski, X. Montané, International Journal of Biological Macromolecules, 170, 424–436(2021), DOI(https://doi.org/10.1021/acs.biomac.0c00049)

[31] P. Jiang, F. J. Chaparro, C. T. Cuddington, A. F. Palmer, M. P. Ohr, J. J. Lannutti, K. E. Swindle-Reilly, Injectable biodegradable bi-layered capsule for sustained delivery of bevacizumab in treating wet age-related macular degeneration, J. Control. Re- lease, 320, 442–456(2020), DOI(https://doi.org/10.1016/j.jconrel.2020.01.036)

[32] C. G. Zamboni, K. L. Kozielski, H. J. Vaughan, M. M. Nakata, J. Kim, L. J. Higgins, M.G. Pomper, J. J. Green, Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma, J. Control. Release 263, 18–28(2017), DOI(https://doi.org/10.1016/j.jconrel.2017.03.384)

[33] Z. Jin, K. Wu, J. Hou, K. Yu, Y. Shen, S. Guo, A PTX/nitinol stent combination with temperature-responsive phase-change 1-hexadecanol for magnetocaloric drug de- livery: Magnetocaloric drug release and esophagus tissue penetration, Biomaterials, 153, 49–5(2018), DOI(https://doi.org/10.1016/j.biomaterials.2017.10.040)

[34] T. T. Uyen, Z. A. A. Hamid, N. X. T. Tram, N. Ahmad, Fabrication of alginate micro- spheres for drug delivery: a review, Int. J. Biol. Macromol., 153, 1035–1046(2020), DOI(https://doi.org/10.1016/j.ijbiomac.2019.10.233)

[35] S. T. Minzanova, V. F. Mironov, D. M. Arkhipova, A.V. Khabibullina, L. G. Mironova, Y. M. Zakirova, V. A. Milyukov, Biological activity and pharmacological application of pectic polysaccharides: a review, Polymers, 10, (2018), DOI(https://doi.org/10.3390/polym10121407)

[36] B. N. Matos, M. N. Pereira, M. d. O. Bravo, M. Cunha-Filho, F. Saldanha-Araújo, T. Gratieri, G. M. Gelfuso, Chitosan nanoparticles loading oxaliplatin as a mucoadhesive topical treatment of oral tumors: iontophoresis further enhances drug delivery ex vivo, Int. J. Biol. Macromol., 154, 1265–1275(2020), DOI(https://doi.org/10.1016/j.ijbiomac.2019.11.001)

[37] B. Tian, Y. Liu, J. Liu, Cyclodextrin as a magic switch in covalent and non-covalent anticancer drug release systems, Carbohydr. Polym, 242, 116401(2020), DOI(https://doi.org/10.1016/j.carbpol.2020.116401)

[38] Di Li, T. Su, L. Ma, F. Yin, W. Xu, J. Ding, Z. Li, Dual-acidity-labile polysaccharide-di- drugs conjugate for targeted cancer chemotherapy, Eur. J. Med. Chem., 199, 112367(2020), DOI(https://doi.org/10.1016/j.ejmech.2020.112367)

[39] M. Hou, W. Liu, L. Zhang, L. Zhang, Z. Xu, Y. Cao, Y. Kang, P. Xue, Responsive agarose hydrogel incorporated with natural humic acid and MnO2 nanoparticles for effec- tive relief of tumor hypoxia and enhanced photo-induced tumor therapy, Biomate- rials science, 8, 353–369(2020), DOI(https://doi.org/10.1039/c9bm01472a)

[40] I. S. Bayer, Hyaluronic acid and controlled release: a review, Molecules, 25, (2020), DOI(https://doi.org/10.3390/molecules25112649)

[41] X. Sun, C. Liu, A. M. Omer, L. Y. Yang, X. K. Ouyang, Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5- fluorouracil, Int. J. Biol. Macromol., 132, 487–494(2019), DOI(https://doi.org/10.1016/j.ijbiomac.2019.03.225)

[42] C. Oliveira, N. M. Neves, R. L. Reis, A. Martins, T. H. Silva, A review on fucoidan anti- tumor strategies: from a biological active agent to a structural component of fucoidan-based systems, Carbohydr. Polym., 239, 116131(2020), DOI(https://doi.org/10.1016/j.carbpol.2020.116131)

[43] H. Wei, W. Li, H. Chen, X. Wen, J. He, J. Li, Simultaneous Diels-Alder click reaction and starch hydrogel microsphere production via spray drying, Carbohydr. Polym., 241 116351(2020), DOI(https://doi.org/10.1016/j.carbpol.2020.116351)

[44] J. M. Korde, B. Kandasubramanian, Microbiologically extracted poly (hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti- tumor therapies, Materials Science & Engineering C-Materials for Biological Applications, 111, 110799(2020), DOI(https://doi.org/10.1016/j.msec.2020.110799)

[45] M. L. Tebaldi, A. L. C. Maia, F. Poletto, F. V. de Andrade, D. C. F. Soares, Poly(-3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): current advances in synthesis methodologies, antitumor applications and biocompatibility, Journal of Drug De- livery Science and Technology, 51, 115–126(2019), DOI(https://doi.org/10.1016/j.jddst.2019.02.007)

[46] L. Wang, J. Du, X. Han, J. Dou, J. Shen, J. Yuan, Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers, journal of biomaterials science, Poly- mer edition, 1–13(2020), DOI(https://doi.org/10.1080/09205063.2020.1788371)

[47] M.T. Nazeri, S. Javanbakht, A. Shaabani, M. Ghorbani, 5-aminopyrazole-conjugated gelatin hydrogel: a controlled 5-fluorouracil delivery system for rectal administra- tion, Journal of Drug Delivery Science and Technology, 57 101669(2020), DOI(https://doi.org/10.1016/j.jddst.2020.101669)

[48] R. Borlan, A. S. Tatar, O. Soritau, D. Maniu, G. Marc, A. Florea, M. Focsan, S. Astilean, Design of fluorophore-loaded human serum albumin nanoparticles for specific targeting of NIH:OVCAR3 ovarian cancer cells, Nanotechnology, 31, 315102(2020), DOI(https://doi.org/10.1088/1361-6528/ab8b90)

[49] S. O. Correa, X. Luo, C. B. Raub, Microfluidic fabrication of stable collagen microgels with aligned microstructure using flow-driven co-deposition and ionic gelation, J. Micromech. Microeng, 30, 85002(2020), DOI(https://doi.org/10.1088/1361-6439/ab8ebf)

[50] J. Venkatesan, S. Anil, S. K. Kim, M. S. Shim, Seaweed polysaccharide-based nano- particles: preparation and applications for drug delivery, Polymers, 8, (2016), DOI(https://doi.org/10.3390/polym8020030)

[51] E. Henao, E. Delgado, H. Contreras, G. Quintana, Polyelectrolyte complexation ver- sus ionotropic gelation for chitosan-based hydrogels with carboxymethylcellulose, carboxymethyl starch, and alginic acid, Int. J. Chem. Eng., (2018), DOI(https://doi.org/10.1155/2018/3137167)

[52] N. Tabassum, M. A. Khan, Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study, Sci. Hortic., 259, 108853(2020), DOI(https://doi.org/10.1016/j.scienta.2019.108853)

[53] R. Heydari, S. Bavandi, S. R. Javadian, Effect of sodium alginate coating enriched with horsemint (Mentha longifolia) essential oil on the quality of bighead carp fillets during storage at 4°C, Food Sci. Nutr., 3, 188–194(2015), DOI(https://doi.org/10.1002/fsn3.202)

[54] https://ec.europa.eu/commission/presscorner/detail/en/IP_18_5(accessed on 1 December 2019)

[55] X. X. Wang, L. Chen, L. Wang, Q. H. Fan, D. Q. Pan, J. X. Li, F. T. Chi, Y. Xie, S. J. Yu, C. L. Xiao, F. Luo, J. Wang, X. L. Wang, C. L. Chen, W. S. Wu, W. Q. Shi, S. Wang, X. K. Wang, Synthesis of Novel Nanomaterials and Their Application in Efficient Removal of Radionuclides, Sci. China Chem., 62(8), 933– 967(2019), DOI(https://doi.org/10.1007/s11426-019-9492-4)

[56] Q. L. Ma, H. F. Cheng, A. G. Fane, R. Wang, H. Zhang, Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation, Small, 12(16), 2186– 2202(2016), DOI(https://doi.org/10.1002/smll.201503685)

[57] W. S. Niu, Z. Y. Xiao, S. F. Wang, S. R. Zhai, L. F. Qin, Z. Y. Zhao, Q. D. An, Z. C. Li, Porous NiCoP@P-C Hybrid as Efficient Positive Electrodes for High-Performance Supercapacitors, J. Alloys Compd., 835, 155157(2020), DOI(https://doi.org/10.1016/j.jallcom.2020.155157)

[58] X. X. Tian, H. S. Zhu, X. Meng, J. Wang, C. L. Zheng, Y. Z. Xia, Z. Xiong, Amphiphilic Calcium Alginate Carbon Aerogels: Broad-Spectrum Adsorbents for Ionic and Solvent Dyes with Multiple Functions for Decolorized Oil-Water Separation, ACS Sustain. Chem. Eng., 8 (34), 12755– 12767(2020), DOI(https://doi.org/10.1021/acssuschemeng.0c00129)

[59] J. H. Lee, S. J. Park, Recent Advances in Preparations and Applications of Carbon Aerogels: A Review, Carbon, 163, 1– 18(2020), DOI(https://doi.org/10.1016/j.carbon.2020.02.073)

[60] B. B. Wang, D. H. Li, M. W. Tang, H. B. Ma, Y. G. Gui, X. Tian, F. Y. Quan, X. Q. Song, Y. Z. Xia, Alginate-Based Hierarchical Porous Carbon Aerogel for High-Performance Supercapacitors, J. Alloys Compd., 749, 517– 522(2018), DOI(https://doi.org/10.1016/j.jallcom.2018.03.223)

[61] M. Ueno, T. Oda, Biological activities of alginate. Advances in food and nutrition research, 72, 95-112(2014), DOI(https://doi.org/10.1016/b978-0-12-800269-8.00006-3)

Downloads

Published

2025-10-06

Issue

Section

Articles

How to Cite

Hassan, shaeema, & Abd, A. N. . . . (2025). Some Important Applications of Using Sodium Alginate: Review. Academic Science Journal, 3(4), 1-16. https://doi.org/10.24237/

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)