Review on Eco-friendly Green Synthesis Methods of Tungsten OxideNanoparticles

Authors

DOI:

https://doi.org/10.24237/ASJ.03.03.953C

Abstract

Synthesis of tungsten oxide nanoparticles by alternative method has been use of environmentally friendly green methods that involve natural materials like plants, bacteria, fungi, solvothermal, microwave-assisted, biosynthesis, sonochemical, polysaccharides, seaweed, plant-derived materials, biodegradable polymers, and algae. using effective green chemistry to create nanoparticles has sparked a lot of attention lately due to its environmental friendly, simplicity, affordability, and clean technology. It also doesn't use any dangerous chemicals and produces no impurities or wastes. Plant extracts have garnered the greatest attention among these bio-entities due to their special natural qualities that enable them in a single production step to stabilize and decrease metal nanoparticles. The changes and future prospects of green synthesis methods using plant extracts, solvothermal, microwave-assisted, biosynthesis, and sonochemical processes for tungsten oxide nanoparticles are reviewed in this paper.

Downloads

Download data is not yet available.

References

[1] K. Mushtaq, P. M. Chou, C. W. Lai, Review on the synthesis methods of nano-tungsten oxide dihydrate colloid, In: MATEC Web of Conferences, 335, EDP Sciences, 03008 (2021), DOI(https://doi.org/10.1051/matecconf/202133503008)

[2] M. Ahamed, H. A. Alhadlaq, M. M. Khan, P. Karuppiah, N. A. Al-Dhabi, Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles, Journal of Nanomaterials, 2014(1), 637858(2014), DOI(‏https://doi.org/10.1155/2014/637858)

[3] N. M. Ishak, S. K. Kamarudin, S. N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Materials Research Express, 6(11), 112004(2019), DOI(https://doi.org/10.1088/2053-1591/ab4458)

[4] R. Geetha, T. Ashokkumar, S. Tamilselvan, K. Govindaraju, M. Sadiq, G. Singaravelu, Green synthesis of gold nanoparticles and their anticancer activity, Cancer Nanotechnology, 4, 91-98(2013), DOI(https://doi.org/10.1007/s12645-013-0040-9)

[5] I. Hussain, N. B. Singh, A. Singh, H. Singh, S. C. Singh, Green synthesis of nanoparticles and its potential application, Biotechnology letters, 38, 545-560(2016), DOI(https://doi.org/10.1007/s10529-015-2026-7)

[6] M. Sorbiun, E. Shayegan Mehr, A. Ramazani, A. Mashhadi Malekzadeh, Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties, Nanochemistry Research, 3(1), 1-16(2018), DOI(https://doi.org/10.22036/ncr.2018.01.001)

[7] S. Ahmed, M. Ahmad, B. L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, Journal of advanced research, 7(1), 17-28(2016), DOI(https://doi.org/10.1016/j.jare.2015.02.007)

[8] E. B. Franke, C. L.Trimble, J. S. Hale, M. Schubert, J. A. Woollam, Infrared switching electrochromic devices based on tungsten oxide, Journal of applied physics, 88(10), 5777-5784(2000), DOI(https://doi.org/10.1063/1.1319325)

[9] V. B. Kumar, D. Mohanta, Formation of nanoscale tungsten oxide structures and colouration characteristics, Bulletin of Materials Science, 34, 435-442(2011), DOI(‏https://doi.org/10.1007/s12034-011-0117-1)

[10] H. I. Nogueira, A. M. Cavaleiro, J. Rocha, T. Trindade, J. D. P. de Jesus, Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids, Materials Research Bulletin, 39(4-5), 683-693(2004), DOI(https://doi.org/10.1016/j.materresbull.2003.11.004)

[11] Z. Sabouri, A. Akbari, H. A. Hosseini, A. Hashemzadeh, M. Darroudi, Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties, Journal of Cluster Science, 30, 1425-1434(2019), DOI(https://doi.org/10.1007/s10876-019-01584-x)

[12] S. Tohma, D. Günal-Köroğlu, S. Turan, M. F. Ramadan, Efficacy of rosemary (Rosmarinus officinalis L.) powder and extracts in the protection of refined and stripped hazelnut oil, Rendiconti Lincei. Scienze Fisiche e Naturali, 32(3), 585-598(2021), DOI(https://doi.org/10.1007/s12210-021-01002-3)

[13] H. Duan, D. Wang, Y. Li, Green chemistry for nanoparticle synthesis, Chemical Society Reviews, 44(16), 5778-5792(2015), DOI(‏https://doi.org/10.1039/C4CS00363B)

[14] J. E. Hutchison, Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology, ACS nano, 2(3), 395-402(2008), DOI(https://doi.org/10.1021/nn800131j)

[15] J. A. Kumar, T. Krithiga, S. Manigandan, S. Sathish, A. A. Renita, P. Prakash,. S. Crispin, A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach, Journal of Cleaner Production, 324, 129198(2021), DOI(https://doi.org/10.1016/j.jclepro.2021.129198)

[16] M. P. Wilson, M. R. Schwarzman, Toward a new US chemicals policy: rebuilding the foundation to advance new science, green chemistry, and environmental health, Environmental health perspectives, 117(8), 1202-1209(2009), DOI(https://doi.org/10.1289/ehp.0800404)

[17] S. S. Mathew, N. E. Sunny, V. Shanmugam, Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination, Inorganic Chemistry Communications, 126, 108485(2021), DOI(https://doi.org/10.1016/j.inoche.2021.108485)

[18] J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samddar, P. Kumar, Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation, Journal of nanobiotechnology, 16, 1-24(2018), DOI(https://doi.org/10.1186/s12951-018-0408-4)

[19] M. Dadkhah, J. M. Tulliani, Green synthesis of metal oxides semiconductors for gas sensing applications, Sensors, 22(13), 4669(2022), DOI(https://doi.org/10.3390/s22134669)

[20] A. K. Mittal, Y. Chisti, U. C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnology advances, 31(2), 346-356(2013), DOI(https://doi.org/10.1016/j.biotechadv.2013.01.003)

[21] N. S. AL-OBAIDI, S. N. MUSTAFA, Synthesis, Characterization and Electrical Study of Poly Aniline Doping With Nano Silver Oxide, International Journal of Pharmaceutical Research (09752366), 12(2), DOI(https://doi.org/10.31838/ijpr/2020.12.02.0157)

[22] H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: Biological synthesis and biomedical applications, Ceramics International, 43(1), 907-914(2017), DOI(https://doi.org/10.1016/j.ceramint.2016.10.051)

[23] Z. E. Sadeq, N. S. Al-Obaidi, A. S. Al-Mahdawi, A. N. Abd, Z. H. Mahmoud, B. W. Kamal, Preparation of nanocomposites for corrosion treatment, Bulletin of the Chemical Society of Ethiopia, 38(2), 501-509(2024), DOI(https://doi.org/10.4314/bcse.v38i2.17)

[24] X. Li, H. Xu, Z. S. Chen, G. Chen, Biosynthesis of nanoparticles by microorganisms and their applications, Journal of nanomaterials, 2011(1), 270974(2011), DOI(https://doi.org/10.1155/2011/270974)

[25] N. Parveen, K. Alnahdi, S. A. Alsharif, S. A. Ansari, M. Z. Ansari, M. W. Alam, A. Umar, Novel Biosynthesis of Spherical Tungsten Trioxide Nanoparticles for Sustainable Photocatalytic Application, Available at SSRN 4828428., DOI(https://dx.doi.org/10.2139/ssrn.4828428)

[26] R. M. Fernández-Domene, B. Solsona, M. Erans, E. Blasco-Tamarit, R. Sánchez-Tovar, Green biomediated synthesis of anodized WO3 nanocatalysts using Melia azedarach leaves extract for the energetic transition: Solar hydrogen and Li-ion batteries, Journal of Alloys and Compounds, 995, 174845(2024), DOI(https://doi.org/10.1016/j.jallcom.2024.174845)

[27] A. B. Habtemariam, Y. Alemu, Synthesis of WO3 nanoparticles using Rhamnus prinoides leaf extract and evaluation of its antibacterial activities, Biointerface Res. Appl. Chem, 12, 529-536(2021), DOI(https://doi.org/10.33263/BRIAC121.529536)

[28] A. K. Sharma, A. K. Swami, D. Jangir, M. Saran, T. K. Upadhyay, R. K. Prajapat, M. Mathur, An Eco-friendly Green Synthesis of Tungsten Nanoparticles from Moringa oleifera Lam. and Their Pharmacological Studies, Gazi Medical Journal, 31, (2020), DOI(https://doi.org/10.1016/B978-0-443-15457-7.00014-9)

[29] J. Singh, H. Kaur, M. Rawat, A novel green approach for the synthesis of tungsten oxide nanorods and its efficient potential towards photocatalytic degradation of reactive green 19 dye, Journal of Materials Science: Materials in Electronics, 29, 13715-13722(2018), DOI(https://doi.org/10.1007/s10854-018-9501-6)

[30] J. O. Tijani, O. Ugochukwu, L. A. Fadipe, M. T. Bankole, A. S. Abdulkareem, W. D. Roos, One-step green synthesis of WO 3 nanoparticles using Spondias mombin aqueous extract: effect of solution pH and calcination temperature, Applied Physics A, 125, 1-12(2019), DOI(https://doi.org/10.1007/s00339-019-2450-y)

[31] S. Ghazal, M. Mirzaee, M. Darroudi, Green synthesis of tungsten oxide (WO3) nanosheets and investigation of their photocatalytic and cytotoxicity effects, Micro & Nano Letters, 17(11), 286-298(2022), DOI(https://doi.org/10.1049/mna2.12134)

[32] H. Pakdel, V. Galstyan, A. D'Arco, T. Mancini, S. Lupi, A. Moumen, E.Comini, Synthesis of WO3 nanopowder using a green surfactant for efficient gas sensing applications, Ceramics International, 49(18), 30501-30509(2023), DOI(https://doi.org/10.1016/j.ceramint.2023.06.314)

[33] A. K. Nayak, Y. Sohn, D. Pradhan, Facile green synthesis of WO3· H2O nanoplates and WO3 nanowires with enhanced photoelectrochemical performance, Crystal Growth & Design, 17(9), 4949-4957(2017), DOI(https://doi.org/10.1021/acs.cgd.7b00886)

[34] L. Zhou, J. Zou, M. Yu, P. Lu, J. Wei, Y. Qian, C. Yu, Green synthesis of hexagonal-shaped WO3· 0.33 H2O nanodiscs composed of nanosheets, Crystal Growth and Design, 8(11), 3993-3998(2008), DOI(https://doi.org/10.1021/cg800609n)

[35] V. Galstyan, N. Poli, A. D'Arco, S. Macis, S. Lupi, E. Comini, A novel approach for green synthesis of WO 3 nanomaterials and their highly selective chemical sensing properties, Journal of Materials Chemistry A, 8(39), 20373-20385(2020), DOI(https://doi.org/10.1039/D0TA06418A)

[36] X. Wang, Y. F. Zheng, H. Y. Yin, X. C. Song, Green synthesis and catalytic function of tungsten oxide nanoparticles, Journal of Nanoscience and Nanotechnology, 11(3), 2501-2505(2011), DOI(https://doi.org/10.1166/jnn.2011.3593)

[37] J. Li, J. Huang, C. Yu, J. Wu, L. Cao, K. Yanagisawa, Hierarchically structured snowflakelike WO3· 0.33 H2O particles prepared by a facile, green, and microwave-assisted method, Chemistry Letters, 40(6), 579-581(2011), DOI(https://doi.org/10.1246/cl.2011.579)

[38] H. Aliasghari, A. M. Arabi, H. Haratizadeh, Microwave-Assisted Solution Combustion Synthesis of WO3 Nanoparticles: Optical and Colorimetric Characteristics, Advanced Ceramics Progress, 5(3), 36-46(2019), DOI(https://doi.org/10.30501/acp.2019.99209)

[39] D. V. Francis, T. Aiswarya, T. Gokhale, Optimization of the incubation parameters for biogenic synthesis of WO3 nanoparticles using Taguchi method, Heliyon, 8(9), (2022), DOI(https://doi.org/10.1016/j.heliyon.2022.e10640)

[40] X. Chang, S. Sun, Y. Yin, Green synthesis of tungsten trioxide monohydrate nanosheets as gas sensor, Materials Chemistry and Physics, 126(3), 717-721(2011), DOI(https://doi.org/10.1016/j.matchemphys.2010.12.054)

Downloads

Published

2025-07-01

Issue

Section

Articles

How to Cite

Review on Eco-friendly Green Synthesis Methods of Tungsten OxideNanoparticles. (2025). Academic Science Journal, 3(3), 272-295. https://doi.org/10.24237/ASJ.03.03.953C