Phytoremediation Technique for Pesticide-Contaminated Environments as a Green and Eco-Friendly Approach: A Review

Authors

DOI:

https://doi.org/10.24237/04.01.803

Keywords:

Phytoremediation , Pesticides, Sustainable, Eco-friendly, Pollutants, Environment

Abstract

Phytoremediation, or bioremediation, is the use of plants and their rhizosphere's microorganisms to contain, remove, transform, or detoxify pollutants in soil, water, or air. This eco-friendly method has become a very effective strategy for addressing pesticide contamination, one of the major global environmental issues, and has even been proven in scientific circles. The review's main purpose is to present phytoremediation in detail to the world as a sustainable, environmentally friendly technology for the cleanup of pesticide-contaminated soils. The review integrates the latest information on bioremediating plants and, at the same time, emphasizes recent developments in different plant species proficient at accumulating or degrading pesticide residues. Among the major phytoremediation mechanisms are phytoextraction, wherein the contaminants are taken up and stored in the plant parts that can be easily collected; phytodegradation, which is the process of breaking down the pollutants by plants and their associated microorganisms' metabolic activities; phytostabilization, preventing the contamination spread and the toxins being taken up by living organisms in soils and sediments; phytovolatilization, the conversion of the less toxic forms of the pollutants and their release into the atmosphere; and rhizofiltration, the practice whereby the roots of the plants act as filters to remove contaminants from the water supplying them. Together, the above-stated mechanisms play a significant role in reducing the toxicity of pesticides and their persistence in the environment. The review points out the pros and cons of efficiency between phytoremediation and conventional methods, the latter often being very expensive, energy-intensive, and environmentally damaging. In conclusion, phytoremediation is a cost-effective, environmentally friendly option for large-scale pesticide cleanup, helping nature recover and protecting the environment for the long term.

Downloads

Download data is not yet available.

Author Biography

  • Dr. Khalid Dheyaa Abdulwahid, University of Diyala -College of Science

    Assist. Prof. Dr. Khalid Dheyaa Abdulwahid is an Assistant Professor at the College of Science, University of Diyala, Iraq. He obtained his Bachelor of Science degree in Microbiology from the University of Baghdad, followed by a Master of Science degree from the same university. He holds a PhD in Biology with a specialization in Botany. His research interests include Plant Ecology and Environment, Botany, Plant Physiology, Bioremediation, and Phytoremediation. He has authored and co-authored several scientific articles published in reputable national and international journals. He can be contacted via email at chechanikd75@uodiyala.edu.iq.

References

[1] S. F. Abuqamar, M. T. El-Saadony, S. S. Alkafaas, M. I. Elsalahaty, S. S. Elkafas, B. T. Mathew, et al., “Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings,” Marine Pollution Bulletin, vol. 206, p. 116613, 2024, doi: 10.1016/j.marpolbul.2024.116613.

[2] L. C. Pereira and D. J. Dorta, “Impact of pesticides on environmental and human,” in Toxicology Studies: Cells, Drugs and Environment, 2015, p. 195, doi: 10.5772/59710.

[3] S. Kadiru, S. Patil, and R. D’Souza, “Effect of pesticide toxicity in aquatic environments: A recent review,” Int. J. Fish. Aquat. Stud., vol. 10, pp. 113–118, 2022, doi: 10.22271/fish.2022.v10.i3b.2679.

[4] S. K. Chowdhury, M. Banerjee, D. Basnett, and T. Mazumdar, “Natural pesticides for pest control in agricultural crops: An alternative and eco-friendly method,” Plant Sci. Today, vol. 11, pp. 433–450, 2024, doi: 10.14719/pst.2547.

[5] M. Tudi, H. D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, et al., “Agriculture development, pesticide application and its impact on the environment,” Int. J. Environ. Res. Public Health, vol. 18, no. 3, p. 1112, 2021, doi: 10.3390/ijerph18031112.

[6] S. Fuhrimann, C. Wan, E. Blouzard, A. Veludo, Z. Holtman, S. Chetty-Mhlanga, et al., “Pesticide research on environmental and human exposure and risks in sub-Saharan Africa: A systematic literature review,” Int. J. Environ. Res. Public Health, vol. 19, no. 1, p. 259, 2021, doi: 10.3390/ijerph19010259.

[7] P. Prashar and S. Shah, “Impact of fertilizers and pesticides on soil microflora in agriculture,” in Sustainable Agriculture Reviews, vol. 19, pp. 331–361, 2016, doi: 10.1007/978-3-319-26777-7_8.

[8] J. Faburé, M. Hedde, S. Le Perchec, S. Pesce, E. Sucré, and C. Fritsch, “Role of trophic interactions in transfer and cascading impacts of plant protection products on biodiversity: A literature review,” Environ. Sci. Pollut. Res., vol. 32, no. 6, pp. 2993–3031, 2025, doi: 10.1007/s11356-024-35190-w.

[9] S. Shan, S. Y. Genç, H. W. Kamran, and G. Dinca, “Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey,” J. Environ. Manag., vol. 294, p. 113004, 2021, doi: 10.1016/j.jenvman.2021.113004.

[10] R. Prasad, Ed., Environmental Pollution and Remediation, vol. 118. Berlin, Germany: Springer, 2021, doi: 10.1007/978-981-15-5499-5.

[11] H. D. Hesketh, Air Pollution Control: Traditional Hazardous Pollutants. Boca Raton, FL, USA: CRC Press, 2023, doi: 10.1201/9781003424079.

[12] P. Deb, “Environmental pollution and the burden of food-borne diseases,” in Foodborne Diseases, Academic Press, 2018, pp. 473–500, doi: 10.1016/b978-0-12-811444-5.00014-2.

[13] M. Fermeglia and M. Perišić, “Nature-based solution to man-made problems: Fostering the uptake of phytoremediation and low-ILUC biofuels in the EU,” J. Eur. Environ. & Planning Law, vol. 20, no. 2, pp. 145–167, 2023, doi: 10.1163/18760104-20020007.

[14] R. Yadav, S. Singh, A. Kumar, and A. N. Singh, “Phytoremediation: A wonderful cost-effective tool,” in Cost Effective Technologies for Solid Waste and Wastewater Treatment, Elsevier, 2022, pp. 179–208, doi: 10.1016/b978-0-12-822933-0.00008-5.

[15] A. Kafle, A. Timilsina, A. Gautam, K. Adhikari, A. Bhattarai, and N. Aryal, “Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents,” Environ. Adv., vol. 8, p. 100203, 2022, doi: 10.1016/j.envadv.2022.100203.

[16] M. Ramzan, S. Sarwar, M. Z. Ahmad, R. Z. Ahmed, T. Hussain, and I. Hussain, “Phytoremediation of heavy metal-contaminated soil of Lyari River using bioenergy crops,” S. Afr. J. Bot., vol. 167, pp. 663–670, 2024, doi: 10.1016/j.sajb.2024.02.034.

[17] M. V. D. Almeida, S. R. Rissato, M. S. Galhiane, J. R. Fernandes, P. C. Lodi, and M. C. D. Campos, “In vitro phytoremediation of persistent organic pollutants by Helianthus annuus L. plants,” Quim. Nova, vol. 41, pp. 251–257, 2018, doi: 10.21577/0100-4042.20170177.

[18] M. O. Bello, O. M. Bello, and A. B. Ogbesejana, “Bioremediation potential of Helianthus annuus,” in Bioremediation and Phytoremediation Technologies in Sustainable Soil Management, Apple Academic Press, 2022, pp. 47–74, doi: 10.1201/9781003281177-4.

[19] P. Bakshi, R. Chouhan, P. Sharma, B. A. Mir, S. G. Gandhi, M. Landi, et al., “Amelioration of chlorpyrifos-induced toxicity in Brassica juncea L. by combination of 24-epibrassinolide and plant-growth-promoting rhizobacteria,” Biomolecules, vol. 11, no. 6, p. 877, 2021, doi: 10.3390/biom11060877.

[20] C. Zhang, F. He, and L. Chen, “Phytoremediation of cadmium-trichlorfon co-contaminated water by Indian mustard (Brassica juncea): Growth and physiological responses,” Int. J. Phytoremediation, vol. 26, no. 2, pp. 263–272, 2024, doi: 10.1080/15226514.2023.2237119.

[21] Y. Sui and H. Yang, “Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes,” Environ. Sci.: Process. Impacts, vol. 15, no. 12, pp. 2338–2344, 2013, doi: 10.1039/c3em00375b.

[22] R. Kaur, D. Singh, A. Kumari, G. Sharma, S. Rajput, S. Arora, and R. Kaur, “Pesticide residues degradation strategies in soil and water: A review,” Int. J. Environ. Sci. Technol., vol. 20, no. 3, pp. 3537–3560, 2023, doi: 10.1007/s13762-021-03696-2.

[23] K. Y. Lee, S. E. Strand, and S. L. Doty, “Phytoremediation of chlorpyrifos by Populus and Salix,” Int. J. Phytoremediation, vol. 14, no. 1, pp. 48–61, 2012, doi: 10.1080/15226514.2011.560213.

[24] S. Takkar, C. Shandilya, R. Agrahari, A. Chaurasia, K. Vishwakarma, S. Mohapatra, et al., “Green technology: Phytoremediation for pesticide pollution,” in Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water, Elsevier, 2022, pp. 353–375, doi: 10.1016/b978-0-323-85763-5.00008-8.

[25] F. Ahmad, S. Iqbal, S. Anwar, M. Afzal, E. Islam, T. Mustafa, and Q. M. Khan, “Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1,” J. Hazard. Mater., vol. 237, pp. 110–115, 2012, doi: 10.1016/j.jhazmat.2012.08.006.

[26] P. Castaldi, M. Silvetti, R. Manzano, G. Brundu, P. P. Roggero, and G. Garau, “Mutual effect of Phragmites australis, Arundo donax and immobilization agents on arsenic and trace metals phytostabilization in polluted soils,” Geoderma, vol. 314, pp. 63–72, 2018, doi: 10.1016/j.geoderma.2017.10.040.

[27] K. A. Wani, Z. M. Sofi, J. A. Malik, and J. A. Wani, “Phytoremediation of heavy metals using Salix (Willows),” in Bioremediation and Biotechnology, Vol. 2: Degradation of Pesticides and Heavy Metals, 2020, pp. 161–174, doi: 10.1007/978-3-030-40333-1_9.

[28] S. S. Rathore, K. Shekhawat, A. Dass, B. K. Kandpal, and V. K. Singh, “Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions,” Proc. Natl. Acad. Sci., India, Sect. B: Biol. Sci., vol. 89, no. 2, pp. 419–427, 2019, doi: 10.1007/s40011-017-0885-5.

[29] D. Raj, A. Kumar, and S. K. Maiti, “Brassica juncea (L.) Czern. (Indian mustard): A putative plant species to facilitate the phytoremediation of mercury contaminated soils,” Int. J. Phytoremediation, vol. 22, no. 7, pp. 733–744, 2020, doi: 10.1080/15226514.2019.1708861.

[30] M. Rodríguez and J. Brisson, “Pollutant removal efficiency of native versus exotic common reed (Phragmites australis) in North American treatment wetlands,” Ecol. Eng., vol. 74, pp. 364–370, 2015, doi: 10.1016/j.ecoleng.2014.11.005.

[31] L. Mabhungu, E. Adam, and S. W. Newete, “Monitoring of phytoremediating wetland macrophytes using remote sensing: The case of common reed (Phragmites australis (Cav.) Trin. ex Steud.) and the giant reed (Arundo donax L.): A review,” Appl. Ecol. Environ. Res., vol. 17, no. 4, 2019, doi: 10.15666/aeer/1704_79577972.

[32] A. Khatri, K. Kumar, and I. S. Thakur, “Emerging technologies for occurrence, fate, effect and remediation of organic contaminants in soil and sludge,” Syst. Microbiol. Biomanufacturing, vol. 5, no. 1, pp. 35–56, 2025, doi: 10.1007/s43393-024-00312-5.

[33] M. Fortin Faubert, D. Desjardins, M. Hijri, and M. Labrecque, “Willows used for phytoremediation increased organic contaminant concentrations in soil surface,” Appl. Sci., vol. 11, no. 7, p. 2979, 2021, doi: 10.3390/app11072979.

[34] H. A. Burezq and A. Aliewi, “Using phytoremediation by decaying leaves and roots of reed (Phragmites austratus) plant uptake to treat polluted shallow groundwater in Kuwait,” Environ. Sci. Pollut. Res., vol. 25, no. 34, pp. 34570–34582, 2018, doi: 10.1007/s11356-018-3385-0.

[35] S. Singh, V. Kumar, A. Chauhan, S. Datta, A. B. Wani, N. Singh, and J. Singh, “Toxicity, degradation and analysis of the herbicide atrazine,” Environ. Chem. Lett., vol. 16, no. 1, pp. 211–237, 2018, doi: 10.1007/s10311-017-0665-8.

[36] H. He, Y. Liu, S. You, J. Liu, H. Xiao, and Z. Tu, “A review on recent treatment technology for herbicide atrazine in contaminated environment,” Int. J. Environ. Res. Public Health, vol. 16, no. 24, p. 5129, 2019, doi: 10.3390/ijerph16245129.

[37] B. S. Zeb, M. T. Hayat, T. Zeb, F. Y. Khan, H. Z. Abbasi, I. Nawaz, and A. Ebadi, “Uptake of organic pollutants and the effects on plants,” in Sustainable Plant Nutrition under Contaminated Environments, Cham, Switzerland: Springer International Publishing, 2022, pp. 209–234, doi: 10.1007/978-3-030-91499-8_11.

[38] S. Akbar and S. Sultan, “Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement,” Brazilian J. Microbiol., vol. 47, no. 3, pp. 563–570, 2016, doi: 10.1016/j.bjm.2016.04.009.

[39] T. Kumari, D. Phogat, J. Phogat, and V. Shukla, “Biochar & fly ash amendments lower mortality and increase antioxidant activity in chlorpyrifos-exposed earthworms,” Appl. Biol. Chem., vol. 67, no. 1, p. 65, 2024, doi: 10.1186/s13765-024-00909-3.

[40] D. Shah, A. Kamili, N. Sajjad, S. Tyub, G. Majeed, S. Hafiz, et al., “Phytoremediation of pesticides and heavy metals in contaminated environs,” in Aquatic Contamination: Tolerance and Bioremediation, 2024, pp. 189–206, doi: 10.1002/9781119989318.ch12.

[41] F. Jia, Y. Sun, and X. G. Liu, “Comparison of phytoremediation of pesticides by different turfgrass species,” Int. Turfgrass Soc. Res. J., 2025, doi: 10.1002/its2.70095.

[42] T. Singh and D. K. Singh, “Phytoremediation of organochlorine pesticides: Concept, method, and recent developments,” Int. J. Phytoremediation, vol. 19, no. 9, pp. 834–843, 2017, doi: 10.1080/15226514.2017.1290579.

[43] J. Kumar, N. A. Malik, and N. S. Atri, “Aromatic and medicinal plants for phytoremediation: A sustainable approach,” in Medicinal and Aromatic Plants: Healthcare and Industrial Applications, Cham, Switzerland: Springer International Publishing, 2021, pp. 485–543, doi: 10.1007/978-3-030-58975-2_20.

[44] S. Anand, S. K. Bharti, S. Kumar, S. C. Barman, and N. Kumar, “Phytoremediation of heavy metals and pesticides present in water using aquatic macrophytes,” in Phyto and Rhizo Remediation, 2019, pp. 89–119, doi: 10.1007/978-981-32-9664-0_4.

[45] A. Mohrazi, R. Ghasemi-Fasaei, A. Mojiri, and S. S. Shirazi, “Investigating an electro-bio-chemical phytoremediation of multi-metal polluted soil by maize and sunflower using RSM-based optimization methodology,” Environ. Exp. Bot., vol. 211, p. 105352, 2023, doi: 10.1016/j.envexpbot.2023.105352.

[46] R. Dosnon-Olette, M. Couderchet, M. A. Oturan, N. Oturan, and P. Eullaffroy, “Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate,” Int. J. Phytoremediation, vol. 13, no. 6, pp. 601–612, 2011, doi: 10.1080/15226514.2010.525549.

[47] M. Sharma, S. Rawat, and A. Rautela, “Phytoremediation in sustainable wastewater management: An eco-friendly review of current techniques and future prospects,” AQUA—Water Infrastructure, Ecosyst. Soc., vol. 73, no. 9, pp. 1946–1975, 2024, doi: 10.2166/aqua.2024.427.

[48] L. Xiang, J. D. Harindintwali, F. Wang, M. Redmile-Gordon, S. X. Chang, Y. Fu, et al., “Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants,” Environ. Sci. Technol., vol. 56, no. 23, pp. 16546–16566, 2022, doi: 10.1021/acs.est.2c02976.

[49] A. K. Priya, M. Muruganandam, S. S. Ali, and M. Kornaros, “Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach,” Toxics, vol. 11, no. 5, p. 422, 2023, doi: 10.3390/toxics11050422.

[50] M. Aljabri, “Recent advances in pesticide bioremediation: Integrating microbial, phytoremediation, and biotechnological strategies—a comprehensive review,” Environ. Pollut. Bioavailability, vol. 37, no. 1, p. 2554173, 2025, doi: 10.1080/26395940.2025.2554173.

[51] A. P. Pinto, A. De Varennes, C. M. B. Dias, and M. E. Lopes, “Microbial-assisted phytoremediation: A convenient use of plant and microbes to clean up soils,” in Phytoremediation: Management of Environmental Contaminants, Vol. 6, Cham, Switzerland: Springer International Publishing, 2019, pp. 21–87, doi: 10.1007/978-3-319-99651-6_2.

[52] S. Menhas, X. Yang, K. Hayat, T. Aftab, J. Bundschuh, M. B. Arnao, et al., “Exogenous melatonin enhances Cd tolerance and phytoremediation efficiency by ameliorating Cd-induced stress in oilseed crops: A review,” J. Plant Growth Regul., vol. 41, no. 3, pp. 922–935, 2022, doi: 10.1007/s00344-021-10349-8.

[53] A. A. Aioub, Y. Li, X. Qie, X. Zhang, and Z. Hu, “Reduction of soil contamination by cypermethrin residues using phytoremediation with Plantago major and some surfactants,” Environ. Sci. Eur., vol. 31, no. 1, p. 26, 2019, doi: 10.1186/s12302-019-0210-4.

[54] L. Pan, L. Mao, H. Zhang, P. Wang, C. Wu, J. Xie, et al., “Modified biochar as a more promising amendment agent for remediation of pesticide-contaminated soils: Modification methods, mechanisms, applications, and future perspectives,” Appl. Sci., vol. 12, no. 22, p. 11544, 2022, doi: 10.3390/app122211544.

[55] S. Kumar and P. K. Trivedi, “Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants,” Front. Plant Sci., vol. 9, p. 751, 2018, doi: 10.3389/fpls.2018.00751.

[56] B. Nedjimi, “Phytoremediation: A sustainable environmental technology for heavy metals decontamination,” SN Appl. Sci., vol. 3, no. 3, p. 286, 2021, doi: 10.1007/s42452-021-04301-4.

[57] N. Papadopoulos and G. Zalidis, “The use of Typha latifolia L. in constructed wetland microcosms for the remediation of herbicide terbuthylazine,” Environ. Process., vol. 6, no. 4, pp. 985–1003, 2019, doi: 10.1007/s40710-019-00398-3.

[58] X. W. Chen, J. T. F. Wong, J. J. Wang, and M. H. Wong, “Vetiver grass-microbe interactions for soil remediation,” Crit. Rev. Environ. Sci. Technol., vol. 51, no. 9, pp. 897–938, 2021, doi: 10.1080/10643389.2020.1738193.

[59] L. Di Stasio, A. Gentile, D. N. Tangredi, P. Piccolo, G. Oliva, G. Vigliotta, et al., “Urban phytoremediation: A nature-based solution for environmental reclamation and sustainability,” Plants, vol. 14, no. 13, p. 2057, 2025, doi: 10.3390/plants14132057.

[60] Q. Li, D. Wen, C. Qin, Y. Qian, R. Fu, and S. Lin, “Physical, chemical, biological, and synergistic technologies for remediation of pesticide-contaminated soil,” Rev. Environ. Contam. Toxicol., vol. 262, no. 1, p. 7, 2024, doi: 10.1007/s44169-024-00058-0.

[61] O. X. Dong and P. C. Ronald, “Genetic engineering for disease resistance in plants: Recent progress and future perspectives,” Plant Physiol., vol. 180, no. 1, pp. 26–38, 2019, doi: 10.1104/pp.18.01224.

[62] X. K. Chia, T. Hadibarata, R. A. Kristanti, M. N. H. Jusoh, I. S. Tan, and H. C. Y. Foo, “The function of microbial enzymes in breaking down soil contaminated with pesticides: A review,” Bioprocess Biosyst. Eng., vol. 47, no. 5, pp. 597–620, 2024, doi: 10.1007/s00449-024-02978-6.

[63] P. R. M. Lopes, V. H. Cruz, A. B. De Menezes, B. P. Gadanhoto, B. R. D. A. Moreira, C. R. Mendes, et al., “Microbial bioremediation of pesticides in agricultural soils: An integrative review on natural attenuation, bioaugmentation and biostimulation,” Rev. Environ. Sci. Biotechnol., vol. 21, no. 4, pp. 851–876, 2022, doi: 10.1007/s11157-022-09637-w.

[64] M. Saeed, N. Ilyas, K. Jayachandran, S. Shabir, N. Akhtar, A. Shahzad, et al., “Advances in biochar and PGPR engineering system for hydrocarbon degradation: A promising strategy for environmental remediation,” Environ. Pollut., vol. 305, p. 119282, 2022, doi: 10.1016/j.envpol.2022.119282.

[65] A. G. Capodaglio, “Critical perspective on advanced treatment processes for water and wastewater: AOPs, ARPs, and AORPs,” Appl. Sci., vol. 10, no. 13, p. 4549, 2020, doi: 10.3390/app10134549.

.

Downloads

Published

2026-01-30

How to Cite

Abdulwahid, K. D. (2026). Phytoremediation Technique for Pesticide-Contaminated Environments as a Green and Eco-Friendly Approach: A Review. ٍِASJ - Academic Science Journal, 4(1), 82-91. https://doi.org/10.24237/04.01.803

Similar Articles

21-28 of 28

You may also start an advanced similarity search for this article.