A Brief Review Bio-Synthesized Silver Nanoparticles and Their Antimicrobial Potential
DOI:
https://doi.org/10.24237/ASJ.02.03.766CKeywords:
Silver nanoparticles; Bio-synthesis; Applications; Antimicrobial activity; Toxicity.Abstract
The synthesis, applications, and antimicrobial investigation of Silver Nanoparticles (AgNPs) have been indicated in several studies. However, only few studies were published characterizing the features of biologically synthesized AgNPs. Silver also, it salts long been employed by the old civilizations without reporting sides effects on the human health. While, Ag NPs has been just recently produced and used in the industrial, agricultural and medical applications. Regarding pharmaceutical applications, AgNPs have been used as antimicrobial and antioxidants agent because of the generation of free radicals (- o2) and reactive oxygen species (ROS), which cell killing/inhibition. The small size of AgNPs is facilitating their diffusion into cell lead to cell wall rupture. However, the small sized-AgNPs are associated with their toxicity, the smaller size nanoparticles, and the more toxic ones. AgNPs toxicity also depends on the environment's pH and concentration, in addition to size. In addition to discussing their antibacterial action and toxicity, this study will cover the numerous AgNPs manufacturing techniques and uses.
References
J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), 1050-1074(2018) (2018)
G. Arya, N. Sharma, R. Mankamna, S. Nimesh, Antimicrobial silver nanoparticles: future of nanomaterials. Microbial Nanobionics, 2, Basic Research and Applications, 89-119(2019)
V. K. Sharma, R. A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Advances in colloid and interface science, 145(1-2), 83-96(2009)
A. Panáček, M. Smékalová, R. Večeřová, K. Bogdanová, M. Röderová, M. Kolář, L. Kvítek, Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae, Colloids and Surfaces B: Biointerfaces, 142, 392-399
T. T. D. Tran, T. N. Nguyen, Applications of silver nanoparticles in biomedical engineering. In Handbook of Nanomaterials for Industrial Applications, 375-398(2020)
R. Singh, D. Singh, P. Parihar, Silver nanoparticles: environmental applications and implications, Journal of Nanobiotechnology, 16(1), 1-20(2018)
P. J. P. Espitia, N. F. F. Soares, J. S. R. Coimbra, N. J. de Andrade, R. S. Cruz, E. A. A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications, Food and Bioprocess Technology, 5(5), 1447-1464(2012)
A. Wimmer, R. Kruk, Silver nanoparticles for electronics applications, In Handbook of Nanomaterials for Industrial Applications, 399-426(2019)
S. Senapati, Biosynthesis and immobilization of nanoparticles and their applications, University of pune, India, (2005)
Y. Ju-Nam, J. R. Lead, Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications, Science of the total environment, 400(1-3), 396-414(2008)
A. H. Lu, E. E. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angewandte Chemie International Edition, 46(8), 1222-1244(2007)
R. Y. Sweeney, C. Mao, X. Gao, J. L. Burt, Synthesis of silver nanoparticles using a laser ablation-in-liquid method, Journal of visualized experiments: JoVE, (114), e53851(2016)
E. Surenjav, B. Buyankhishig, N. Byamba-Ochir, N. Davaadorj, Z. Q. Song, O. Tegus, Synthesis of silver nanoparticles by hydrothermal processing, In Solid State Phenomena , 323, Trans Tech Publications Ltd, 1-7(2021)
C. Quintero-Quiroz, N. Acevedo, J. Zapata-Giraldo, L. E. Botero, J. Quintero, D. Zárate-Triviño, V. Z. Pérez, Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity, Biomaterials research, 23(1), 1-15(2019)
I. N. Rizki, W. Klaypradit, Utilization of marine organisms for the green synthesis of silver and gold nanoparticles and their applications: A review, Sustainable Chemistry and Pharmacy, 31, 100888(2023)
S. Fahimirad, F. Ajalloueian, M. Ghorbanpour, Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts, Ecotoxicology and environmental safety, 168, 260-278(2019)
Z. A. Ratan, M. F. Haidere, M. D. Nurunnabi, S. M. Shahriar, A. S. Ahammad, Y. Y. Shim, J. Y. Cho, Green chemistry synthesis of silver nanoparticles and their potential anticancer effects, Cancers, 12(4), 855(2020)
N. I. Hulkoti, T. C. Taranath, Biosynthesis of nanoparticles using microbes—a review, Colloids and surfaces B: Biointerfaces, 121, 474-483(2014)
R. Singh, U. U. Shedbalkar, S. A. Wadhwani, B. A. Chopade, Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications, Applied microbiology and biotechnology, 99, 4579-4593(2015)
S. Kumar, M. K. Abyaneh, S. W. Gosavi, S. K. Kulkarni, R. Pasricha, A. Ahmad, M. I. Khan, Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO 3, Biotechnology letters, 29, 439-445(2007)
S. Prabhu, E. K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, International nano letters, 2, 1-10(2012)
K. Rajput, S. Raghuvanshi, A. Bhatt, S. K. Rai, P. K. Agrawal, A review on synthesis silver nano-particles, Int J Curr Microbiol App Sci, 6(7), 1513-1528(2017)
S. Shivaji, S. Madhu, S. Singh, Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria, Process Biochemistry, 46(9), 1800-1807(2011)
S. Priyadarshini, V. Gopinath, N. M. Priyadharsshini, D. MubarakAli, P. Velusamy, Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application, Colloids and Surfaces B: Biointerfaces, 102, 232-237(2013)
K. B. Narayanan, N. Sakthivel, Biological synthesis of metal nanoparticles by microbes, Advances in colloid and interface science, 156(1-2), 1-13(2010)
S. K. Srivastava, M. Constanti, Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1, Journal of Nanoparticle Research, 14, 1-10(2012)
P. Prasher, M. Singh, H. Mudila, Oligodynamic effect of silver nanoparticles: A review, BioNanoScience, 8, 951-962(2018)
S. Peng, Y. Chen, X. Jin, W. Lu, M. Gou, X. Wei, J. Xie, Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti‒biofouling performance, Journal of Membrane Science, 611, 118340(2020)
Q. Shi, H. Zhang, H. Zhang, P. Zhao, Y. Zhang, Y. Tang, Polydopamine/silver hybrid coatings on soda-lime glass spheres with controllable release ability for inhibiting biofilm formation, SCIENCE CHINA Materials, 63(5), 842-850(2020)
H. Hajizadeh, S. J. Peighambardoust, S. H. Peighambardoust, D. Peressini, Physical, mechanical, and antibacterial characteristics of bionanocomposite films loaded with Ag‐modified SiO2 and TiO2 nanoparticles, Journal of food science, 85(4), 1193-1202(2020)
O. Akhavan, E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts, Surface and Coatings Technology, 205(1), 219-22(2010)
Y. N. Slavin, J. Asnis, U. O. Hńfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, Journal of nanobiotechnology, 15, 1-20(2017)
A. Kędziora, M. Speruda, E. Krzyżewska, J. Rybka, A. Łukowiak, G. Bugla-Płoskońska, Similarities and differences between silver ions and silver in nanoforms as antibacterial agents, International journal of molecular sciences, 19(2), 444(2018)
O. Choi, C. P. Yu, G. E. Fernández, Z. Hu, Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures, Water research, 44(20), 6095-6103(2010)
S. S. I. Abdalla, H. Katas, J. Y. Chan, P. Ganasan, F. Azmi, M. F. M. Busra, Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan, RSC advances, 10(9), 4969-4983(2020)
R. B. K. Wakshlak, R. Pedahzur, D. Avnir, Antibacterial activity of silver-killed bacteria: the" zombies" effect, Scientific reports, 5(1), 9555(2015)
W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, Y. B. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Applied microbiology and biotechnology, 85, 1115-1122(2010)
H. Katas, M. A. G. Raja, K. L. Lam, Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA, International Journal of Biomaterials, (2013)
S. Hu, T. Yi, Z. Huang, B. Liu, J. Wang, X. Yi, J. Liu, Etching silver nanoparticles using DNA, Materials Horizons, 6(1), 155-159(2019)
L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, Y. Qin, Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies, International journal of nanomedicine, 13, 3311(2018)
H. Bouwmeester, S. Dekkers, M. Y. Noordam, W. I. Hagens, A. S. Bulder, C. De Heer, A. J. Sips, Review of health safety aspects of nanotechnologies in food production, Regulatory toxicology and pharmacology, 53(1), 52-62(2009)
W. Shao, X. Liu, H. Min, G. Dong, Q. Feng, S. Zuo, Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite, ACS applied materials & interfaces, 7(12), 6966-6973(2015)
A. M. Schrand, M. F. Rahman, S. M. Hussain, J. J. Schlager, D. A. Smith, A. F. Syed, Metal‐based nanoparticles and their toxicity assessment, Wiley interdisciplinary reviews: Nanomedicine and Nanobiotechnology, 2(5), 544-566 scientific review office, 919-541(2010)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 CC BY 4.0
This work is licensed under a Creative Commons Attribution 4.0 International License.