Physical characterization of Cu2BaSnS4 thin films deposited at different concentrations of sulfur ions by chemical pyrolysis method
DOI:
https://doi.org/10.24237/Keywords:
Cu2BaSnS4, chemical pyrolysis, thin films, structural properties, optical propertiesAbstract
In this work, Cu2BaSnS4 thin films were deposited on soda-lime glass by the chemical spray pyrolysis technique (CSP) at different concentrations of thiourea, with a thickness of about 350 ±10 nm measured by the gravimetric method. The thin films structural and morphological properties were investigated using X-ray diffraction (XRD), Raman spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), and Atomic Force Microscopy (AFM), as well as optical properties using a UV-Vis spectrophotometer at the wavelength range (300–900) nm. We investigated the electrical properties using the Hall effect. Optical band gap of CBTS thin films increased from (1.757 to 1.923) eV when concentrations of thiourea increased from (0.04 to 0.12) M. The Cu2BaSnS4 (CBTS) films have a high absorption coefficient (α > 104 cm-1), indicating allowed direct electron transmission. XRD measurements of Cu2BaSnS4 (CBTS) films revealed a trigonal crystal structure. The XRD pattern preferred the (104) orientation, which has a high intensity and indicates that crystallization is most likely to occur along this plan. Raman spectroscopy of CBTS thin films revealed a protruding peak at ~341 cm-1. The morphological findings and FE-SEM photographs of the thin film surface revealed a variety of structures and forms, one of which resembled cauliflower. Electrical tests revealed the conductivity of (p-type). The calculated electrical conductivity of CBTS thin films was found in the range of 0.053 - 0.184 (Ω.cm)-1. Based on our findings, the Cu2BaSnS4 (CBTS) thin films look to be an excellent choice for an absorber layer in solar cells.
Downloads
References
[1] S. Nivetha, K. Kaviyarasu, A. Ayeshamariam, N. Punithavelan, R. Perumalsamy, A. K. Diallo, G. Ramalingam, S. B. Mohamed, D. Letsholathebe, C. M. Magdalane, M. Jayachandran, Optical and Structural Properties of Fluorine Doped SnO2 on Si (100) for Photovoltaic Application, Journal of Nanoelectronics and Optoelectronics, (2018), DOI(https://doi.org/10.1166/jno.2018.2383)
[2] Y. Thaver, S.O. Oseni, & G.T. Mola, Silver doped nickel oxide nanocomposite and photon harvesting enhancement in bulk heterojunction organic solar cell, Solar Energy, 214, 11-18 (2021), DOI(https://doi.org/10.1016/j.solener.2020.11.044)
[3] S. Sebastian, I. Kulandaisamy, S. Valanarasu, I.S. Yahia, H. Kim, & D. Vikraman, Microstructural and electrical properties evaluation of lead doped tin sulfide thin films, Journal of Sol-Gel Science and Technology, 93, 52-61(2019), DOI(https://doi.org/10.1007/s10971-019-05169-y)
[4] A.C. Lokhande, K.V. Gurav, E.A. Jo, C.D. Lokhande, & J.H. Kim, Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: A status review, Journal of Alloys and Compounds, 656, 295-310(2016), DOI(https://doi.org/10.1016/j.jallcom.2015.09.232)
[5] D. Naveena, T. Logu, R. Dhanabal, K. Sethuraman, & A.C. Bose, Comparative study of effective photoabsorber CuO thin films prepared via different precursors using chemical spray pyrolysis for solar cell application, Journal of Materials Science: Materials in Electronics, 30, 561-572(2019), DOI(https://doi.org/10.1007/s10854-018-0322-4)
[6] M. N. Harif, K.S. Rahman, C. Doroody, H.N. Rosly, M. Isah, M.A. Alghoul, H. Misran, & N. Amin, Microstructural evolution of oxygen incorporated CdTe thin films deposited by close-spaced sublimation, Materials Letters, (2021), DOI(https://doi.org/10.1016/j.matlet.2021.130552)
[7] A. Kotbi, B. Hartiti, S. Fadili, A. Ridah, & P. Thevenin, Some physical parameters of CuInGaS2 thin films deposited by spray pyrolysis for solar cells, Applied Physics A, 123, 1-8 (2017), DOI(https://doi.org/10.1007/s00339-017-0981-7)
[8] A. Ziti, B. Hartiti, H. Labrim, S. Fadili, A. Batan, M. Tahri, A. Ridah, O. Mounkachi, A. Benyoussef, & P. Thevenin, Characteristics of kesterite CZTS thin films deposited by dip-coating technique for solar cells applications, Journal of Materials Science: Materials in Electronics, 1-10(2019), DOI(https://doi.org/10.1088/1402-4896/ac6d1f)
[9] M. A. Green, E.D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, & X. Hao, Progress in Photovoltaics: Research and Applications, 29, 15 – 3(2020), DOI(https://doi.org/10.1002/pip.3303)
[10] C. Malerba, F. Biccari, C.L. Azanza Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E.M. Esposito, P. Mangiapane, P. Scardi, & A. Mittiga, CZTS stoichiometry effects on the band gap energy, Journal of Alloys and Compounds, 582, 528-534(2014), DOI(https://doi.org/10.1039/C6TA01558A)
[11] S. M. Abdullah, N.A. Bakr, & S.A. Salman, Structural, optical, and electrical properties of Ag2ZnSnS4 sprayed thin films by chemical pyrolysis method, Chalcogenide Letters, (2021), DOI(https://doi.org/10.15251/CL.2021.182.65)
[12] I. M. El Radaf, & H.Y. Al-Zahrani, Facile Synthesis and Structural, Linear and Nonlinear Optical Investigation of p-type Cu2ZnGeS4 Thin Films as a Potential Absorber Layer for Solar Cells, Journal of Electronic Materials, 49, 4843 – 4851(2020), DOI(https://doi.org/10.1016/j.tsf.2019.02.049)
[13] I. M. El Radaf, H. I. Elsaeedy, H. A. Yakout, & M. T. El Sayed, Junction Parameters and Electrical Characterization of the Al/n-Si/Cu2CoSnS4/Au Heterojunction, Journal of Electronic Materials, 48, 6480 – 6486(2019), DOI(https://doi.org/10.1007/s11664-019-07445-7)
[14] S. Dridi, N. Bitri, & M. Abaab, Synthesis of quaternary Cu2NiSnS4 thin films as a solar energy material prepared through «spray» technique, Materials Letters, 204, 61-64(2017), DOI(https://doi.org/10.1016/j.matlet.2017.06.028)
[15] X. Miao, R. Chen, & W. Cheng, Synthesis and characterization of Cu2FeSnS4 thin films prepared by electrochemical deposition, Materials Letters, 193, 183-186(2017), DOI(https://doi.org/10.1016/j.matlet.2017.01.099)
[16] Y. Al-Douri, A. O. Odeh, M.R. Johan, Z. Z. Chowdhury, R. F. Rafique, A. H. Reshak, & C. H. Voon, Synthesis and Characterization of Cu2CdSnS4 Quaternary Alloy Nanostructures, International Journal of Electrochemical Science, (2018), DOI(https://doi.org/10.20964/2018.07.45)
[17] H. Guo, C. Ma, Z. Chen, X. Jia, Q. Cang, N. Yuan, & J. Ding, The fabrication of Cu2BaSnS4 thin film solar cells utilizing a maskant layer, Solar Energy, (2019), DOI(https://doi.org/10.1016/j.solener.2019.02.007)
[18] Z. Chen, K. Sun, Z. Su, F. Liu, D. Tang, H. Xiao, L. Shi, L. Jiang, X. Hao, & Y. Lai, Solution-Processed Trigonal Cu2BaSnS4 Thin-Film Solar Cells, ACS Applied Energy Materials, (2018), DOI(https://doi.org/10.1021/acsaem.8b00514)
[19] M. S. Kumar, S. P. Madhusudanan, S. C. Kanth, K. Mohanta, & S. K. Batabyal, Solution phase fabrication of photoactive Cu2BaSnS4 thin films for solar energy harvesting, Journal of solid state electrochemistry, 24, 305-311(2019), DOI(https://doi.org/10.1007/s10008-019-04418-y)
[20] M. S. Kumar, S. P. Madhusudanan, & S. K. Batabyal, Solution-processed photoactive trigonal Cu2BaSnS4 thin films for efficient solar energy harvesting, Materials Characterization, 174, 110988(2021), DOI(https://doi.org/10.1016/j.matchar.2021.110988)
[21] E. Djatoubai, & J. Su, First spray pyrolysis thin film fabrication of environment-friendly Cu2BaSnS4 (CBTS) nanomaterials. Chemical Physics Letters, 770, 138406(2021), DOI(https://doi.org/10.1016/j.cplett.2021.138406)
[22] J. Leng, Z. Wang, J. Wang, H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, & Z. Guo, Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion, Chemical Society reviews, 48 11, 3015-3072(2019), DOI(https://doi.org/10.1039/C8CS00904J)
[23] H. Luo, J. Chen, X. Zhang, S. Wang, H. Gu, W. Wang, & H. Li, Controlled synthesis of high efficiency Cu2BaSnS4 solar cells via a solution processed method, Materials Letters, 270, 127750(2020), DOI(https://doi.org/10.1016/j.matlet.2020.127750)
[24] A. Ziti, B. Hartiti, S, Smairi, H. Labrim, Y. Nouri, H.J. Nkuissi, & P. Thevenin, Optical investigations of Cu2BaSnS4 quaternary nanostructure absorbers deposited by dip-coating technique, Journal of Materials Science: Materials in Electronics, 33(32), 24477-24492(2022), DOI(https://doi.org/10.1007/s10854-022-09160-2)
[25] X. Zhang, E. Fu, Y. Wang, & C. Zhang, Fabrication of Cu2ZnSnS4 (CZTS) nanoparticle inks for growth of CZTS films for solar cells, Nanomaterials, 9(3), 336(2019), DOI(https://doi.org/10.3390/nano9030336)
[26] P. S. Maldar, A. Mane, S. S. Nikam, S. D. Dhas, & A. V. Moholkar, Spray deposited Cu2CoSnS4 thin films for photovoltaic application: Effect of film thickness, Thin Solid Films, 709, 138236(2020), DOI(https://doi.org/10.1016/j.tsf.2020.138236)
[27] A. D. Sharma, P. Sahoo, A. K. Singha, S. Padhan, & R. Thangavel, Visible-light induced photosplitting of water using solution-processed Cu2BaSnS4 photoelectrodes and a tandem approach for development of Pt-free photoelectrochemical cell, Materials Science in Semiconductor Processing, 121, 105433(2021), DOI(https://doi.org/10.1016/j.mssp.2020.105433)
[28] W. D. Callister Jr, & D. G. Rethwisch, Fundamentals of Materials Science and Engineering: n Integrated Approach, 5th Edition. (John Wiley & Sons, New Jersey, 2018), 817-821
[29] J. Robertson, Electronic structure of amorphous semiconductors, Advances in Physics, 32(3), 361–452(1983), DOI(https://doi.org/10.1080/00018738300101571)
[30] F. Hong, W. Lin, W. Meng, & Y. Yan, Trigonal Cu2-II-Sn-VI4 (II= Ba, Sr and VI= S, Se) quaternary compounds for earth-abundant photovoltaics, Physical Chemistry Chemical Physics, 18(6), 4828-4834(2016), DOI(https://doi.org/10.1039/C5CP06977G)
[31] J. Ge, P. Koirala, C. R. Grice, P. J. Roland, Y. Yu, X. Tan, R. J. Ellingson, R. W. Collins, & Y. Yan, Oxygenated CdS Buffer Layers Enabling High Open–Circuit Voltages in Earth–Abundant Cu2BaSnS4 Thin–Film Solar Cells, Advanced Energy Materials, 7(6), 1601803, (2017), DOI(https://doi.org/10.1002/aenm.201601803)
[32] S. J. Ikhmayies, & R. N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: In thin films, Journal of Materials Research and Technology, 2(3), 221-227(2013), DOI(https://doi.org/10.1016/j.jmrt.2013.02.012)
[33] N. Mahdi, & N.A. Bakr, Effect of Na Doping on Some Physical Properties of Chemically Sprayed CZTS Thin Films, East European journal of physics, 3, 84-90(2022), DOI(https://doi.org/10.26565/2312-4334-2022-3-11)
[34] R. A. Abdullah, N. A. Bakr, & K. Diwate, Physical properties of Cu2MgSnS4 thin films prepared by chemical spray pyrolysis technique: The effect of thiourea concentration, Chalcogenide Letters, (2022), DOI(https://doi.org/10.15251/CL.2022.1910.691)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.