Thermostable Lipase from Geothermal Thermophiles: Biochemical Characterization and Industrial Application Potential

Authors

DOI:

https://doi.org/10.24237/ASJ.03.04.996D

Keywords:

Microbial lipases, Thermostable enzymes, Biodiesel production, Enzyme purification, Thermophilic bacteria, Industrial biotechnology

Abstract

Thermophilic lipase-producing microorganism’s present important industrial benefits owing to their stability and catalytic activity under extreme environmental conditions. This study sought to isolate and somewhat purify thermostable lipases from thermophilic bacteria collected from geothermal soils in (Hajj Yousef and Qaymawa, Iraq). A total of 68 samples were collected from hot springs at various depths and analyzed for lipase production utilizing tributyrin agar. Promising isolates were identified as Bacillus subtilis, Bacillus thermoleovorans, and Acidithiobacillus ferrooxidans. The lipase enzyme was purified using ammonium sulfate precipitation trailed by size-exclusion chromatography, yielding a 12-fold purification with 65% recuperation. SDS-PAGE revealed a single protein band of ~35 kDa. The enzyme exhibited optimum activity at 70°C and pH 9.0 and retained 85% activity at 80°C and in alkaline pH. Kinetic analysis showed a Km of 2.1 mM and Vmax of 120 U/mg. The enzyme demonstrated substrate specificity toward olive oil and stability in methanol, Ca2+, and SDS. Application trials confirmed 92% conversion of used oil to biodiesel and 80% fat degradation in wastewater. These findings highlight the enzyme's potential in sustainable biotechnology.

Downloads

Download data is not yet available.

References

[1] A. Navvabi, M. Razzaghi, P. Fernandes, L. Karami, and A. Homaei, Novel lipases discovery specifically from marine organisms for industrial production and practical applications, Process Biochemistry, 70, 61-70(2018), DOI(https://doi.org/10.1016/J.PROCBIO.2018.04.018)

[2] A. L. Reyes-Reyes, F. Valero Barranco, G. Sandoval, Recent Advances in Lipases and Their Applications in the Food and Nutraceutical Industry, Catalysts, 12, 960(2022), DOI(https://doi.org/10.3390/catal12090960)

[3] C. A. Salgado, C. I. A. dos Santos, and M. Crist, Microbial lipases: Propitious biocatalysts for the food industry, Food Bioscience, 45, (2022), DOI(https://doi.org/10.1016/j.fbio.2021.101509)

[4] P. Chandra, R. Enespa, A. P. K. Singh, Microbial lipases and their industrial applications: a comprehensive review, Microb Cell Fact, 19(1), 169(2020), DOI(https://doi.org/10.1186/s12934-020-01428-8)

[5] K. Vivek, G.S. Sandhia; S. Subramaniyan, Extremophilic lipases for industrial applications: A general review, Biotechnology Advances, 60, 2022.

[6] L. Hebin, and X. Zhang, Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1, Protein Expression and Purification, 42(1), 153-159(2005), DOI(https://doi.org/10.1016/j.pep.2005.03.011)

[7] M. Guta, G. Abebe, K. Bacha, and P. Cools, Screening and characterization of thermostable enzyme-producing bacteria from selected hot springs of Ethiopia, Microbiol Spectr., 12(3), (2024), DOI(https://doi.org/10.1128/spectrum.03710-23)

[8] S. Ali, S. Khan, M. Hamayun, and I. Lee, The Recent Advances in the Utility of Microbial Lipases: A Review, Microorganisms, 11(2), 510(2023), DOI(https://doi.org/10.3390/microorganisms11020510)

[9] K. Ameni, N. Krayem, A. Aloulou, B. Sofiane, A. Sayari, M. Chamkha and A. Karray, Purification, biochemical and molecular study of lipase producing from a newly thermoalkaliphilic Aeribacillus pallidus for oily wastewater treatment, Journal of biochemistry, 167, (2019), DOI(https://doi.org/10.1093/jb/mvz083)

[10] T. Miao, Y. Lingmei, L. Pengmei, W. Zhiyuan, F. Junying, M. Changlin, L. Zhibing, L. Lianhua, L. Tao, D. Wenyi, and L. Wen, Improvement of methanol tolerance and catalytic activity of Rhizomucor miehei lipase for one-step synthesis of biodiesel by semi-rational design, Bioresource Technology, 348, (2022), DOI(https://doi.org/10.1016/j.biortech.2022.126769)

[11] Monika, B. Sangita, and P. V. Vinayak, Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts, Energy Nexus, 10, (2023), DOI(https://doi.org/10.1016/j.nexus.2023.100209)

[12] Y. L. Min, C. Eng-Seng, Z. N. Wei, and P. S. Cher, Enhancing efficiency of ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 at low lipase concentration: Enzyme characterization and process optimization, International Journal of Biological, 271(2), (2024), DOI(https://doi.org/10.1016/j.ijbiomac.2024.132538)

[13] G. Siódmiak, G. Haraldsson, J. Dulęba, M. Ziegler-Borowska, J. Siódmiak and M. P. Marszałł, Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica, Catalysts, 10(8), 876(2020), DOI(https://doi.org/10.3390/catal10080876)

[14] N. Sharma , N. Stalin , Y. K. Ahlawat, S. Mehmood, S. Morya, A. M. Malik, J. Nellore and D. Bhanot, Microbial Enzymes in Industrial Biotechnology: Sources, Production, and Significant Applications of Lipases, Journal of industrial microbiology & biotechnology, 25(10), (2024), DOI(https://doi.org/10.1093/jimb/kuaf010)

[15] M. Debashrita, D. Ankita Dey, R. Srimanta, B. Debasmita, N. Moupriya, and L. Dibyajit, Use of genomics & proteomics in studying lipase producing microorganisms & its application, Food Chemistry: Molecular Sciences, 9, (2024), DOI(https://doi.org/10.1016/j.fochms.2024.100218)

[16] B. He, N. Li, Y. Qin, L. Xian, J. Zhou, S. Liu, J. Zhang, J. Wu, Q. Wang, and X. Liang, Gene Cloning, Purification, and Characterization of a Cold-Active Alkaline Lipase from Bacillus cereus U2, Fermentation, 7(365), 11(2025), DOI(https://doi.org/10.3390/fermentation11070365)

[17] F. Ahmad, and B. Lajis, Realm of Thermoalkaline Lipases in Bioprocess Commodities, Journal of Lipids, 1, 22(2018), DOI(https://doi.org/10.1155/2018/5659683)

[18] S. M. A. Ahmed, and T. S. Ziad, Extraction, Partial Purification and Characterization of Lipase Enzyme from Different Animal and Plant Sources, Diyala Agricultural Sciences Journal, 16(2), 40-51(2024), DOI(https://dx.doi.org/10.52951/dasj.24160204)

[19] K. M. Martini, S. S. Boddu, I. Nemenman, and N. M. Vega, Maximum likelihood estimators for colony-forming units, Microbiology spectrum, 12(9), (2024), DOI(https://doi.org/10.1128/spectrum.03946-23)

[20] F. A. M. Al-Dhabaan, and A. H. Bakhali, Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community, Saudi Journal of Biological Sciences, 24(4), 901-906(2017), DOI(https://doi.org/10.1016/j.sjbs.2016.01.043)

[21] A. H. Raziq, A. F. Redha, and R. A. Hanoon, Lipase from S. aureus, Purification and Application of Three Characterizing Experiments, Kerbala journal of pharmaceutical sciences, 9, 6-15(2015)

[22] SAB, Manual of microbiological methods, in Society of American Bacteriologists, (New York, McGraw Hill Book Company Inc, 1957), 315

[23] G. W. Claus, Understanding microbes, in 4th ed, (New York, W. H. Freman and Company, 1995), 547

[24] T. Rohomania, M. L. Saha, A. Hossain, and M. S. Rahma, Morphological and Biochemical Characterization of Bacteria Isolated from Fresh and Salted Hilsa, Tenualosa ilisha (Hamilton, 1822), Bangladesh J Microbiol, 32(1&2), 07-13(2015), DOI(https://doi.org/10.3329/bjm.v32i0.28471)

[25] J. M. Tomczak, and E. W. glarz-Tomczak, Estimating kinetic constants in the Michaelis–Mentenmodel from one enzymatic assay using ApproximateBayesian Computation, FEBS Letters, 593(19), 2699-2799(2019), DOI(https://doi.org/10.1002/1873-3468.13531)

[26] H. Libing, S. Xiangyang, L. Suyan, Z. Wenzhi, C. Zhe, and B. Xueting, The vertical distribution and control factor of microbial biomass and bacterial community at macroecological scales, Science of The Total Environment, 869, (2023), DOI(https://doi.org/10.1016/j.scitotenv.2023.161754)

[27] E. G. Lebedeva, I. V. Bragin, A. A. Pavlov, and D. A. Rusakova, Hydrochemistry, microbial ecology and physiological-biochemical properties of isolated bacteria of Tyrma hot spring (Far East of Russia), Limnologica, 112, (2025), DOI(https://doi.org/10.1016/j.limno.2025.126255)

[28] B. T. Mohammad, H. I. Al Daghistani, A. Jaouani, S. Abdel-Latif, and C. Kennes, Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes, International journal of microbiology, 20(17), (2017), DOI(https://doi.org/10.1155/2017/6943952)

[29] P. Shreyansh, C. Kamlesh, A. S. Er, K. R. Piyush, K. A. Vivek, and S. G. Sourabh, Lipase producing thermophilic bacteria isolation and characterization from hot springs of Central India., National Journal of Life Sciences, 17(2), 91-96(2020), DOI(https://doi.org/10.51365/NJLS.2020.v17i02.003)

[30] F. A. Riyadi, M. Z. Alam, M. N. Salleh, H. M. Salleh, and I. M. Hida, Characterization of a thermostable-organic solvent-tolerant lipase from thermotolerant Rhizopus sp. strain PKC12B2 isolated from palm kernel cake, Case Studies in Chemical and Environmental Engineering, 9, (2024), DOI(https://doi.org/10.1016/j.cscee.2024.100721)

[31] Z. Hu, L. Jiao, X. Xie, L. Xu, J. Yan, and M. Y. Yang, Characterization of a New Thermostable and Organic Solution-Tolerant Lipase from Pseudomonas fluorescens and Its Application in the Enrichment of Polyunsaturated Fatty Acids, International journal of molecular sciences, 24, (2023), DOI(https://doi.org/10.3390/ijms24108924)

[32] S. R. Adina, A. Suwanto, A. Meryandini, and E. Puspitasari, Expression of novel acidic lipase from Micrococcus luteus in Pichia pastoris and its application in transesterification, Journal of Genetic Engineering and Biotechnology, 19(1), 55(2021), DOI(https://doi.org/10.1186/s43141-021-00155-w)

[33] T. A. V. Nguyen, T. D. Le, H. N. Phan, and L. B.Tran, Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources, Nguyen, T. A. V., Le, T. D., Phan, H. N., & Tran, L. B., (2018)

[34] B. Andrea, M. d. S. Alexandre, F. S. Mirela, G. G. Cristina, A. Z. A. Marco, F. L. Roberto, and C. R. Rafael, Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters, Journal of Molecular Catalysis B Enzymatic, 105, (2014), DOI(https://doi.org/10.1016/j.molcatb.2014.03.021)

[35] K. R. Peter, Enzymes: principles and biotechnological applications, Essays in biochemistry, 59, 1-41(2015), DOI(https://doi.org/10.1042/bse0590001)

[36] A. Sengeni, E. K. Pitchiah, and N. Suguru, The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research, Angewandte Chemie International Edition, 60(43), 23051-23067(2021), DOI(https://doi.org/10.1002/anie.202110352)

[37] P. Kalita, B. Basumatary, P. Saikia, B. Das, and S. Basumatary, Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification, Energy Nexus, 6, (2022), DOI(https://doi.org/10.1016/j.nexus.2022.100087)

[38] L. Yaping, S. Shangde, and L. Jinming, Biodiesel Production Catalyzed by a Methanol-Tolerant Lipase A from Candida antarctica in the Presence of Excess Water, ACS Omega, 4(22), 20064-20071(2019)

[39] M. L. Rúa, C. chmidt-Dannert, S. Wahl, A. Sprauer, and R. D. Schmid, Thermoalkalophilic lipase of Bacillus thermocatenulatus large-scale production, purification and properties: aggregation behaviour and its effect on activity, Journal of biotechnology, 56(2), 89–102(1997), DOI(https://doi.org/10.1016/s0168-1656(97)00079-5)

[40] J. Zhang, M. Tian, P. Lv, W. Luo, Z. Wang, J. Xu, and Z. Wang, High-efficiency expression of the thermophilic lipase from Geobacillus thermocatenulatus in Escherichia coli and its application in the enzymatic hydrolysis of rapeseed oil, 3 Biotech, 10(12), 523(2020), DOI(https://doi.org/10.1007/s13205-020-02517-6) .

[41] A. A. Abdelaziz, A. M. Abo-Kamar, E. S. Elkotb, and L. A. Al-Madboly, Microbial lipases: advances in production, purification, biochemical characterization, and multifaceted applications in industry and medicine, Microbial Cell Factories, 24(1), (2025), DOI(https://doi.org/10.1186/s12934-025-02664-6)

[42] D. Abol-Fotouh, O. E. A. Al-Hagar, and M. A. Hassan, Optimization, purification, and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus stearothermophilus FMR12 for detergent formulations, International Journal of Biological M, 181, 125-135(2021), DOI(https://doi.org/10.1016/j.ijbiomac.2021.03.111)

[43] R. Gaur, A. Gupta, and S. K. Khare, Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA, Process Biochemistry, 43(10), 1040-1046(2008), DOI(https://doi.org/10.1016/j.procbio.2008.05.007)

[44] A. N. Febriani, P. Kemala, N. Saidi, and T. M. Iqbalsyah, Novel thermostable lipase produced by a thermo-halophilic bacterium that catalyses hydrolytic and transesterification reactions, Heliyon, 6(7), DOI(https://doi.org/10.1016/j.heliyon.2020.e04520)

[45] M. R. S. Moguei, Z. Habibi, M. Shahedi, M. Yousefi, A. Alimoradi, S. Mobini, and M. Mohammadi, Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen, Biotechnology reports (Amsterdam, Netherlands), 35, (2022), DOI(https://doi.org/10.1016/j.btre.2022.e00759)

[46] M. Romo-Silva, E. Flores-Camargo, G. Chávez-Camarillo, and E. Cristiani-Urbina, Production, Purification, and Characterization of Extracellular Lipases from Hyphopichia wangnamkhiaoensis and Yarrowia deformans, Fermentation, 10(12), 595, (2024), DOI(https://doi.org/10.3390/fermentation10120595

Downloads

Published

2025-10-01

Issue

Section

Articles

How to Cite

Radeef, ziyad, Abduljabbar Mohammed, S. ., Almamoori, A. ., & Mohammed, H. . (2025). Thermostable Lipase from Geothermal Thermophiles: Biochemical Characterization and Industrial Application Potential. Academic Science Journal, 3(4), 303-321. https://doi.org/10.24237/ASJ.03.04.996D