Investigating the effect of some physical and nutritional factors on Klebsiella pneumoniae biofilm formation

Authors

DOI:

https://doi.org/10.24237/04.01.555

Keywords:

Klebsiella pneumoniae,, Nutritional factors,, Physical factors,, Biofilm

Abstract

One hundred clinical samples were collected from different pathological conditions. After the final diagnosis, 50 clinical bacterial isolates belonging to Klebsiella pneumoniae were obtained by 50%, and the percentage of isolates obtained from sputum was 23 (46%), urine 22 (44%), feces 2 (4%), and tracheal pus 3 (6%). The isolates were cultured and diagnosed in the conventional ways, and for the final diagnosis and antibiotic sensitivity test (AST), the Vitek2 system was used. All isolates of K.pneumoniae were highly resistant to antibiotics: 92% against cefepime, ceftazidime, ciprofloxacin, levofloxacin, and ceftriaxone; 72% against imipenem and meropenem; 68% against trimethoprim/sulfamethoxazole; 60% against tobramycin; 56% against gentamicin; and 44% against amikacin and 36%, while it was highly sensitive to 96% for each of piperacillin, ticarcillin/clavulanic acid, and Piperacillin/Tazobactam were 96%. The results of the study showed the ability of K. pneumoniae isolates to form biofilms using the 100% Microtiter Plate method but in varying formations. 26 isolates (52%), 15 isolates (30%), and 9 isolates (18%) showed strong, medium, and weak abilities respectively. Glucose, lactose, and yeast extract were among the best nutrients affecting the increase of biofilm formation. On the other hand, the temperature at 37°C and 25°C and the pH at 7, 8, and 9 had a positive effect on the production of biofilms.

Downloads

Download data is not yet available.

Author Biographies

  • Rana Mujahid Abdullah, Baghdad university

    Prof. Dr. Rana Mujahid Abdullah is a professor of Microbiology  at Department of Biology College of Education for Pure Science, University of Baghdad, Iraq. She received the (B.Sc., M.Sc., Ph.D.) degree in Microbiology from the University of AL-Mustansiria, College of Science. She has published several scientific papers in national, international conferences and journals. She can be contacted at email: dr.rana_alshwaikh@yahoo.com

  • Ayat Karrem Perali, Baghdad university

    Ayat Karrem Perali she M.Sc. student at Department of Biology College of Education for Pure Science, University of Baghdad, Iraq. She received the B.Sc. degree in biology from the College of Education for Pure Science, University of Baghdad, Iraq. She can be contacted at

References

[1] D.H. Bergey, R. David, G.M. Boone, R.W.C. Garrit and D.H. Bergey. (2001). Bergey’s Manual of Systematic Bacteriology, Springer: New York, NY, USA; London, UK.

[2] M.S. Mustafa and R.M. Abdullah. (2020). Prevalence of Quinolones Resistance Proteins Encoding Genes (qnr genes) and Co-Resistance with β-lactams among Klebsiella pneumoniae Isolates from Iraqi Patients, Baghdad Sci. J. 17 (2), 0406. https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3059.

[3] H.H. Al-Salhie and E.J. AlKalifawi. (2020). Antimicrobial and antivirulence activity of magnesium oxide nanoparticles synthesized using Klebsiella pneumonia culture filtrate, Biochem. Cell. Arch. 20, 3991–4001.

[4] M.S. Mustafa and R.M. Abdullah. (2020). Role of oqxA and oqxB Genes in the Development of Multidrug Resistant Phenotype among Clinical Klebsiella pneumoniae Isolates from Various Cases. Iraqi J. Sci. 61(8), 1902–1912. https://doi.org/10.24996/ijs.2020.61.8.7

[5] A.S. Shon, R.P. Bajwa and T.A. Russo. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed, Virulence. 4, 107–118. https://doi.org/10.4161/viru.22718

[6] R. Podschun and U. Ullmann. (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors, Clin. Microbiol. Rev. 11, 589–603. https://doi.org/10.1128/cmr.11.4.589

[7] Z.K. Jaber, M.S. Al-Deresawi and A.A. Matrood. (2022). Detection of Ompk36 Mutations of Klebsiella pneumoniae and Determination their effect on Outer Membrane Permeability to Antibiotics. Iraqi J. Biotechnol. 21(2), 704-712.

[8] C. Schroll, K.B. Barken, K.A. Krogfelt and C. Struve. (2010). Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation, BMC Microbiol.10, 179 . https://doi.org/10.1186/1471-2180-10-179

[9] H.J.F. Al-Mathkhury and S.D.A. Assal. (2012). Inhibitory Effect of Lactobacilli filtrate on Klebsiella pneumoniae Biofilm. Iraqi Postgrad. Med. J. 11 (2), 168-179.

[10] M.A. Al-Nasiri S.J. Hamza and E.D. Selman. (2012). The role of plasmids in antibiotic susceptibility of local isolates of Klebsiella pneumoniae. Iraqi J. Biotechnol. 11(2), 481-493.

[11] L.S. Munoz-Price, L. Poirel, R.A. Bonomo, M.J. Schwaber, G.L. Daikos, M. Cormican, G. Cornaglia, J. Garau, M. Gniadkowski and M.K. Hayden. (2023). Clinical Epidemiology of the Global Expansion of Klebsiella pneumoniae Carbapenemases, Lancet Infect. Dis. 13, 785–796.

[12] B.S. Rahal, A.A. Abdulha, N.Y. Salman, K.K. Ghaima and M.M. Mohamed. (2021). The Role of EDTA in Biofilm Eradication of Klebsiella pneumoniae Isolated from Wound Infections. Iraqi J. Biotechnol. 20(1), 96-102 .

[13] Z.Wen and J.R. Zhang. (2015). Chapter 3—Bacterial Capsules. In: Molecular Medical Microbiology. 2nd ed. (Elsevier Ltd.: Amsterdam, The Netherlands. https://doi.org/10.1016/B978-0-12-397169-2.00003-2

[14] P. Domenico, R.J. Salo, A.S. Cross and B.A. Cunha. (1994). Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumonia, Infect. Immun. 62, 4495–4499. https://doi.org/10.1128/iai.62.10.4495-4499.1994

[15] T. Brissac, E. Martínez, K.I. Kruckow, A.N. Riegler, F. Ganaie, H. Im, S. Bakshi, N.M. Arroyo-Diaz, B.L. Spencer and J.S. Saad. (2021). Capsule Promotes Intracellular Survival and Vascular Endothelial Cell Translocation during Invasive Pneumococcal Disease. M.Bio. 12, e0251621. https://doi.org/10.1128/mbio.02516-21

[16] M.S. Lawlor, S.A. Handley and V.L. (2006). Miller, Comparison of the host responses to wild-type and cpsB mutant Klebsiella pneumoniae infections, Infect. Immun. 74, 5402–5407. https://doi.org/10.1128/iai.00244-06

[17] S. Shankar-Sinha, G.A. Valencia, B.K. Janes, J.K. Rosenberg, C. Whitfield, R.A. Bender, T.J. Standiford and J.G. Younger. (2004). The Klebsiella pneumoniae O antigen contributes to bacteremia and lethality during murine pneumonia, Infect. Immun. 72, 1423–1430. https://doi.org/10.1128/iai.72.3.1423-1430.2004

[18] M.A. Abushaheen, F.A.J. Muzaheed, M. Alosaimi, W. Mansy, M. George and P. Jhugroo. (2020). Antimicrobial Resistance, Mechanisms and Its Clinical Significance. Dis. Mon., 66, 100971. https://doi.org/10.1016/j.disamonth.2020.100971

[19] A. Cruz, M. Condinho, B. Carvalho, C.M. Arraiano, V. Pobre and S.N. Pinto. (2021). The two weapons against bacterial biofilms: detection and treatment, Antibiotics (Basel). 10(12), 1482. doi: http://doi.10.3390/antibiotics10121482

[20] A. Singh, A. Amod, P. Pandey, P. Bose, M.S. Pingali and S. Shivalkar. (2022). Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. BioMed. Mater. 17 (2). http://doi.10.1088/1748-605X/ac50f6

[21] S.M. Ribeiro, M.H. Cardoso, E.S. Cândido and O.L. Franco. (2016). Understanding, preventing and eradicating Klebsiella pneumoniae biofilms, Future Microbiol. 11, 527–538. http://doi.10.2217/fmb.16.7.

[22] A.H. Al-Wandawy, L.A. Zwain and S.A. Omer. (2020). Antibacterial and antibiofilm effect of menthol and thymol on vaginal bacteria. Biochem. Cell. Arch. 20, 3883–3888.

[23] C. Nunez, X. Kostoulias, A. Peleg, F. Short and Y. Qu. (2023). A comprehensive comparison of biofilm formation and capsule production for bacterial survival on hospital surfaces, Biofilm. 5, 100-105. http://doi.10.1016/j.bioflm.2023.100105.

[24] K. Seifi, H. Kazemian, H. Heidari, F. Rezagholizadeh, Y. Saee and F. Shirvani. (2016). Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR, Jundishapur J. Microbiol. 9, e30682. http://doi.10.5812/jjm.30682.

[25] G.A. O’Toole. (2011). All together now: Integrating biofilm research across disciplines. Mrs Bull. 36(5), 339-342. https://doi.org/10.1557/mrs.2011.64

[26] A.A.K. Al-Sa'adi. (2014).The relationship between collagenase production and biofilm formation by Psedomonass aeroginosa. PhD, College of Science, University of Baghdad. 40-113.

[27] Y. Li, Z. Xu, D. Cai, B. Holland and B. Li. (2016). Self-sustained high-rate anammox: from biological to bioelectrochemical processes, Environ. Sci. Water Res. Technol. 2(6), 1022-1031. https://doi.org/10.1039/C6EW00151C

[28] SAS. (2012). Statistical Analysis System, User's Guide. Statistical. Version 9.1 th ed. SAS, (Inst. Inc. Cary. N.C. USA.

[29] S. Alnaqeeb and S. Gergees. (2014). Detection of Beta-lactamase Resistance in Klebsiella pneumoniae Isolated from Different Clinical Sources. J. Life Bio Sci. Res. 5(01), 13-17.‏ https://doi.org/10.38094/jlbsr501120

[30] Y. Hao, Y. Jiang, H.M. Ishaq, W. Liu, H. Zhao, M. Wang and F. Yang. (2022). Molecular Characterization of Klebsiella pneumoniae Isolated from Sputum in a Tertiary Hospital in Xinxiang. China Infect. Drug Resist. 15, 3829–3839. https://doi.10.2147/IDR.S370006.

[31] M.S. Taha, M.M. Hagras, M.M. Shalaby, Y.A. Zamzam, R.M. Elkolaly, M.A. Abdelwahab and S.Y. Maxwell. (2023). Genotypic characterization of carbapenem-resistant Klebsiella pneumoniae isolated from an Egyptian University Hospital, Pathogens. 12(1), 121. https://doi.org/10.3390/pathogens12010121

[32] C.M.M. Prasada Rao, T. Vennila, .S. Kosanam, P. Ponsudha, K. Suriyakrishnaan, A.A. Alarfaj, A.H. Hirad, S.R. Sundaram, P.A. Surendhar and N. Selvam. (2022). Assessment of Bacterial Isolates from the Urine Specimens of Urinary Tract Infected Patient. BioMed Res. Int, 4088187. https://doi.10.1155/2022/4088187.

[33] V. Puca, R.Z. Marulli, R. Grande, I. Vitale, A. Niro, G. Molinaro, S. Prezioso, R. Muraro and P. Di Giovanni. (2021). Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study, Antibiotics (Basel, Switzerland). 10 (10), 1162. https://doi.10.3390/antibiotics10101162.

[34] A.H. Alwan and S.M. Abass. (2016). The effects of UV light on mrkA, mrkD genes in local isolates of Klebsiella pneumonia. Al-Mustansiriyah J. Sci. 27(4). https://doi.org/10.23851/mjs.v27i4.32

[35] D.C. Moon, J.H. Choi, N. Boby, S.J. Kim, H.J. Song, H.S. Park, M.C. Gil, S.S. Yoon and S.K. Lim. (2022). Prevalence of Bacterial Species in Skin, Urine, Diarrheal Stool, and Respiratory Samples in Cats. Pathogens (Basel, Switzerland). 11(3), 324. https://doi.10.3390/pathogens11030324.

[36] S. Azar and A. Ebadi (2015). Examining the Pattern of Susceptibility and Antibiotic Resistance in Klebsiella pneumoniae Strains Isolated from Urine Samples of Children with Urinary Tract Infections from the Children's Hospital of Tabriz in 2015. Bri. Biomed. Bull. 5. https://doi.10.21767/2347-5447.1000307.

[37] S. Riaz, M. Faisal and S. Hasnain. (2012). Prevalence and comparison of Beta-lactamase producing Escherichia coli and Klebsiella spp from clinical and environmental sources in Lahore. Pakistan. Afr. J. Microbiol. Res. 6. https://doi.10.5897/AJMR11.1457.

[38] I.J. Adeosun, K.E. Oladipo, O.A. Ajibade, T.M. Olotu, A.A. Oladipo, E.H. Awoyelu, O.A.T. Alli and O.M. Oyawoye. (2019).Antibiotic Susceptibility of Klebsiella pneumoniae isolated from Selected Tertiary Hospitals in Osun State Nigeria. Iraqi J. Sci. 60(7), 1423-1429. https://doi.org/10.24996/ijs.2019.60.7.2

[39] S.M. Kadum and D.S. Al Rubaeye. (2020). Colistin Susceptibility in Carbapenem Resistant Klebsiella pneumoniae and their Ability of Biofilm Formation. Iraqi J. Sci. 61(3), 517-527. https://doi.org/10.24996/ijs.2020.61.3.7

[40] M. Götte, C.C. Seidel, S.V. Kesting, D. Rosenbaum and J. Boos. (2017). Objectively measured versus self-reported physical activity in children and adolescents with cancer. PLoS One. 12(2), e0172-216.‏

doi: 10.1371/journal.pone.0172216. eCollection 2017.

[41] G.S. Zagui, O.G.G. de Almeida, N.C. Moreira, N. Abichabki, G.P. Machado, E.C.P. De Martinis, S.I. Segura-Muñoz and S.I. (2023). A set of antibiotic-resistance mechanisms and virulence factors in GES-16-producing Klebsiella quasipneumoniae subsp. similipneumoniae from hospital wastewater revealed by whole-genome sequencing. Environ. Poll. 316, 120645. https://doi.org/10.1016/j.envpol.2022.120645

[42] S.F. Swedan and D.B. Aldakhily (2024). Antimicrobial resistance, biofilm formation, and molecular detection of efflux pump and biofilm genes among Klebsiella pneumoniae clinical isolates from Northern Jordan. Heliyon. 10(14), e34370. https://doi.10.1016/j.heliyon.2024.e34370.

[43] K. Karimi, O. Zarei, P. Sedighi, M. Taheri, A. Doosti-Irani and L. Shokoohizadeh. (2021). Investigation of antibiotic resistance and biofilm formation in clinical isolates of Klebsiella pneumonia. Int. J. Microbiol. (1), 5573388. https://doi.org/10.1155/2021/5573388

[44] E.T. Piperaki, G. A. Syrogiannopoulos, L. S. Tzouvelekis and G. L. Daikos.(2017). Klebsiella pneumoniae: virulence, biofilm and antimicrobial resistance. Pediat. Infect. Dis. J. 36(10), 1002-1005. https://doi.10.1097/INF.0000000000001675

[45] R.M. Donlan and J.W. Costerton. (2002). Biofilms: Surviaval Mechanisms of Clinically Relevant Microorganisms, Clin. Microbiol. Rev. 15(2), 167-193. https://doi.org/10.1128/cmr.15.2.167-193.2002

[46] M. Prasad, S.K. Shetty, B.G. Nair, S. Pal and A. Madhavan. (2022). A novel and improved selective media for the isolation and enumeration of Klebsiella species. Appl. Microbiol. Biotechnol. 106 (24), 8273-8284. https://doi.org/10.1007/s00253-022-12270-w

[47] K. Mirkar, A. Rawat and R. Satish. (2016). Effect of environmental factors on biofilm formation, Indian J. Sci. 5 (2), 53-64.

[48] M. Alabdullatif. (2024). Evaluating the effects of temperature and agitation on biofilm formation of bacterial pathogens isolated from raw cow milk. BMC Microbiol. 24(1), 251.‏ https://doi.org/10.1186/s12866-024-03403-4

[49] S.M. Kotay, H.I. Parikh, K. Barry, H.S. Gweon, W. Guilford, J. Carroll and A.J. Mathers. (2020). Nutrients influence the dynamics of Klebsiella pneumoniae carbapenemase producing enterobacterales in transplanted hospital sinks, Water Res. 176, 115-707. https://doi.org/10.1016/j.watres.2020.115707

[50] R. Elkheloui, A. Laktib, M. Zanzan, R. Mimouni, F. Achemchem, A. Aitalla and F. Hamadi. (2022). Effects of Glucose and Temperature on Exopolysaccharides, Extracellular Matrix Proteins Production and Biofilm Formation of Carbapenem-Resistant Acinetobacter baumannii. Iranian J. Med. Microbial. 16(2), 155-164.‏ DOI: 10.30699/ijmm.16.2.155.

[51] M. F. R.; Mizan, M. Ashrafudoulla, M. Sadekuzzaman, I. Kang and S.D. Ha. (2018). Effects of NaCl, glucose, and their combinations on biofilm formation on black tiger shrimp (Penaeus monodonsurfaces) by Vibrio parahaemolyticus. Food Cont. 89, 203–209. https://doi.org/10.1016/j.foodcont.2017.12.004.

[52] G.F. Alotaibi and M.A. Bukhari. (2021). Factors influencing bacterial biofilm formation and development. Amer. J. Biomed. Sci. Res. 12(6), 001820. http://doi.org/10.34297/AJBSR.2021.12.001820.

[53] T.V.I. Milic, M. Rakin and S. Iler-marinkovi . (2007).Utilization of baker's yeast (Saccharomyces cerevisiae) for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery. J. Serb. Chem. Soc. 72 (5), 451–457. DOI: 10.2298/JSC0705451V.

[54] C. Sandt, J. Barbeau, M.A. Gagnon and M. Lafleur . (2007), Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms. J. Antimicrob. Chemother. 60(6), 1281-1287. https://doi.org/10.1093/jac/dkm382 .

.

Downloads

Published

2026-01-30

How to Cite

Alshwaikh, R., & Perali, A. (2026). Investigating the effect of some physical and nutritional factors on Klebsiella pneumoniae biofilm formation. ٍِASJ - Academic Science Journal, 4(1), 33-42. https://doi.org/10.24237/04.01.555

Similar Articles

21-30 of 39

You may also start an advanced similarity search for this article.